
J. Functional Programming 8 (5): 503–525, September 1998. Printed in the United Kingdom

c© 1998 Cambridge University Press

503

Animated fuzzy logic

GARY MEEHAN and MIKE JOY

Department of Computer Science, University of Warwick,

Coventry CV4 7AL, UK

(e-mail: {Gary.Meehan, M.S.Joy}@dcs.warwick.ac.uk)

Abstract

In this paper we aim to give an introduction to fuzzy logic using the language Haskell to

implement our solutions. We shall see how the high-level, declarative nature of a functional

language allows us to implement easily and efficiently solutions to problems using fuzzy logic

and, in particular, how the presence of functions as first-class values allows us to model the

key concept of the fuzzy subset in a natural way.

Capsule Review

This paper is highly recommended for functional programmers interested in what the fuss

is about ‘fuzzy logic’. Functional programming provides a natural domain for explaining the

concept of fuzziness of a set. The idea that data values are not just fixed entities but often

realized as dynamic mappings is familiar to functional programmers. The idea that sets of

things may also exhibit properties to varying degrees is made a little clearer by the authors’

treatment of a fuzzy set as a function from a domain to a measure of set inclusion.

1 Introduction

Fuzzy logic, developed by Lotfi Zadeh (1965, 1973), is a form of multi-valued logic

which has its grounds in Lukasiewicz’s work on such logics (Lukasiewicz, 1967a,

1967b). It finds many applications in expert systems (in particular control problems)

(Cox, 1994; Mamdani and Assilian, 1975; Ross, 1995; Wang, 1994), neural nets

(Eklund and Kwalonn, 1992), formal reasoning (Negoita, 1985; Tanaka, 1997),

decision making (Cox, 1994; Negoita, 1985; Zimmermann, 1991), database enquiries

(Negoita, 1985) and many other areas. The use of fuzzy logic in such applications

not only makes their solutions simpler and more readable but can also make them

more efficient, stable and accurate (see, for example, Wang, 1994, ch. 2) or Yan et

al. (1994, ch. 3)).

Fuzzy logic has been applied to many languages – both in extending standard

languages such as Prolog (Martin et al., 1987), Fortran (Horvath, 1988), APL

(Negoita, 1985) and Java (Aptronix Ltd., 1996), and in custom-designed languages

such as Fuzzy CLIPS (NRC-CNC Institute for Information Technology, 1996),

FIL (Aptronix Ltd., 1992a, 1992b) and FLINT (Logic Programming Assoc. Ltd.,

1997). However, no one, to the authors’ knowledge, has combined fuzziness with a

functional language.

504 G. Meehan and M. Joy

In this paper we aim to give an introduction to fuzzy logic using the language

Haskell (Peterson, 1997) to implement our solutions. We shall see how the high-

level, declarative nature of a functional language allows us to implement easily

and efficiently solutions to problems using fuzzy logic and, in particular, how the

presence of functions as first-class values allows us to model the key concept of a

fuzzy subset (see section 3) in a natural way.

This paper is arranged as follows. Section 2 introduces the logic part of fuzzy logic

(the term ‘fuzzy logic’ is used to describe both the actual logic and the whole concept

of fuzzy theory). Section 3 introduces fuzzy subsets and some of their applications.

Section 4 introduces fuzzy systems and gives several examples. Section 5 concludes.

Throughout the paper we shall give examples of using the programs we develop

using the Haskell interpreter Hugs (Thompson, 1996). The programs in question can

be downloaded off the WWW from:

http://www.dcs.warwick.ac.uk/people/research/Gary.Meehan/funcprog/research.html

Hugs is available from:

http://haskell.systemsz.cs.yale.edu/hugs/

2 Fuzzy logic

In fuzzy logic, the two-valued truth set of boolean logic is replaced by a multi-valued

one, usually the unit interval [0, 1]. Truth sets taking values in this range are said

to be normalised. In this set, 0 represents absolute falsehood and 1 absolute truth,

with the values in between representing increasing degrees of truthness from 0 to 1.

So we can say that 0.9 is ‘nearly true’, 0.5 is ‘as true as it is false’ and 0.05 is ‘very

nearly false’. The nearer a value is to 0 or 1 the crisper it is; the nearer it is to 0.5

(the middle value of the range) the fuzzier it is.

The standard connectives of boolean logic — ∧, ∨ and ¬ — are adapted so

that they work with the fuzzy truth set. There are many ways in which this can be

done, but whatever definition we choose we expect the following to hold (Fodor and

Roubens, 1994; Zimmermann, 1991):

1. ∧ and ∨ should be associative and commutative.

2. ∧ and ∨ should be monotonic. That is, if a, b, c ∈ [0, 1] and a 6 b then

a ∧ c 6 b ∧ c and similarly for ∨.

3. 1 and 0 are the identities of ∧ and ∨ respectively. From this and monotonicity

we deduce that 1 and 0 are annihilators of ∨ and ∧ respectively.

4. ¬ should be anti-monotonic. That is if a, b ∈ [0, 1] and a 6 b then ¬b 6 ¬a.
Normally this should be strict monotonicity, that is if a < b then ¬b < ¬a.

5. ¬ should be its own inverse, that is if a ∈ [0, 1] then ¬¬a = a.

6. If we restrict the truth set to just 0 and 1, then our logic should behave exactly

as boolean logic.

Definitions of ∨ and ∧ that satisfy the above are also known as t-norms and

t-conorms (or s-norms), respectively.

