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SUMMARY

The Java Virtual Machine (JVM) was designed as the target for Java compilers, but there is no reason
why it cannot be used as the target for other languages. We describe the implementation of a compiler
which translates a lazy, weakly-typed functional program into Java class files. We compare the performance
of our compiler to the only other known compiler from a lazy functional language to the JVM. The
results are broadly similar, suggesting that to get a significant performance speed-up using this compilation
paradigm will come only from increasing the performance of the JVM, rather than enhancing the compiler
itself. Copyright  1999 John Wiley & Sons, Ltd.
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INTRODUCTION

The Java Virtual Machine (JVM) [1] provides a machine-independent execution environment
which executes Javabytecode, which is essentially a machine code for object-oriented
programs. It was designed as the target of Java compilers, but there is no reason why compilers
of other languages cannot target it. We are interested in using it as the target code of a
functional language, in particular a pure, lazy one. This approach has several advantages:

(a) Java bytecode will run on any machine for which an interpreter is available.
(b) Java programs can be run in web-browsers as applets or in embedded systems.
(c) Java has a built-in garbage-collector, hence any language which targets Java bytecode

has no need to handle garbage collection itself.

Our aim is to create a compiler which will translate a functional program, with each function
being translated into a static method of the generated class file. If the functional program we
are compiling is designed to be executed (as opposed to being a set of library functions, for
example) then we also generate amain method which will, when the class file is executed,
perform any initialisation necessary and evaluate the program which we have compiled. Our
source language is Ginger [2], a simple, pure, lazy, weakly-typed functional language. We
base our evaluation methods on those of the G-machine [3,4].

We assume that the reader is familiar with programming in Java, and has some
understanding of how Java classes are structured, and also how to program using a lazy
functional language, but we assume no prior knowledge of the JVM itself or of implementing
functional languages. The following two sections give brief guides to the JVM and the
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evaluation of functional programs using graph reduction. We then discuss the design of the
run-time environment of our compiler and how we compile Ginger programs. We give some
results of running programs compiled with our compiler, comparing them with Nottingham
and Yale Haskell interpreter Hugs [5], the Glasgow Haskell Compiler [6] and another lazy
functional program compiler, developed by David Wakeling at Exeter, which targets the
JVM [8,7], and finally conclude.

THE JAVA VIRTUAL MACHINE

The JVM [1] provides instructions for implementing object-oriented programming languages;
that is, for creating objects, invoking their methods, manipulating their fields, as well as the
usual basic operations, such as adding integers.

The format of the bytecode resembles that of Java programs [9]. For each new class, there
is a header declaring the class, its superclass and its package and the declaration of the fields
and methods. Each method provides a separate environment consisting of a stack, which is
used as a working space, and a set of local variables. In the case of an instance method,
register 0 holds a reference to the object that the method was invoked on (i.e. thethis
reference), and variables 1, . . . , n hold then parameters of the method. Static methods are
slightly different, in that since there is no object to invoke the method on, then parameters of
the method are stored in variables 0, . . . , n − 1. Each class also has aconstant pool, where
all the symbolic data used by the class – fields, methods, class, interfaces, etc. – is stored. For
example, consider the following class definition:

public class ExampleClass {
public int value;
private static ExampleClass one = new ExampleClass(1);

public ExampleClass(int v) {
value = v;

}

public static ExampleClass getOne() {
return one;

}

public void add(ExampleClass e) {
value += e.value;

}
}

This class can be compiled into a class file of bytecodes using a Java compiler,javac , say.
The class file can then be examined using a disassembler, such asjavap [10]. First, we have
the header of the file which declares the class’s super-class and its members:

Compiled from ExampleClass.java
public synchronized class ExampleClass extends java.lang.Object

/* ACC_SUPER bit set */
{

public int value;
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private static ExampleClass one;
public ExampleClass(int);
public static ExampleClass getOne();
public void add(ExampleClass);
static static {};

}

We then have the bytecode for the constructor function:

Method ExampleClass(int)
0 aload_0
1 invokespecial #3 <Method java.lang.Object()>
4 aload_0
5 iload_1
6 putfield #6 <Field int value>
9 return

A reference to the object that is created by the constructor is held in register 0. This is placed
on the stack by theaload 0 instruction. Theinvokespecial #3 pops the top object
off the stack (i.e.this ) and invokes on it the zero-argument constructor of its superclass, i.e.
Object , which is item number 3 in the constant pool. When this has completed,this is
again loaded onto the stack and then the integer 1 is loaded onto the stack by theiload 1
instruction. Theputfield #6 instruction pops the top two values of the stack and stores
the value that was held at the top of the stack (the integer 1) in thevalue field (item number
6 in the constant pool) of the object that was the second topmost item in the stack (this ).
The work is now done, the stack is empty, and the constructor function returns to the method
that called it, with avoid result, using thereturn instruction.

We then have the two method declarations. The methodgetOne merely loads the static
field one onto the stack and returns it using theareturn instruction:

Method ExampleClass getOne()
0 getstatic #5 <Field ExampleClass one>
3 areturn

Theadd method is a little more complicated:

Method void add(ExampleClass)
0 aload_0
1 dup
2 getfield #6 <Field int value>
5 aload_1
6 getfield #6 <Field int value>
9 iadd

10 putfield #6 <Field int value>
13 return

This first loads thethis reference onto the stack and duplicates it using thedup instruction,
leaving the copy on the top of the stack. Thegetfield #6 instruction pops the top of the
stack and gets the value of itsvalue field which it puts on top of the stack. We then load
the argument of the method (namede in the original code) which is in register 1, and get the
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value of itsvalue field. The top two items on the stack are now the two integers equal to the
value fields of the object the method was invoked on, and the argument of the method. These
integers are popped off the stack and added together using theiadd instruction, which places
the result on the stack. This value is then stored in thevalue field of the object referenced
by this – remember thedup instruction – and the method returns to its caller, returning a
void value.