We would also expect the connectives to be continuous and to satisfy DeMorgan’s

Animated fuzzy logic 505

laws. Two definitions which do so, taking values in the set [0, 1], and which are

probably the most common are Zadeh’s original definition (Zadeh, 1965, 1973)

using minimum and maximum operators:

x ∧ y = min(x, y)

x ∨ y = max(x, y)

¬x = 1− x
and an alternative using sum and product definitions:

x ∧ y = xy

x ∨ y = x+ y − xy
¬x = 1− x

Note that p ∧ ¬p = 0 ⇐⇒ p ∈ {0, 1} in both these and most other definitions of

fuzzy logic. For instance, 0.3 ∧ ¬0.3 = 0.3 ∧ 0.7 = 0.3 using Zadeh’s definition, and

0.21 if we use the product definition of ∧. Of course, this is only an elementary

introduction to fuzzy logic, and we have not mention more esoteric connectives

such as averaging operators. For more information we refer the reader to Kaufmann

(1975), Zimmermann (1991) and Fodor and Roubens (1994). From now on, we shall

presume that all fuzzy truth values lie in [0, 1].

We shall now set about implementing these ideas in Haskell. We shall place all

our definitions in a module called Fuzzy which will redefine some of the functions

defined in the Haskell prelude. This is done by shadowing the previous definitions

(see section 5.3.2 of the Haskell report (Peterson, 1997)). Thus the Fuzzy module

and any module which wishes to import it should contain the declaration:

import Prelude hiding ((&&), (||), not, and, or, any, all)

This forces an explicit import of the prelude (which is normally implicitly imported),

but hides the functions which we want to redefine. An example of the importing

procedure can be seen Section 3.5.

Fuzzy truth values are represented using the Haskell type Double. The connectives

are implemented by overloading the operators &&, ||, etc. so that they work on fuzzy

values as well as boolean ones. This is done by shadowing the connectives (see above)

and placing the connectives in a class (Hall et al., 1996; Jones, 1995; Peyton Jones

et al., 1997):

class Logic a where

true, false :: a

(&&), (||) :: a -> a -> a

not :: a -> a

The functions and, or, etc. are then also overloaded so that they now operate on

instances of the Logic class, rather than just the Bool type as before:

and, or :: Logic a => [a] -> a

and = foldr (&&) true

or = foldr (||) false

506 G. Meehan and M. Joy

any, all :: Logic b => (a -> b) -> [a] -> b

any p = or . map p

all p = and . map p

We can then declare instances of this class – Bool is declared in the obvious way

(with true = True, etc.); for fuzzy truth values (values of type Double) we have:

instance Logic Double where

true = 1

false = 0

(&&) = min

(||) = max

not x = 1 - x

Note that as with the Bool case, true is the identity of && and false is the

identity of || (provided we stick with values in [0, 1], of course). So, for example,

0.5 ∧ (0.3 ∨ ¬0.8) can be evaluated in Hugs as:

Fuzzy> 0.5 && (0.3 || not 0.8) :: Double

0.3

where ‘Fuzzy>’ is the Hugs prompt. The explicit typing is necessary to resolve the

overloading.

3 Fuzzy subsets

Given a set A and a subset of it, B say, we can define a characteristic (membership)

function µB : A→ {0, 1} defined such that:

µB(x) = 1, if x ∈ B
= 0, otherwise

This characteristic function determines which elements of A are in B and which are

not. Now suppose we replace the two-valued range of µB with the unit interval, just

as we replaced the boolean truth set with this interval. Then membership of the

subset B of A is no longer an absolute but rather something which takes varying

degrees of truthness. For x ∈ A, the closer µB(x) is to 1, the more we can regard

x as belonging to B, with µB(x) = 1 holding if x definitely is in B. Conversely, the

closer µB(x) is to 0, the more we can regard x as not belonging to B. The subset B

is no longer a crisp set but a fuzzy one.

A fuzzy subset B of a set A is a set of pairs with each element of A associated with

the degree to which it belongs to B (determined by µB). Formally, B ⊂ A × [0, 1]

where B = {〈x, µB(x)〉 | x ∈ A}
Given the set-theoretic definition of a function, that is a set of domain-range pairs,

we note that the definition of B and its characteristic function are identical. This is

the key fact that motivates our use of Haskell as an implementation language –

by representing a fuzzy subset by its membership function, a functional language

allows us to manipulate such sets/functions with ease. We shall thus use the notion

Animated fuzzy logic 507

T
ru

th
 v

al
ue

profitable

Profit (% of costs)

-10 0 10 20 30

F

T

Fig. 1. Crisp definition of Profit.

T
ru

th
 v

al
ue

Profit (% of costs)

profitable

0.67

-10 0 10 20 30

0

1

Fig. 2. Fuzzy definition of Profit.

of a fuzzy subset and that of a (fuzzy) characteristic function interchangeably. In

particular, if we have a fuzzy subset F of a set X then we shall denote X as the

domain of F .

To give a concrete example, consider the problem of determining whether a

company is profitable based, say, on the profit expressed as a percentage of total

costs. Using normal set theory, given a set of percentages, P , we would have

to determine an arbitrary cut-off point at and above which we would consider

profitable, 15% say (see Figure 1). So we can define profitable ⊆ P as:

profitable = {p | p ∈ P ∧ p > 15}
This means, however, that a profit of 14.9% is not considered profitable, which is

somewhat counter-intuitive considering its proximity to the cut-off point.

Contrast this with a fuzzy definition of profitable (see Figure 2). As before, profits

above 15% are considered definitely profitable and those below 0% definitely not

profitable; however between these two figures the degree of profitability increases

linearly. For example, a profit of 10% can be regarded as profitable to a degree of

0.67 (i.e., µprofitable = 0.67) and a profit of 14.9% is profitable to a degree of 0.993.