The final method is the class’s static initialiser which is executed when the class is loaded.
This has the job of creating a newExampleClass whose value field is set to 1 and storing
it in the static fieldone :

Method static {}
0 new #1 <Class ExampleClass>
3 dup
4 iconst_1
5 invokespecial #4 <Method ExampleClass(int)>
8 putstatic #5 <Field ExampleClass one>

11 return

GRAPH REDUCTION

Graph reduction provides a way to implement functional languages [3,4,11]. The evaluation
of an expression involves the application of reduction rules, i.e. the definition of functions,
until no more reduction rules are applicable, at which point the expression is said to be in
normal form. For instance, suppose we have the definition:

square x = x * x;

and we want to evaluate the expressionsquare (3 + 4) . This is stored as the graph:

base of spine

spine

@

@

+ 3

4

@

square

rib

Note that we represent infix operators like+ (which come between their arguments) as prefix
ones (which come before their arguments). Since values in pure functional languages are
immutable, we can share sub-expressions saving both time and memory. We can evaluate the
expression byreducingthe graph [4,12]. For example, if we reducesquare (3 + 4) we
get the graph:
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The first time3 + 4 is evaluated the graph reduces to:

@

@

* 7

Hence we only need to evaluate3 + 4 onceas the result is shared between the nodes that
point to it. Reduction of the multiplication yields the answer49 which is the normal form of
square (3 + 4) .

Usually when we are evaluating an expression, there is more than one subexpression
that can be reduced (each such subexpression is called aredex ). Implementations of lazy
functional languages choose to evaluate the outermost redex first; that is, apply the reduction
rule of the function at the base of the spine of the graph. So we evaluate the function itself
before its arguments. This is known aslazy evaluationor outermost graph reduction. For
instance, we reducesquare (3 + 4) to (3 + 4) * (3 + 4) rather thansquare
7 (the latter reduction would be done by strict languages, and is known asstrict evaluationor
innermost graph reduction) . Of course, eventually we may need to evaluate the arguments of
a function, but such an operation is only usually done explicitly by primitives of the language,
such as* in oursquare example.

Lazy and strict evaluation will always reduce an expression to the same normal form,
however evaluating an expression using strict evaluation may not terminate in some cases
where lazy evaluation does. For example, consider the small Ginger program:

from x = x : from (x + 1);

main = hd (from 0);

Here: (cons) is the list constructor andhd selects the head of the list, i.e. the expression to
the left of the: . Note that the expressionh : t is in normal form no matter whath andt are
(i.e. cons does not evaluate its arguments). The expressionfrom x yields the list[x, x
+ 1, x + 2,...] , and hence evaluating the expressionhd (from 0) should give the
answer0. With lazy evaluation, we have the reduction sequence:

main H⇒ hd (from 0)

H⇒ hd (0 : from (0 + 1))

H⇒ 0
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622 G. MEEHAN AND M . JOY

〈program〉 ::= (package 〈package〉; )?
(import 〈class〉; )∗
〈definition〉∗

〈definition〉 ::= 〈identifier〉 〈identifier〉∗ = 〈expr〉;

〈expr〉 ::= 〈integer〉 | 〈boolean〉 | 〈float〉 | 〈character〉 | 〈string〉
| 〈identifier〉
| [] (empty list)
| (〈expr〉: 〈expr〉) (list constructor)
| (〈expr〉 〈expr〉) (application)
| ( 〈expr〉, . . . , 〈expr〉)
| if 〈expr〉 then 〈expr〉 else 〈expr〉 endif

| let 〈identifier〉 = 〈expr〉 in 〈expr〉 endlet

| letrec

〈identifier〉 = 〈expr〉
. . .

〈identifier〉 = 〈expr〉
in 〈expr〉 endletrec

Figure 1. The EBNF of the Ginger language after lambda-lifting and dependency analysis

Like * , hd evaluates its argument (to normal form). The result of the evaluation should be a
cons, otherwise we have an error, at which pointhd selects the leftmost argument of the cons.
Now suppose we evaluate the expression strictly:

main H⇒ hd (from 0)

H⇒ hd (0 : from (0 + 1))

H⇒ hd (0 : from 1)

H⇒ hd (0 : 1 : from (1 + 1))

H⇒ hd (0 : 1 : from 2)

H⇒ hd (0 : 1 : 2 : from (2 + 1))

. . .

The recursion would never terminate as the innermost expression can always be reduced.

THE GINGER LANGUAGE

The Ginger language [2] was developed at the University of Warwick as a means of
investigating parallelism in functional languages (we don’t consider the parallel features of
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the language in this paper). It is a simple, weakly-typed, pure lazy functional language with
no pattern-matching or user-defined types.

After parsing, the Ginger compiler transforms the source tree into a set of supercombinators
(functions in which no free variables occur, see Section 13.2.1 of Peyton Jones (1987) [4])
by lifting any lambda abstractions into separate function definitions [13]. Then dependency
analysis [4] is performed, which transforms local variable definitions into blocks of simple,
non-recursivelet expressions and blocks of minimally mutually-recursiveletrec blocks.
The source at this stage is structured as in Figure1.

We have an optionalpackage declaration in which the class we eventually create will
be placed. Then come a number ofimport declarations which deal with the importing of
Ginger functions (stored in Java classes) from other sources followed by the definitions of the
supercombinators, both those defined by the user and those created by lambda-lifting.

REPRESENTATION OF GRAPH NODES

Since we are creating a Java class file, it makes sense to represent graph nodes by Java objects.
The five simple types – integers, floats, booleans, characters and strings – are represented
using the Java classesLong , Double , Character , Boolean andString found in the
java.lang package. The first four are the object equivalent of the primitive Java types
long , double , char andboolean respectively. Note that we use the largest size possible
for integers and floats, and we donot represent strings as list of characters.

Lists are represented using theList class, which is just an empty class which its two
subclassesCons (list constructor) andEmptyList subclass. TheCons has the skeleton
following definition:

public final class Cons extends List {
public Object head;
public Object tail;

// ...
}

The representation of functions utilises thejava.lang.reflect package, which
provides classes that ‘reflect’ the members of the class, in particular there is aMethod class
the instances of which reflect a particular method of a particular class. This class has an
instance methodinvoke :

public Object invoke(Object obj, Object[] args)

This invokes the method reflected by the instance on the objectobj with the arguments in
the arrayargs . If the method being reflected is static thenobj is ignored and can benull .

Our compiler will translate all the supercombinators in a file into static methods of the
generated class file (see below). This gives us a maximum of 255 arguments and local
variables per function. We use static methods as these are more like ordinary functions than
instance methods, who expect at least one argument which is an instance of the class the
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method is defined in. When we import a class file we thus store each of its methods (functions
of the original program) asMethod objects which are held insideFunc objects:

public class Func {
public final Method method;
public final int arity;
public final boolean isCAF;

public Func(Method m) {
method = m;
arity = m.getParameterTypes().length;
isCAF = arity == 0;

}

// ...
}

We could represent functions directly asMethod objects, but we commonly needed to
determine the arity of a function and whether it is aConstant Applicative Form(CAF),
that is a function of arity 0. The only way to do this provided by theMethod class is to
use thegetParameterTypes method, which returns an array representing the types of
the method’s parameters and determining its length. By storing theMethod object inside a
Func class, we only have to do this operation once, when the instance is created. Note that
this doesn’t add too much as an overhead, as we only createone instance of each function
which is then shared, rather than creating a new function each time we come across one (see
below).

Our representation of applications is guided by the type of theMethod.invoke method
which will be called every time we apply a function. Since this method expects its arguments
to be packed into an array, it makes sense to store the arguments of an application in an array,
rather than in some intermediate data structure from which we make an array. In particular,
we use multiple-argument applications. TheApp class has the following definition:

public final class App {
public Object functor;
public Object[] args;

public boolean in_nf = false;
public boolean total_app = false;

// ...
}

This represents the applicationfunctor args[0] . . . args[args.length - 1] .
The field in nf is set when theApp is in normal form, that is when thefunctor is a
function and there are not enough arguments present, or theApp is acting as an indirection
to a non-application (see below). Iffunctor is a function and it is applied to exactly the
right number of arguments, then we set thetotal app field. The use of thein nf and
total app fields prevents unnecessary work being done.
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Updating

As we saw in the section on graph reduction, after applying a function to its arguments, we
need to update the original application with the result of the application. This is to prevent
the unnecessary re-evaluation. For instance, the applicationsquare ((+) 3 4) becomes
(*) ((+) 3 4) ((+) 3 4) (with the instances of(+) 3 4 being shared) and(+)
3 4 becomes 7.

In the case where we update one application with another, we simply copy the result field-
by-field onto the original application. However, if the resultisn’t an application, as in the
second case, then things aren’t so simple as we can’t copy an object of one type onto an
object of a different type. Instead, we turn theApp into an indirection by setting itsargs
field to thenull reference, and setting itsfunctor field to the result in question. We
can view anyApp with a null args field as serving as an indirection or a wrapper to its
actual argument. Note that, once the result of an application becomes a non-application, it is
in normal form, and thus no further evaluation is necessary and so we do not get chains of
indirections. Updating is done in the methodApp.update :

private void update(Object o) {
if (o instanceof App) {

// copy o onto this App
App a = (App) o;
functor = a.functor; args = a.args;
in_nf = a.in_nf; total_app = a.total_app;

}

else if (o instanceof Func) {
functor = o; args = empty;
if (((Func) o).isCAF) {

total_app = true; in_nf = false;
}
else {

total_app = false; in_nf = true;
}

}

else { // we have an indirection
functor = o; args = null;
in_nf = true; total_app = false;

}
}

Hereempty is a field ofApp which is set to be an empty array ofObject s.

Going back to our original example,square ((+) 3 4) reduces to(*) ((+) 3
4) ((+) 3 4) . Before updating we have:
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App App

App

+ {3, 4}

square * { ,  }

Original Expression Reduction Expression

Updating the original expression involves reassigning itsfunctor and args fields
(ignoring the other twoboolean fields for the moment):

App App

App

+ {3, 4}

* { ,  }

Original Expression Reduction Expression

After the reduction of(*) ((+) 3 4) ((+) 3 4) our App becomes an indirection to
49 :

App

null49

Applications are not the only graph nodes that can be updated, there is one other case, namely
CAFs, that is functions taking zero arguments. These can be treated as applications of the
CAF in question to zero arguments, and we do just this by storing all CAFs asApps whose
functor is the actual CAF in question and whoseargs is the empty array (note that if
we wish to invoke a method that takes no arguments then we need to pass an empty array to
Method.invoke ).
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Evaluation

The evaluation of graph nodes is controlled by the methodeval in the classNode which
contains various static methods used for the evaluation and printing of graph nodes. The
method only has to do something when it is called to evaluate anApp, otherwise it simply
returns its argument.

The instance methodApp.eval repeatedly evaluates and updates itself until it is in normal
form. Once it becomes so, it returns itsfunctor if it is an indirection, or itself otherwise:

public Object eval() {
while (! in_nf) {

if (total_app)
// ...

else if (functor instanceof Func)
// ...

else
// ...

}
// if we have an indirection, return the functor,
// else return the whole App
return (args == null) ? functor : this;

}

TheApp being evaluated forms the spine of the graph, with thefunctor being the base of
the spine and theargs forming the ribs. If theApp is not in normal form, then we have one
of three cases, corresponding to the three branches of theif-then-else ladder inside the
while loop.