As functions and fuzzy subsets are identical, we represent fuzzy subsets in Haskell

as a function from some domain to the fuzzy truth value set. We define the following

type synonym:

508 G. Meehan and M. Joy

0

1

ba

tri a b

0

1

a b c d

trap a b c d

0

1

a

singleton a

0

1

a b c

atri a b c

0

1

ba

0

1

ba

down a b

up a b

Fig. 3. Standard fuzzy subset distributions.

type Fuzzy a = a -> Double

A number of functions representing the shapes of common fuzzy subsets are provided

(see Figure 3). For instance, up has the following definition:

up :: Double -> Double -> Fuzzy Double

up a b x

| x < a = 0.0

| x < b = (x - a) / (b - a)

| otherwise = 1.0

The other subsets in Figure 3 can be defined similarly. We can now define the fuzzy

subset profitable as follows:

type Percentage = Double

profitable :: Fuzzy Percentage

profitable = up 0 15

Membership testing is then merely function application. For example:

Profit> profitable 10

0.666667

3.1 The domain, support and fuzziness of a fuzzy subset

Knowing the domain of a fuzzy subset is necessary when defuzzifying it (see

section 3.4) and for evaluating its fuzziness (see below). We can also define fuzzy

numbers in terms of their fuzziness (see section 3.3) for which again we need to

know the domain over which we are approximating.

Both discrete and continuous domains are represented using ordered lists (in the

latter case we only have an approximation). We introduce the type synonym:

type Domain a = [a]

Animated fuzzy logic 509

The ‘dot-dot’ method of defining lists can be used to define domains in a compact

and easily-understandable way. So, for example, we can represent the domain of

profitable, which is the range [−10, 30] as the list [-10..30].

The support, which we shall denote as σ(B) (also written as supp(B)) of a fuzzy

subset B is the set of those members of its domain, A say, which are in the fuzzy

subset with non-zero truth value, i.e.

σ(B) = {µB(x) 6= 0 | x ∈ A}
For example, if we take the domain of profitable as [−10, 30] then its support is

(0, 30] = {x | 0 < x 6 30}. This has a simple translation into Haskell:

supp :: Domain a -> Fuzzy a -> [a]

supp dom f = filter (\x -> f x > 0) dom

For example, we can evaluate the support of profitable (defined above) viz :

Profit> supp [-10..30] profitable

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,

13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0,

24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0]

The fuzziness ν of a fuzzy subset is the degree to which the values of its membership

function cluster around 0.5. The function δ which measures the distance of a truth

value to the nearest extreme, 0 or 1:

δ(x) = x, if x < 0.5

= 1− x, otherwise

For example δ(0.3) = 0.3, δ(0.8) = 0.2 and δ(0) = δ(1) = 0. If the domain of our

fuzzy subset B is a continuous range, [a, b] say, then we can define ν as:

ν(B) =
2

b− a
∫ b

a

δ(µB(x)) dx

If the domain is a discrete set of points, x1, . . . , xn say, then the integral becomes a

summation:

ν(B) =
2

n

n∑
i=1

δ(µB(xi))

For example, the fuzziness of profitable (again over [−10, 30]) is 0.1875. Note that

for any crisp set, A, in which the membership function returns only the values 0 or

1, ν(A) = 0 as ∀x ∈ A . δ(µA(x)) = 0. Translating the above into Haskell yields the

following function:

fuzziness :: Domain a -> Fuzzy a -> Double

fuzziness dom f = (2.0 / size_dom) * sum (map (delta.f) dom)

where

size_dom = fromInt (length dom)

delta x

| x < 0.5 = x

| otherwise = 1.0 - x

510 G. Meehan and M. Joy

A

B

A + B

Ac

0

1

U

U

A B

A B

1

B c

0 0 0

1 1

Fig. 4. Operations on fuzzy subsets.

For example, we can calculate the fuzziness of profitable, viz :

Profit> fuzziness [-10..30] profitable

0.182114

The value that Haskell returns is only an approximation, of course. A better

approximation can be obtained by using a domain with more elements, e.g.:

Profit> fuzziness [-10,-9.75..30] profitable

0.186335

3.2 Fuzzy subset operations

Standard set operations – such as union, intersection and complement – can be used

with fuzzy subsets. For fuzzy subsets, A,B of a set X, we have:

A ∪ B = {〈x, µA(x) ∨ µB(x)〉 | x ∈ X}
A ∩ B = {〈x, µA(x) ∧ µB(x)〉 | x ∈ X}

Ac = {〈x,¬µA(x)〉 | x ∈ X}

This can be seen graphically in Figure 4, where the logical connectives are defined

using Zadeh’s method. A slightly unorthodox operation is addition defined as:

A+ B = {〈x, µA(x) + µB(x)〉 | x ∈ X}
This leads to fuzzy subsets whose membership function returns values outside the

range [0, 1]. This operation is generally only used in fuzzy systems (see below), where

the resultant set is only used as an intermediate value and will be defuzzified (see

section 3.4) to yield a typical value.

If fuzzy subsets are Haskell functions, then the fuzzy subset operators are higher-

order functions. If we look at the definition of intersection, for example, we see that

we can regard it as a way of defining logical conjunction over sets. This concept

holds for both fuzzy and crisp sets. Taking this to its logical conclusion we have:

instance (Logic b) => Logic (a -> b) where

true = \x -> true -- everything

false = \x -> false -- empty

f && g = \x -> f x && g x -- intersection

f || g = \x -> f x || g x -- union

not f = \x -> not (f x) -- complement

Animated fuzzy logic 511

This instance represents a generalized set, where true represents the set that ev-

erything is a member of and false is the empty set. If true is an identity for the

&& over the type b then true it also an identity for && over the type a -> b, and

similarly for false and ||.