If we have a function applied to the exact number of arguments (that is, whentotal app
is true), we simply need to apply the function to its arguments and update theApp:

if (total_app)
update(((Func) functor).apply(args));

The methodFunc.apply is where all the work is done. In this method, we unpack any
indirections fromApps and then invoke the function on these unpacked arguments:

public Object apply(Object[] as) {
for (int i = 0; i < as.length; i++)

if (as[i] instanceof App) {
App a = (App) as[i];
if (a.args == null) // N.B. we keep CAFS inside Apps

as[i] = a.functor;
}

return method.invoke(null, as);
}

If we have a function applied to too many arguments, i.e. thefunctor is a function and both
total app and in nf are false. In this case we split theargs array into two, apply the
functor to the number of arguments it needs and update thefunctor andargs fields
appropriately:
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else if (functor instanceof Func) {
// we must have more arguments than the function takes
Func f = (Func) functor;

// split this array into two parts.
int unused = args.length - f.arity;

Object[] first = new Object[f.arity];
Object[] rest = new Object[unused];
split(args, f.arity, first, rest);

// the functor becomes the result of apply f to the first arity arguments
functor = f.apply(first);

// and the args become the rest of the args
args = rest;

setType();
}

The methodApp.setType examines thefunctor andargs fields of theApp and sets
total app andin nf appropriately.

The last case is when the functor is anotherApp, in which case we need to unwind theApp
at the functor onto this one. If thefunctor is a function applied to the correct number of
arguments, then we do the application before unwinding:

else { // functor instanceof App
// need to unwind
App a = (App) functor;

if (a.total_app)
// the functor contains a function applied to the correct
// number of arguments, so we apply it and continue unwinding
a.update(((Func) a.functor).apply(a.args));

else {
functor = a.functor;
args = cat(a.args, args);

}

setType();
}

The methodApp.cat joins together two arrays in a manner similar to list concatenation in
functional languages.

Printing

The evaluation of graph nodes is Initially triggered by theNode.print method, which
evaluates a node and prints it on standard output:
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public final static void print(Object node) {
node = eval(node);

if (node instanceof Cons) {
System.out.print("[");
boolean not_at_end = true;
do {

Cons c = (Cons) node;
c.head = eval(c.head); // evaluate and update head
c.tail = eval(c.tail); // and tail
printNoEval(c.head);
if (c.tail instanceof Cons) {

System.out.print(", ");
node = c.tail;

}
else

not_at_end = false;
} while (not_at_end);
System.out.print("]");

}
else

System.out.print(node);
}

The methodNode.printNoEval is similar to print , except that it presumes that its
argument is in normal form and thus doesn’t bother evaluating it before printing.

If the nodeisn’t a Cons, then we simply print out the node using thetoString method
(which is implicitly called by theSystem.out.print method). Otherwise, if it is aCons
then we iteratively print out each element of the list. It is done this way, rather than farming
it out to some method ofCons, which would be the standard object-oriented way, as we
don’t wish to keep an unnecessary reference to the head of the list (note that we repeatedly
overwrite the head inNode.print ), which could lead us to keeping the whole of the list that
is being printed in memory when in reality it could be garbage and the memory it occupies
could be freed. We also reassignc.head andc.tail after evaluating them; this enables
us to bypass any indirection introduced by any evaluation, which needed to be done since the
eval method will return the evaluated object unpacked from the application which is serving
as an indirection.

Primitives

Like user-defined functions we store primitives, such as arithmetic operators, comparison
operators, list constructors and deconstructors, in Java class files. The primitives are spread
over a number of classes, which are all subclasses of theNode class which contains the top-
level evaluation and print routines. The strict primitives are kept in different classes to the
lazy ones, thus giving us a quick and dirty way of determining if a primitive is strict. We also
ensure that the result of all strict primitives is in normal form.

We allow overloading on primitives, e.g. we use- for integer and real subtraction, but this
is done in anad hocway inside the primitive itself, making use of the Javainstanceof
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operator rather than in any systematic kind of way such as the use of type classes in
Haskell. For example, subtraction is performed using theminus method in the class
StrictPrimitives :

public class StrictPrimitives extends Node {
public final static Class TYPE = (new StrictPrimitives()).getClass();

public static Object _minus(Object lhs, Object rhs) {
lhs = eval(lhs);
rhs = eval(rhs);
if (lhs instanceof Long && rhs instanceof Long)

return new Long(((Long) lhs).longValue() -
((Long) rhs).longValue());

else
return new Double(((Number) lhs).doubleValue() -

((Number) rhs).doubleValue());
}
public final static Object _minus = Function.make(TYPE, "_minus", 2);
// ...

}

The StrictPrimitives has aTYPE field, which stores theClass representation of
itself which is used to construct theObject equivalent of each method.

The minus method first evaluates its two arguments and reassigns them (remember that
theeval method unpacks any indirections). It then determines whether it is doing integer or
real subtraction using theinstanceof operator (integers are cast to reals if necessary), does
the necessary subtraction, and returns a new object containing the result of the subtraction.

The structure of the primitive classes and the classes created by the compiler are identical,
and hence we can treat primitives exactly the same way as we do user-defined functions,
except in the case of a tail recursion (see below).

COMPILATION

In this section we deal with the creation of Java class files from our Ginger source which
has been lambda-lifted and had dependency analysis performed on it (see Figure1). Rather
than creating the class files directly, or using the Java language itself as a source (which
would complicate mattersviz local variables), we target the Jasmin assembly language [1].
This language is very similar to the byte code used by the Java Virtual Machine, but is easier
to program in as it deals with such things as the Java constant pool (where all constants
and object references as such) and calculating offsets for jumps automatically. Our Ginger
program, in the fileprog.g , is compiled into an intermediate Jasmin fileprog.j (which may
be discarded after use), which is assembled into a Java class fileprog.class by Jasmin.

Each supercombinator definition of our Ginger program is compiled into a static method
of the class file we are creating. Functions are not compiled by creating code to create a new
instance each time one occurs, but rather a single instance is created and is stored as a static
field of the class we are creating. These fields will be set up in a static initialiser of the class
we are creating. Therefore, whenever we want a function we just access the relevant field.
This method also applies when we want to access a function defined in another class. The job
of the variousimport declarations is thus just to tell us in which class to find each function
that we use. There is a limit on the number of fields, i.e. functions, in a class (65,535), but if
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this limit is reached then the program can be split up into smaller segments (a program which
hit this limit must have been fairly big and unwieldy anyhow).

Our compilation schemes are based on those presented in Peyton Jones (1987,92) [4].
We view our source as a triple〈cl, fs, ss〉, wherecl is the class we are to create,fs is the
set of all functions defined or imported, andss is the set of supercombinator definitions.
Note that, although the JVM has shorter, more optimal versions of some instructions (the
instructioniconst 0 is a more efficient way of loading the integer zero onto the stack than
ldc2 w 0, for example), for clarity we use the most general instruction in our description
of the compilation schemes, though we do use the most efficient instruction in our actual
implementation. Our primary compilation scheme,P, starts off as:

P〈cl, fs, {s1, . . . , sn}〉 =
.class public cl
.super Object

This declares our class and its superclass. Note that Jasmin requires the full name of all
classes and members, but for brevity we have omitted the package name where this is obvious,
indicating the omission by using italics for object names rather than teletype. We then proceed
by declaring the fields corresponding to each function defined in the file:

.field public static φ(s1) LObject;

...

.field public static φ(sn) LObject;

The functionφ returns the name of the field that holds the supercombinator, which is just its
name of said supercombinator. Note that when an object name,obj say, is used as a type, it
is written asLobj; . Functions imported will be declared and defined in the class that they are
imported from.P progresses by setting each of these fields to its appropriate value inside a
static initialiser which is a method calledclinit that takes no arguments, and returnsvoid
(indicated by theV):

.method <clinit>()V

new cl
dup

invokespecial cl/<init>()V

invokevirtual cl/getClass()L Class;
astore 0

D s1
...

D sn

return

.end method

The method first gets theClass object reflecting the class we are creating and stores it
in register 0. ThisClass object is used when creating theFunc object representing each
supercombinator (orApps in the case of CAFs).D creates the code necessary to create a new
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instance of its argument, and store it in the relevant field. If we have a supercombinator,s say,
then we have:

D s = aload 0

ldc n(s)
ldc a(s)
invokestatic Function/make(L Class;L String;I)L Object;
putstatic φ(s) LObject;

This loads theClass object reflecting cl onto the stack, then the name of the
supercombinator (using the functionn) and its arity (usinga). This information is then used
by the methodFunction.make to create aFunc object (non-CAFs) or anApp (CAFs),
which is then stored in the appropriate field.

Moving back to theP scheme, after declaring and defining our constants, we now need to
create the code for each of the supercombinators. This is done using theF scheme:

P〈cl,fs, {c1, . . . , cm}, {s1, . . . , sn}〉 =
...

F fs s1

...

F fs sn

TheF scheme is defined below. Finally, we need to determine if we need to create amain
method which will make the class file executable, using thejava interpreter, say. This is so if
we have defined a function calledmain . Themain method will print the result of evaluating
the Ginger functionmain which we renamemain , so as to separate the reduction rule from
the code which does the evaluation and printing. The code for this is:

.method public static main([L String;)V
getstatic φ( main ) LObject;
invokestatic Node/print(L Object;)V
return

.end method

Here the[String denotes an array of strings (the closing brace is not used) which in the
case of the arguments to themain method represent the command-line arguments passed by
the Java interpreter. If we don’t create amain method then we can view the generated class
as a library of functions.

Compiling supercombinators

We now need to give the definition ofF which creates a method from a supercombinator.
This method takesn arguments of typeObject , wheren is the arity of the supercombinator
in question, and returns an object of typeObject . The return object will be the object left on
the top of the stack by the code generated by theR scheme, which compiles the expression
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on the right-hand side of a supercombinator definition.

F[ f x1 . . . xn = E ] fs =
.method public static f ( L Object; . . . LObject;︸ ︷︷ ︸

n times

)L Object;

R E [x1 = 0, . . . , xn = n − 1] fs n
areturn

.end method

The schemeR takes as arguments the expression to compile, an environment detailing which
register each variable is in, the set of functions defined and imported, and the next free variable
register (used to store local variables).

TheR compilation scheme

The purpose of theR scheme is to take an expression which forms the right-hand side of a
definition (the return expression) and compile it to code that will, when executed, create the
graph of the expression and leave a reference to it on top of the stack.

If we have an integer,i say, then we have to create a newLong object to store it in:

R i ρ fs v = new Long
dup

ldc2 w i
invokespecial Long/<init>(J)V

The instructionldc2 w is used to load a long or a double onto the stack (each stack cell is
32 bits in size, but long integers and doubles take up 64 bits so they have to be spread across
two cells). A similar method is used to define the other types of constants.

If the right-hand side of a super-combinator consists of a single variable then, unless we
evaluate it before returning, we risk doing extra work because some loss of sharing occurs.
Suppose we have an expressionf x1 . . . xn which reduces to an expressiong y1 . . . ym, and
further suppose that this latter expression is reducible. These are represented as twoApps and
recall that updating the original expression involves copying the fields of theApp representing
the value of the reduction onto the fields of theApp representing the original expression.

If the App g y1 . . . ym was created during the evaluation of the reduction rule forf , then
theApp objectg y1 . . . ym is never used again (i.e. it becomes garbage), though its fields
become the fields of the original expression. However, if theApp wasn’tcreated by reduction
rule, then it must be referenced by some other part of the graph, and hence we have two copies
of the same application:
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y , ..., y 

App App

1 }g m{

Original Expression Reduction Expression

Suppose thatg y1 . . . ym evaluates to some expressionE , say. Then if we continue our
evaluation we have:

y , ..., y 

App

{ 1 }g m

E

Note that we have only reduced one of theApps: by copying we have lost not only the sharing
of nodes but the sharing of work.