In the context of fuzzy subsets, that is the type Fuzzy a (which in turn is the type

a -> Double), true is the fuzzy subset, T say, with membership function µT (x) = 1

and false is the fuzzy subset, F say, with membership function µF (x) = 0. The

function true remains the identity of && and false the identity of ||. We also need

to be able to perform addition on fuzzy subsets. This is done by making the type

a -> b, which remember is a generalisation of the type Fuzzy a a member of the

Num class (which is used to overload the numeric operators +, -, etc.):

instance (Num a, Num b) => Num (a, b) where

instance (Num b) => Num (a -> b) where

f + g = \x -> f x + g x

f * g = \x -> f x * g x

abs f = \x -> abs (f x)

signum f = \x -> signum (f x)

negate f = \x -> negate (f x)

fromInteger i = \x -> fromInteger i

We will also find it useful to use the operators of the Logic class over tuples, for

instance in the shower controller described in section 4.1.1 which groups its output

variables in tuples. This is done pointwise, e.g. for pairs we have:

instance (Logic a, Logic b) => Logic (a, b) where

true = (true, true)

false = (false, false)

(a, b) && (a’, b’) = (a && a’, b && b’)

(a, b) || (a’, b’) = (a || a’, b || b’)

not (a, b) = (not a, not b)

We also declare tuples to be instances of the Num class in a similar manner.

3.3 Hedges and fuzzy numbers

Just as adjectives such as profitable can be qualified by terms such as very and

somewhat, so can fuzzy subsets. Terms such as these, known as hedges alter the

membership function by intensifying it (normally by raising it to a power greater

than 1) in the case of very and similar terms such as extremely, or diluting it

(normally by raising it to a power between 0 and 1) in the case of somewhat. Usually

we have:

µvery F (x) = µF (x)2

µsomewhat F (x) = µF (x)1/2

The effect of very and somewhat on profitable can be seen in figure 5. We see that a

profit of 10% is profitable with truth value 0.67, very profitable by truth value 0.44,

and somewhat profitable by degree 0.82.

512 G. Meehan and M. Joy

1

T
ru

th
 v

al
ue

Profit (% of costs)

0

somewhat profitable profitable

very profitable
0.67

0.44

0.82

20 30-10 0 10

Fig. 5. Very profitable and Somewhat profitable.

In Haskell, we represent hedges as higher-order functions. We first define a generic

hedge which will raise the value of a function to a specified power:

hedge :: Double -> Fuzzy a -> Fuzzy a

hedge p f x = if fx == 0 then 0 else fx ** p

where fx = f x

We can then define more specific hedges as follows:

very, extremely, somewhat, slightly :: Fuzzy a -> Fuzzy a

very = hedge 2

extremely = hedge 3

somewhat = hedge 0.5

slightly = hedge (1 / 3)

The user is free to redefine these functions with different numbers if they want, of

course. An example of these in use, using the same sets and definitions in Figure 5:

Profit> very profitable 10

0.444444

Profit> somewhat profitable 10

0.816497

Hedges can also be used to approximate numbers by converting them into fuzzy

subsets (also known as fuzzy numbers in this context) using such terms as around 20,

roughly 20 and nearly 20. One typical way of defining these subsets is by symmetrical

triangular fuzzy subsets, centred on the number, c say, that we are approximating

and with base of width 2w. The membership function of this set is thus:

µ(x) = 1− |x−c|
w

if c− w 6 x 6 c+ w

= 0, otherwise

The tighter the approximation we want, the less fuzzy the fuzzy subset is, and hence

the smaller the base of the triangular fuzzy subset is. In general, roughly is a looser

approximation than around which in turn is looser than nearly.

For example, consider the fuzzy numbers in Figure 6, which approximate 20 over

Animated fuzzy logic 513

around 20

0

1

nearly 20

0.5

0.75
0.83

roughly 20

0 17.5 20 40

Fig. 6. Fuzzy approximations to 20.

the domain [0, 40] using triangular fuzzy subsets centred on 20. Here we see that

nearly 20 has a base of length 5 and a fuzziness of 0.125; around 20 has a base of

length 10 and a fuzziness of 0.25; and roughly 20 has a base of length 15 and a

fuzziness of 0.375. So, for example, 17.5 is nearly 20 with truth vale 0.5, around 20

with truth value 0.75 and roughly 20 with truth value 0.83.

As with hedges, to implement fuzzy numbers in Haskell we define a generic fuzzy

number function, which approximates a number on a specific domain by a triangular

fuzzy subset (see Figure 3) of specified fuzziness:

approximate :: Double -> Double -> Domain Double -> Fuzzy Double

approximate fuzziness n dom = tri (n - hw) (n + hw)

where hw = fuzziness * (ub dom - lb dom)

We now define the fuzzy number generators near, around and roughly as:

near, around, roughly :: Double -> Domain Double -> Fuzzy Double

near = approximate 0.125

around = approximate 0.25

roughly = approximate 0.375

This leads to the same sets as in Figure 6 if we approximate 20 over the domain

[0, 40]. For example:

Profit> near 20 [0..40] 17.5

0.5

Profit> roughly 20 [0..40] 17.5

0.833333

Profit> around 20 [0..40] 17.5

0.75

3.4 Defuzzification

In a real-world situation, we often need a concrete value rather than a fuzzy

subset. The process of extracting a typical value from a fuzzy subset is known as

defuzzification and there are many methods for doing this. Two such methods are

514 G. Meehan and M. Joy

0

m
ed

m
ax

/

m
ax

m
ax

1

ce
n

tr
o

id

T
ru

th
 v

al
u

e

m
in

m
ax

0 6 8 1042

Fig. 7. Defuzzifying a fuzzy subset.

finding the centroid (or centre of gravity) of a fuzzy subset, or finding the maxima

of a fuzzy subset and returning a member of this set.