This situation occurs whenever we have a function whose return value is a single variable or
function (or, more specifically, a CAF). We can prevent the replication of work by making sure
that whenever we have such a function we first evaluate it (to normal form) before returning
it. Thus if such a function still returns anApp it will be in normal form, and although we may
still make an unnecessary copy of it, we cannot waste time by duplicating evaluation as there
is no evaluation to do. TheR scheme for variables and CAFs is thus:

R id ρ fs v = C id ρ fs v

invokestatic Node/eval(L Object;)L Object;

If id is a function of arity greater than zero, we have:

R id ρ fs v = getstatic φ(id) LObject;
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Before compiling applications we first unwind them, using the left-associativity of function
application, so they are of the formf e1 . . . en, where f is an identifier (anything else would
be a type error). Iff refers to a variable, then we just compile the arguments and functor of
the application, packing the arguments into an array, and construct theApp object:

R ( f e1 . . . en) ρ fs v =
new App
dup

ldc n
anewarray Object

}
Create an array ofn objects

dup
ldc 0
C e1 ρ fs v
aastore


 Set the 0th element of the argument array

...

dup
ldc (n − 1)
C en ρ fs v
aastore


 Set the(n − 1)th element of the argument array

C f ρ fs v

invokespecial App/<init>([L Object;L Object;)V

HereC is the generic scheme used to compile expressions (see below).
If f is a function, then we can provide a bit more information to the constructor. If there

aren’t enough arguments present then we can tell theApp constructor to set thein nf
field. If there are exactly enough arguments present, then we tell the constructor to set the
total app field. This is done by using a three-constructor ofApp which as well as taking
the arguments andfunctor of the application takes an additional boolean which if set to
true sets thein nf and thetotal app to false , andvice versa. For these two cases we
have:

R ( f e1 . . . en) ρ fs v =
new App
dup

nf
...

compile arguments and functor as before
...

invokespecial App/<init>(Z[L Object;L Object;)V
where
nf = iconst 1, if n < arity of f

= iconst 0, if n = arity of f
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The JVM uses integers to represent booleans (the type of which is denoted by aZ). The most
efficient way to load these onto the stack are using theiconst 1 for true andiconst 0
for false .

If there are too many arguments present, then we split the application into two: iff is of
arity m and is applied ton arguments wheren > m, then we create the application off
applied to the firstm arguments applied to the othern − m arguments.

R ( f e1 . . . em em+1 . . . en) ρ fs v =
new App
dup

ldc (n − m)

anewarray Object
dup

ldc 0

C em ρ fs v

aastore
...

dup

ldc (n − m − 1)

C en ρ fs v

aastore

C ( f e1 . . . em) ρ fs v

invokespecial App/<init>([L Object;L Object;)V

Compiling if statements requires us to evaluate the antecedent and jump accordingly.

R (if a then t else f endif ) ρ fs v =
E a ρ fs v

checkcast Boolean
invokevirtual Boolean/booleanValue()Z

ifeq FALSE
R t ρ fs v

goto ENDIF
FALSE:
R f ρ fs v

ENDIF:

whereFALSEandENDIF are unique labels. Thecheckcast instruction makes sure that
we have aBoolean object after evaluating the antecedent. The schemeE is used to compile
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an expression whose result is known to be needed. Note that theR scheme is used to compile
the two branches of the conditional.

Compiling a simplelet requires us to compile the definition, store it in the next free local
variable, updating the environment accordingly, and compiling the body with respect to this
new environment.

R (let x = d in b endlet ) ρ fs v =
C d ρ fs v

astore v

R b ρ[v = n] fs (v + 1)

Compiling aletrec is more complex, as each definition in the block will refer to at least one
other one, and hence if we are not careful we could end up loading objects from registers that
haven’t yet been filled. We thus need to first of all put place-holders in each of the registers
that are to be defined by theletrec and update them when each appropriate definition is
compiled. These place-holders areApps whosefunctor andarg fields are null, and they
are updated using the sameupdate method used to updateApps that have been evaluated
(see above).

R (letrec ds in b endletrec ) ρ fs v =
A dsv

CL dsρ′ fs v′

R b ρ′ fs v′

where (ρ′, v′) = X dsρ v

HereA allocates the place-holders,CL compiles the definitions and updates the registers and
X updates the environment and the next free variable.A is defined as:

A (x1 = e1, . . . , xk = ek) v =
new App
dup

invokespecial App/<init>()V

astore v
...

new App
dup

invokespecial App/<init>()V

astore (v + k)
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CL is defined as:

CL (x1 = e1, . . . , xk = ek) ρ fs v =
aload (v − k)

C e1 ρ fs v

dup

invokevirtual App/update(L Object;)V
...

aload v

C ek ρ fs v

dup

invokevirtual App/update(L Object;)V

Finally, X is defined as

X [x1 = e1, . . . , xk = ek] ρ v = (ρ[x1 = v, . . . , xk = v + k − 1], v + k)

The C compilation scheme

TheC scheme, for the most part, is similar to theR scheme. The main difference is in the
handling of variables. Since we don’t have to worry about any loss of sharing, the definition
of C when compiling a single variable is:

C id ρ fs v = getstatic φ(id) LObject; , if id ∈ fs
= aload ρ(id), otherwise

We also use theC scheme to compile the branches of conditionals and the body of local
variable declarations, rather than theR scheme as in the definition of theR scheme.

The E compilation scheme

TheE scheme is used when we know that an expression is to be evaluated and isnot a tail
call (this is handled byR). Later on, we shall see how we can optimise the code produced by
this scheme, but for now we shall just add a call toNode.eval :

E e ρ fs v = C e ρ fs v

invokestatic Node/eval(L Object;)L Object;

We can also use theE scheme to compile the branches of conditionals and the body of local
variable declarations.