If we have a fuzzy subset A with membership function µA over a domain X then

the centroid of A is defined as: ∫
X
xµA(x) dx∫

X
µA(x) dx

if X is a continuous domain. If X is discrete then the centroid is defined as:∑
X xµA(x)∑
X µA(x)

The latter is the definition we use in our implementation. We define the centroid

function as

centroid :: Domain Double -> Fuzzy Double -> Double

centroid dom f = (sum (zipWith (*) dom fdom)) / (sum fdom)

where fdom = map f dom

For example, the centroid of the trapezoid fuzzy subset in Figure 7 can be evaluated

viz

Profit> centroid [0..10] (trap 2 3 6 9)

5.06667

The maxima of a fuzzy subset A over a domain X is defined as the set maxima(A)

such that:

∀m ∈ maxima(A) . ∀x ∈ X . µA(m) > µA(x)

This can be implemented using the following function:

maxima :: Ord a => Domain a -> Fuzzy a -> [a]

maxima dom f = maxima’ dom []

where

maxima’ [] ms = ms

maxima’ (x:xs) [] = maxima’ xs [x]

maxima’ (x:xs) (m:ms)

Animated fuzzy logic 515

| f x > f m = maxima’ xs [x]

| f x == f m = maxima’ xs (x:m:ms)

| otherwise = maxima’ xs (m:ms)

We then typically defuzzify A by returning the minimum, the median or the maximum

of maxima(A):

minmax, medmax, maxmax :: Ord a => Domain a -> Fuzzy a -> a

minmax dom f = minimum (maxima dom f)

maxmax dom f = maximum (maxima dom f)

medmax dom f = median (maxima dom f)

where

median ms = head (drop (length ms ‘div‘ 2) (qsort ms))

qsort [] = []

qsort (x:xs) = qsort [y | y <- xs, y <= x] ++ [x] ++

qsort [y | y <- xs, y > x]

Defuzzifying the fuzzy subset in figure 7 using these three methods we get:

Profit> minmax [0..10] (trap 2 3 6 9)

3.0

Profit> medmax [0..10] (trap 2 3 6 9)

5.0

Profit> maxmax [0..10] (trap 2 3 6 9)

6.0

3.5 An Example – Fuzzy database queries

The linguistic nature of fuzzy subsets make them ideal in database enquiries. In

a functional language this is akin to applying a filter to a list of information. We

define a variant of the standard filter function, which takes a fuzzy predicate (i.e. a

function which returns a fuzzy truth value) and returns those members of the list

that satisfy the predicate to a non-zero degree, along with the degree to which they

satisfy the predicate:

ffilter :: Fuzzy a -> [a] -> [(a, Double)]

ffilter p xs = filter ((/=) 0 . snd) (map (\x -> (x, p x)) xs)

Referring back to our profit example, based originally on an example in Negoita

(1985), suppose we have the following module:

module Profit where

import Prelude hiding ((&&), (||), not, and, or, any, all)

import Fuzzy

type Percentage = Double

type Sales = Double -- thousands of pounds

type Company = (String, Sales, Percentage)

516 G. Meehan and M. Joy

sales :: Company -> Sales

sales (_, s, _) = s

profit :: Company -> Percentage

profit (_, _, p) = p

percentages :: [Percentage]

percentages = [-10..30]

profitable :: Fuzzy Percentage

profitable = up 0 15

high :: Fuzzy Sales

high = up 600 1150

companies :: [Company]

companies = [("A", 500, 7), ("B", 600, -9), ("C", 800, 17),

("D", 850, 12), ("E", 900, -11), ("F", 1000, 15),

("G", 1100, 14), ("H", 1200, 1), ("I", 1300, -2),

("J", 1400, -6), ("K", 1500, 12)]

So, we have a list of companies, functions to extract their profit and sales, and fuzzy

subsets profitable of Percentage (using the same definition as before) and high

of Sales. To extract all the profitable companies from companies, we first define

the fuzzy predicate p1:

p1 co = profitable (profit co)

and ffilter it over companies, viz :

Profit> ffilter p1 companies

[(("A",500.0,7.0), 0.466667), (("C",800.0,17.0),1.0),

(("D",850.0,12.0), 0.8), (("F",1000.0,15.0),1.0),

(("G",1100.0,14.0),0.933333), (("H",1200.0,1.0),0.0666667),

(("K",1500.0,12.0),0.8)]

So, of the original 11 companies, 7 are considered profitable with C and F being the

most profitable. Profitability by itself might not be enough – we may also want high

sales. Defining:

p2 co = profitable (profit co) && high (sales co)

we can then find all profitable companies with high sales:

Profit> ffilter p2 companies

[(("C",800.0,17.0),0.363636), (("D",850.0,12.0),0.454545),

(("F",1000.0,15.0),0.727273), (("G",1100.0,14.0),0.909091),

(("H",1200.0,1.0),0.0666667), (("K",1500.0,12.0),0.8)]

Animated fuzzy logic 517

Six companies satisfy the predicate, with G satisfying it the most. We can use hedges

to tighten or loosen the conditions, for example, defining

p3 co = somewhat profitable (profit co) && very high (sales co)

we can find those companies which have very high sales and somewhat profitable:

Profit> ffilter p3 companies

[(("C",800.0,17.0),0.132231), (("D",850.0,12.0),0.206612),

(("F",1000.0,15.0),0.528926), (("G",1100.0,14.0),0.826446),

(("H",1200.0,1.0),0.258199), (("K",1500.0,12.0),0.894427)]

Here the increased emphasis on sales, and decreased emphasis on profitability means

that company K now satisfies the predicate we pass to ffilter to the highest degree.