Tail recursion

A tail recursion occurs when the result of one function is the result of applying another
function to the correct number of arguments. Any tail-recursive calls in our program will be
compiled using theR scheme. It is a property of graph reduction that tail-recursive calls can
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Table I. Initial running times of programs produced by the Giner compiler

Program Time (s)

take 500 primes 65.4
nfib 30 357.4
soda 11.5
cal 34.1
edigits 250 82.8
queens 8 107.2

be run in constant space, no matter how deep the recursion is [14], and our implementation
preserves this property. This is because if we have an expressionf x1 . . . xn that reduced to
g y1 . . . ym, then the call tog is not executed inside the code off , but the application is
passed back to theeval method which then callsg. Thus, if we have a chain of tail-recursive
callsg1, . . . , gn with gi callinggi+1, then instead of recursing down the chain ofgis and back
again, and having a recursion that isO(n) levels deep, we instead ‘bounce’ betweeneval
and eachgi , and the recursion onlyO(1) levels deep. Hence our implementation executes
tail-recursive functions in constant space.

Initial results

TableI shows the running times of some programs compiled using our Ginger compiler.
Because the running times of Java programs can vary significantly, we have averaged our
times over three runs. The programs were run on a Sun Enterpise 3000 with two 168 MHz
processors and 512 MB of memory running Solaris 2.6 and using the Sun JDK 1.1.5.
Descriptions of the programs are as follows:

(a) take 500 primes outputs the first 500 prime numbers using the sieve of
Eratosthenes method.

(b) nfib 30 calculates the number of reductions used to calculate the 30th Fibonacci
number using the na¨ıve doubly-recursive method.

(c) soda performs a serial word-search on a 10× 15 grid.
(d) cal outputs calendars for the years 1990–99.
(e) edigits 250 evaluates the first 250 digits of e (2.7182. . . ).
(f) queens 8 prints all 92 solutions to the eight queens problem.

OPTIMISATIONS

In this section we detail two optimisations that can increase the performance of the code
produced by our compiler: the direct invocation of some function applications, and the use of
a single instance to represent each constant declared by a program.

Direct function invocations

Implementations of lazy functional languages use application nodes to store ‘suspended’
function calls, that is function calls whose result may or may not be needed. However, in some
cases it can be predicted that the result of the function call will be needed, and we can avoid
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having to build the application representing the function call and instead invoke the function
directly.

The first place we can use this optimisation is in theE scheme, as we know that we always
need the result of an expression compiled using this scheme. If we have a function,f , of arity
n applied to the correct number of arguments, we have:

E ( f e1 . . . en) ρ fs v =
C e1 ρ fs v

...

C en ρ fs v

invokestatic f ( L Object; . . . LObject;︸ ︷︷ ︸
n times

)L Object;

invokestatic Node/eval(L Object;)L Object;

If f is known to be strict then we can compile each of the arguments using theE scheme
rather than theC one.

We can also use this technique with theR scheme, with one major caveat. It is safe to
evaluate all tail calls, which will be compiled using theR scheme, since their result will
eventually be needed. However if the method we invoke is itself tail-recursive then we could
have a long chain of recursions and evaluation will no longer occur in constant space, and
we could be in danger of overflowing the stack on which the JVM stores the return address
for each method call. Although it is possible to optimise tail calls by replacing a method call
with a jump, many JVM implementations do not do so. We cannot provide this optimisation
manually either, as the JVM does not allow jumps between methods.

We thus only directly invoke tail calls involving functions that are not tail-recursive, which
for simplicity’s sake we assume that is just our set of primitives, none of which are tail-
recursive. If we have a primitivep applied to the correct number of arguments, we have:

R (p e1 . . . en) ρ fs v =
C e1 ρ fs v

...

C en ρ fs v

invokestatic p( L Object; . . . LObject;︸ ︷︷ ︸
n times

)L Object;

If p is known to be strict, then we can compile each of the arguments using theE scheme
rather than theC one. In all other cases,R remains as before. As can be seen from TableII ,
direct invocation is a very worthwhile optimisation.

Single-instance constants

Since constants are immutable in a pure functional language, we can represent each
constant used by a pure functional program by a single instance, saving both the time and
space needed to create a new instance of a constant each time one is encountered. We shall
store each constant as a static field of the class that our functional program is compiled to (cf.
how we store functions), and thus each time we need an instance of a constant we just need
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Table II. Running times (s) of programs produced by the Ginger compiler with and without direct function
invocation

Program Non-optimised Direct invocation Decrease (per cent)

take 500 primes 65.4 38.2 42
nfib 30 357.4 140.2 61
soda 11.5 8.4 27
cal 34.1 25.6 25
edigits 250 82.8 49.1 41
queens 8 107.2 73.0 32

to access the relevant field. This is similar to a technique used by most Java implementations
to implement strings (which are immutable in Java).

It is required that theP scheme is modified to handle constants. Suppose thatc1, . . . , cn
form the set of constants that are program uses. ThenP becomes:

P〈cl, fs, {c1, . . . , cm}, {s1, . . . , sn}〉 =
.class public cl
.super Object
.field public static φ(s1) LObject;
...

.field public static φ(sn) LObject;

.field public static φ(c1) LObject;

...

.field public static φ(cm) LObject;

.method <clinit>()V

new cl
dup

invokespecial cl/<init>()V

invokevirtual cl/getClass()L Class;
astore 0

D s1
...

D sn

D c1
...

D cm

return

.end method
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Table III. Running times (s) of programs produced by the Ginger compiler with and without single-instance
constants

Program Non-optimised Single-instance constants Decrease (per cent)

take 500 primes 65.4 47.1 28
nfib 30 357.4 326.0 9
soda 11.5 11.4 1
cal 34.1 33.4 2
edigits 250 82.8 67.2 19
queens 8 107.2 103.1 4

where the other names are as in the original definition ofP. The functionφ has been extended
to return the field name of a constant as well as that of a supercombinator. The schemeD is
also extended to take constants as arguments. For example, if we have an integer,i , we have:

D i = new Long
dup

ldc2 w i
invokespecial Long/<init>(J)V

putstatic φ(i) LObject;

A similar method is used to define the other types of constants. As we can see from TableIII ,
this results in a modest, but significant speed-up in the running times of our programs.

RESULTS AND OTHER WORK

The only other work we are aware of in this area is that of Wakeling, one based on the G-
Machine [8], which translates the G-code produced by HBC (the Haskell compiler developed
at Chalmers) into Java bytecode; and one based on the〈ν, G〉 machine [7] which compiles
a core language into a set of〈ν, G〉 instructions which are then transformed in Java byte-
code, again using HBC. Both versions use a separate class, and hence a separate file, for each
function, rather than eachprogram, as with our compiler. There is also a compiler for Standard
ML from Persimmon which compiles stand-alone SML programs to Java bytecode [15] ,but
as this is for a strict language we do not include it in our comparisons.

Table IV gives the running times for several programs using our compiler with both
optimisations switched on, and using both Sun’s JVM and the Kaffe Open VM [16] to
run the generated class files; Wakeling’s compiler (the〈ν, G〉-Machine version [7]) using
Sun’s JDK; the Haskell interpreter Hugs (version 1.4); and the Glasgow Haskell Compiler,
GHC (version 2.10). The Haskell and Ginger sources were made as close as possible, but all
the Haskell programs compiled using Wakeling’s compiler have been explicitly mono-typed
where appropriate. This is because if the overloading used in the programs is not resolved at
compile-time, then the running times can slow down by as much as a factor of 10 in extreme
cases, because of the need to pass around dictionaries to resolve the overloading at run-time.

Both the JVM-targeting compilers perform poorly when compared to Hugs, with our
compiler (using the JDK to execute the class files) being some 4–11 times slower than
Hugs except in the case ofnfib , which is a somewhat artificial benchmark anyway, when
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Table IV. Running times (rounded up to the nearest tenth of a second)

Gingerc

Program Sun JDK Kaffe Wakeling’s Hugs GHC

take 500 primes 30.5 266.2 50.5 6.3 0.8
nfib 30 118.0 638.4 56.6 114.6 6.7
soda 8.7 43.9 4.2 0.9 0.1
cal 25.0 140.3 19.4 5.0 0.3
edigits 250 46.2 174.4 10.0 4.0 0.5
queens 8 72.6 369.6 46.9 16.2 0.9

performance matched that of Hugs. Why then is our compiler so much slower than Hugs,
when both are either interpreters or produce code that is interpreted? First, there are the
deficiencies in our source language, Ginger, when compared to the much more complex
Haskell. In particular, the lack of static type-checking and user-defined (algebraic) types,
and all but the crudest from of strictness analysis will have an appreciable effect on run-
time performance, but Wakeling’s compiler has these and it is not much faster than ours.
There is also the cost incurred by not being able to resolve overloading until runtime; if we
could, at least partially, then we could replace function calls to methods implementing basic
primitives such as arithmetic and comparison operators to uses of basic JVM instructions.
There is also the cost of using a high-level language (Java) as opposed to the lower-level C
used to implement Hugs. For instance, Java does bounds checking on array accesses, and that
casts are legal whereas C does not, and both these operations occur frequently in our compiler.

Wakeling [8] ascribed the poor performance of his compiler when compared to Hugs to
the poor memory handling in the JVM, hypothesising that memory-allocation in Java is an
order of magnitude more expensive than in Hugs. Functional programs certainly will create
and destroy objects on a more frequent basis than an imperative object-oriented one – both
primes andedigits creates something in the order of 500,000App nodes and 130,000
Cons nodes, for example. Unfortunately, using the-profile of the java interpreter to
look at the cost of these allocations is not useful as we can only look at the time taken by the
code in the constructor (around 2.5 seconds for all 500,000App objects used byprimes )
and not the time taken to allocate the memory, which is done before the constructor is invoked.

It is the allocation of objects which we suspect to be the reason why running our programs
using the Kaffe VM is some 3–9 times slower than running them using the Sun JVM, despite
the fact that in some cases Kaffe can be around 2–3 times faster than the Sun JVM. Consider
the following segment of code, which we compile using both the Kaffe and the Sun Java
compiler:

Long l;
for (int i = 0; i < 1000000; i++)

l = new Long(i);

The Kaffe VM takes 44 seconds to run the code produced by both compilers, while the Sun
JVM takes only 3 seconds (both Virtual Machines take only half a second to run the same
loop with an empty body).

Although the large amount of mutual recursion in our programs confuses Java’s profiler,
making a detailed run-time analysis difficult, we can examine the overhead imposed by the
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Table V. Running times (s) of programs produced by Ginger compiler with initial heap sizes of 1 and 4 megabytes

Program 1 MB 4 MB Decrease (per cent)

take 500 primes 30.5 28.0 8
nfib 30 118.0 119.2 −1
soda 8.7 7.8 10
cal 25.0 20.7 17
edigits 250 46.2 23.2 50
queens 8 72.6 64.2 12

garbage collector, using the-profile or the-verbosegc options of the Java interpreter.
This shows that using the default initial heap size of 1 megabyte garbage collection (as in
Table IV) takes anything from 10 per cent of the total running time to 50 per cent in the
extreme cases likeedigits . If we increase the initial heap size to 4 MB then we get the
running times in TableV. The speed-up in running time is due to garbage collection being
run less frequently, but freeing more memory when it does.

CONCLUSION AND FURTHER WORK

We have succeeded in producing a compiler for a functional language which creates Java class
files as its object code, with a performance comparable to that of an approach which used a
fully-fledged compiler, with various optimisations not present in our compiler, as its front
end. However the performance of our compiler is poor when compared to a conventional lazy
functional language interpreter (Hugs). This leads us to suspect that we may have reached a
point where we cannot achieve any significant speed-ups no matter how we optimise our run-
time architecture of the graph reduction on the JVM, and that any major leaps in performance
can only come from optimising the JVM itself.

Further work may involve basing our evaluation mechanism on a different abstract machine,
such as the Three Instruction Machine (TIM) [17], the Spineless, Tagless G-Machine [18] or
the lazy abstract machine derived from Launchbury’s semantics for a lazy functional language
[19] by Sestoft [20].
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