4 Fuzzy systems

Expert Systems (Russel and Norvig, 1995) are used to model real-world situations

in many areas of expertise. One common way of implementing these systems is as a

set of rules and an inference engine which manages these rules. Rules are composed

of two parts: an antecedent, which is a logical expression; and a consequent which

is an action which is performed when the antecedent is true. When this happens we

say that the rule fires.

As a simple example, consider predicting the shoe size, using British shoe sizes, of

a man given his height in metres. In a standard expert system we might have rules

like:

if 1.65 <= height & height <= 1.72 then shoe_size := 9

These rules are absolutes – if and only if the antecedent holds will the action be

fired and fired completely.

In a rule-based fuzzy system, the antecedent is a fuzzy logic expression the value

of which dictates the degree to which the action fires, the action being the assignment

of a variable to a fuzzy subset. If we have a rule such as if p then a := F then a

is assigned to the fuzzy subset F ′ where F ′ is linearly weighted by the value of p and

has membership function µF ′ (x) = pµF (x). This can be extended to multiple variable

assignments. Note that if the value of the antecedent is 0, then the membership

function of the consequent fuzzy subset will be constantly 0 (the empty set) and we

regard the rule as not having been fired. In our shoe size example, our rules are:

if height is short then shoe_size := small

if height is medium then shoe_size := average

if height is tall then shoe_size := tall

if height is very_tall then shoe_size := very_big

Here is serves as a membership test for height. These rules can be thought of as

forming patches (see Figure 8) with the larger the patch the fuzzier the rule (Kosko,

1994). More input variables require more dimensions to the patches.

As can be seen, these patches overlap, which in practical terms means that

518 G. Meehan and M. Joy

0

1

if tall then big

if medium then average

if short then small

if very_tall then very_big

1.5 1.8 1.95

Height (m)

short medium tall very_tall

4
7

10
13

0 1
sm

all
average

big
very_big

S
h

o
e S

ize (B
ritish

)

1.65

Fig. 8. The fuzzy rule base for the height → shoe size expert system.

more than one rule can fire, i.e. we have more than one possible assignment to

shoe size. Rather than selecting one of the possible assignments to a we select

them all, combining the subsets into one set using an operation such as union or

addition. Addition has the property that, unlike union, when combining many sets

the membership function of the result doesn’t approach the constant function 1.

Also all the sets that are part of the addition contribute to the final result, whereas

in the case of union large sets (measured by both their support and their height

(truth values)) subsume smaller ones.

Once we have combined all the resultant sets, we then defuzzify them (see sec-

tion 3.4) to obtain a final result. For instance, if we have a height of 1.75m then this

is tall to degree 0.6 and medium to degree 0.2. If we weight the relevant consequents,

sum the sets and defuzzify using the centroid method we obtain an estimated shoe

size of 9 1
4
, while defuzzifying with any of the maxima methods yields a shoe size of

10, since 10 is the only element of the resultant fuzzy subset which yields the largest

truth value, in this case 0.6 (see Figure 9). Of course, this is a very simple example.

More complex ones can be found in section 4.1.

Animated fuzzy logic 519

4 7 10 13
0

0.2

0.6

1

Shoe Size (British)

maximumcentroid

bigaverage

9.25

Fig. 9. Weighting, adding and defuzzifying the rules for a height of 1.75m.

We introduce a new operator ==>, which has the leastmost binding, to the Logic

class:

infix 0 ==>

class Logic a where

(==>) :: Double -> a -> a -- other defs as before

This operator linearly weights its right-hand side by the value on its left-hand side.

On fuzzy values, it is simply multiplication:

instance Logic Double where

(==>) = (*) -- other defs as before

There are a number of definitions over Bool. One such definition is:

instance Logic Bool where

w ==> False = False

w ==> True = w > 0.5 -- other defs as before

The ==> function used over fuzzy truth values is useful in its own right as a fuzzy

if-then function; an example of its use can be seen in section 4.1.2. However its

major use is to represent a rule in a fuzzy rulebase, where we normally expect the

value on the RHS of the operator to be a fuzzy subset or a tuple of such sets. On

fuzzy subsets, this operator has the definition:

instance (Logic b) => Logic (a -> b) where

w ==> f = \x -> w ==> f x -- other defs as before

and on tuples we weight each element of the tuple individually, e.g., for pairs we

have:

instance (Logic b) => Logic (a -> b) where

w ==> (a, b) = (w ==> a, w ==> b) -- other defs as before

The LHS of the ==> is thus the antecedent of the rule and the RHS of the rule is

the consequent. The result of the function is the consequent linearly weighted by the

antecedent, which will usually be the result of evaluating fuzzy logic expression.

520 G. Meehan and M. Joy

To combine the weighted subsets we define a function which takes a list of subsets

and a function to combine (two of) them with, and returns the result of combining

all the weighted subsets. We thus just have:

rulebase :: Logic a => (a -> a -> a) -> [a] -> a

rulebase = foldr1

Note that we can’t apply rulebase to the empty list, but this would imply we

had an empty set of rules. The resultant set can then be defuzzified using one the

defuzzifying functions from section 3.4.

Putting this all together, we have the following Haskell module which implements

our shoe-size expert system from above:

module Shoe where

import Prelude hiding ((&&), (||), not, and, or, any, all)

import Fuzzy

type Height = Double -- Metres

type ShoeSize = Double -- British size

sizes :: Domain ShoeSize

sizes = [4, 4.5..13]

short, medium, tall, very_tall :: Fuzzy Height

short = down 1.5 1.625

medium = tri 1.525 1.775

tall = tri 1.675 1.925

very_tall = up 1.825 1.95

small, average, big, very_big :: Fuzzy ShoeSize

small = down 4 6

average = tri 5 9

big = tri 8 12

very_big = up 11 13

-- calculate the shoe size from a given height

shoe_size :: Height -> ShoeSize

shoe_size h = centroid sizes (

rulebase (+) [

short h ==> small,

medium h ==> average,

tall h ==> big,

very_tall h ==> very_big])

Consider the use of the rulebase function inside the shoe size function. Its first

argument is +, i. e., we are using fuzzy subset addition to combine the weighted

Animated fuzzy logic 521

0 20 40 60 80
0

Cold Hot1

0 5 10 15 20 25
0

Weak Strong1

0

1

-0.1-0.2 0.1 0.2

NM NSNB PS PMZ

Tap Change

Flow (l/min)

Temperature (Celsius)

PB

Right

OK

Fig. 10. Fuzzy subsets of temperature, flow and tap change.

subsets. Its second argument is the set of rules, written using the ==> operator.

During evaluation of the rulebase function, each of these rules will be evaluated,

giving the required weighted set, which will all then be combined, in this case using

+. This set is then defuzzified using the centroid function over the domain sizes.

4.1 Further examples

4.1.1 Controlling a shower

Consider the problem of controlling a shower (NRC-CNC Institute for Information

Technology, 1996). We wish to get the temperature to between 34◦C and 38◦C and

the flow of the water between 11 l/min and 13 l/min. To do this we have two taps,

one hot and one cold, which take values between 0 (fully off) and 1 (fully on). We

divide the temperature into the fuzzy subsets hot, ok and cold; the flow into the

fuzzy subsets weak, right and strong; and the possible tap changes (ranging from

−0.2 to 0.2) into seven fuzzy subsets: pb (big positive change), pm (medium positive

change), ps (small positive change), z (zero change), ns (small negative change), nm

(medium negative change) and nb (big negative change). These fuzzy subsets can be

seen in Figure 10.

Unlike our shoe size example, the shower is not meant to be a one-use function

but rather to be continually iterated until the temperature and the flow are in the

correct range. So we are continually making changes (with suitable gaps in between

these changes to let the shower settle into its new settings) until the water becomes

522 G. Meehan and M. Joy

acceptable. We have the following system (note that these are not the original sets

used in the Fuzzy CLIPS example, which used curved rather than polygonal fuzzy

sets, and hence we have tweaked the numbers to get a better performance):

module Shower where

import Prelude hiding ((&&), (||), not, and, or, any, all)

import Fuzzy

type Temp = Double

type Flow = Double

type Change = Double

cold, ok, hot :: Fuzzy Temp

cold = down 15 36

ok = tri 32 40

hot = up 36 75

weak, right, strong :: Fuzzy Flow

weak = down 0 12

right = tri 9 15

strong = up 12 25

nb, nm, ns, z, ps, pm, pb :: Fuzzy Change

nb = down (-0.2) (-0.05)

nm = tri (-0.1) (-0.025)

ns = tri (-0.05) 0.0

z = tri (-0.025) 0.025

ps = tri 0.0 0.05

pm = tri 0.025 0.1

pb = up 0.05 0.2

change_valves :: (Temp, Flow) -> (Change, Change)

change_valves (temp, flow) = (defuz hv, defuz cv)

where

defuz = centroid [-0.2, -0.195..0.2]

(hv, cv) = rulebase (+) [

cold temp && weak flow ==> (pm, z),

cold temp && right flow ==> (pm, z),

cold temp && strong flow ==> (z, nb),

ok temp && weak flow ==> (ps, ps),

ok temp && strong flow ==> (ns, ns),

hot temp && weak flow ==> (z, pb),

hot temp && right flow ==> (nm, z),

hot temp && strong flow ==> (nb, z)]

Animated fuzzy logic 523

4.1.2 Pricing goods

The fact that fuzzy logic is inherently contradictory, that is we have truth values

which are non-zero and whose negation is also non-zero, is useful in decision making

processes where the decisions we have to make are based on conflicting demands or

requirements. Fuzzy logic can be used to resolve these contradictions in a natural,

simple and efficient way.

Consider the problem of pricing goods (Cox, 1994). The price should be as high

as possible to maximise takings but as low as possible to maximise sales. We also

want to make a healthy profit, say a 100% mark-up on the cost price. Then we have

to consider what the competition is charging. We can formalise these requirements

as rules:

1. Our price must be high.

2. Our price must be low.

3. Our price must be around 2 × manufacturing costs (i. e., a 100% mark-up).

4. If the competition price is not very high then our price must be around the

competition price (we don’t want to indulge in a price war).

A boolean system may have difficulties trying to resolve the requirements that the

price must be high and low, not to mention the other two requirements, but a fuzzy

system has no such difficulties.

Suppose possible prices are in the range £15 to £35. We define fuzzy subsets high

and low on this range, viz :

type Price = Double -- Pounds Sterling

prices :: Domain Price

prices = [15.00, 15.50 .. 35.00]

high, low :: Fuzzy Price

high = up 15.00 35.00

low = not high

So if we want a price that is high and low (Rules 1 and 2) then we can calculate

this by taking the intersection of high and low and defuzzifying the resultant set to

get a typical value, viz :

our_price = centroid prices (high && low)

Evaluating our price we get:

Prices> our_price

25.0

Rule 3 suggests that we can approximate the price by a fuzzy number centred on 2 ×
manufacturing costs. Taking the manufacturing costs as a parameter to our price

and combining this with what we have so far, we define

524 G. Meehan and M. Joy

our_price’ man_costs =

centroid prices (high && low &&

around (2.0 * man_costs) prices)

Assuming manufacturing costs of £13.25, say, we have:

Prices> our_price’ 13.25

26.252

Rule 4 is a conditional rule. The more that the competition price is not very high,

the more it affects the calculation of our price. Using the ==> operator and taking

the competition price as another parameter, we get:

our_price’’ man_costs comp_price =

centroid prices (high && low &&

around (2.0 * man_costs) prices &&

((not.very high) comp_price ==>

around comp_price prices))

Assuming the same manufacturing costs as before and a competition price of £29.99

we have:

Prices> our_price’’ 13.25 29.99

28.5893

So our final retail price is £28.59.

5 Conclusion

We have introduced and explored the use of fuzzy logic in functional programming.

The natural equivalence between fuzzy subsets and their membership functions

motivates our idea to use a single function to model them both. We have shown

how a functional language can be extended so that it provides facilities for the use

of fuzzy logic and fuzzy subsets, achieved by overloading pre-existing operators and

functions, and introducing new ones. We have also shown how fuzzy systems, used

in a variety of control and decision making problems, can be implemented in a

functional language in a natural and efficient way.

References

Aptronix Ltd. (1992a) Focusing system. http://www.aptronix.com/fuzzynet/applnote/

focusing.htm.

Aptronix Ltd. (1992b) Washing machine. http://www.aptronix.com/fuzzynet/applnote/

wash.htm.

Aptronix Ltd. (1996) Fuzzy java. http://www.aptronix.com/fuzzynet/applnote/java.htm.

Cox, E. (1994) The Fuzzy Systems Handbook. AP Professional.

Eklund, P. and Kwalonn, F. (1992) Neural fuzzy logic programming. IEEE Trans. Neural

Networks, 3(5), 815–818.

Fodor, J. and Roubens, M. (1994) Fuzzy Preference Modelling and Multicriteria Decision

Support. Kluwer Academic.

Animated fuzzy logic 525

Hall, C., Hammond, K., Peyton Jones, S. and Wadler, P. (1996) Type classes in Haskell. ACM

Trans. Programming Languages and Systems, 18(2), 109–138.

Horvath, J. M. (1988) A fuzzy set model of learning disability. In: Zétényi, T. (ed.), Fuzzy

Sets in Pyschology, pp. 345–382. Advances in Pyschology no. 56, North-Holland.

Jones, M. (1995) A system of constructor classes: overloading and implicit higher-order

polymorphism. J. Functional Programming, 5(1).

Kaufmann, A. (1975) Introduction to the Theory of Fuzzy Subsets, Vol. 1. Academic Press.

Kosko, B. (1994) Fuzzy Thinking. Flamingo.

Logic Programming Associates Ltd. (1997) FLINT toolkit. http://www.lpa.co.uk/fln.html.

 Lukasiewicz, J. (1967a) On the notion of possibility/On three-valued logic. In: McCall, S.

(ed.), Polish Logic 1920–1939, pp. 15–18. Oxford University Press. (Appeared originally

under the titles ‘O pojȩciu możliwości’ and ‘O logice trojwartosciowej’ in Ruch Filozoficzny

5 (1920), pp. 169–171.)

 Lukasiewicz, J. (1967b) Philosophical remarks on many-valued systems of propositional logic.

In: McCall, S. (ed.), Polish Logic 1920–1939, pp. 40–65. Oxford University Press. (Appeared

originally under the title ‘Philosophische Bemerkungen zu mehrwertigen Systemen des

Aussagenkalküls’ in Comptes rendus des séances de la Societé des Sciences et des Lettres de

Varsovie, Cl. iii, 23 (1930), pp. 51–77.)

Mamdani, E. H. and Assilian, S. (1975) An experiment in linguistic synthesis with a fuzzy

logic controller. Int. J. Man-Machine Studies, 1–13.

Martin, T. P., Balwdin, J. F. and Pilsworth, B. W. (1987) The implementation of FProlog – a

fuzzy Prolog interpreter. Fuzzy Sets and Systems, 23, 119–129.

Negoita, C. V. (1985) Expert systems and fuzzy systems. Benjamin/Cummings.

NRC-CNC Institute for Information Technology (1996) Fuzzy CLIPS. http://ai.iit.nrc.ca/

fuzzy/fuzzy.html.

Peterson (1997) The Haskell 1.4 report. http://haskell.org/report/.

Peyton Jones, S., Jones, M. P. and Meijer, E. (1997) Type classes: exploring the design space.

Proc. Haskell Workshop, Amsterdam, June 6.

Ross, T. J. (1995) Fuzzy Logic with Engineering Applications. McGraw-Hill.

Russel, S. and Norvig, P. (1995) Artificial Intelligence – A modern approach. Prentice Hall.

Tanaka, K. (1997) An Introduction to Fuzzy Logic for Practical Applications. Springer-Verlag.

(First published in Japanese, 1991.)

Thompson, S. (1996) Haskell: The craft of functional programming. Addison-Wesley.

Wang, L.-W. (1994) Adaptive Fuzzy Systems and Control – Design and stability analysis.

Prentice Hall.

Yan, J., Ryan, M. and Power, J. (1994) Using Fuzzy Logic. Prentice Hall.

Zadeh, L. A. (1965) Fuzzy sets. Information and Control, 8, 338–353.

Zadeh, L. A. (1973) Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Trans. Systems, Men and Cybernetics, 3, 28–44.

Zimmermann, H.-J. (1991) Fuzzy Set Theory – And its applications. Kluwer Academic.

