
Style Analysis for Source Code Plagiarism Detection – an Analysis of a Dataset of
Student Coursework

Olfat M. Mirza and Mike Joy
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

{O.M.Mirza,M.S.Joy}@warwick.ac.uk

Georgina Cosma
School of Science and Technology

Nottingham Trent University
Nottingham, NG1 4FQ, UK
Georgina.Cosma@ntu.ac.uk

Abstract—Plagiarism has become an increasing problem in
higher education in recent years. Coding style can be used to
detect source code plagiarism that involves writing and
deciding the structure of the code which does not affect the
logic of a program, thus offering a way to differentiate between
different code authors. This paper focuses to identify whether a
data set consisting of student programming assignments is rich
enough to apply coding style metrics to detect similarities
between code sequences, and we use the BlackBox dataset as a
case study.

Keywords-component; Source Code Plagairism Detection;
Style Analysis; Coding Style

I. INTRODUCTION
The term plagiarism refers to reusing, paraphrasing, or

copying work of somebody without giving them any credits
and recognition, and includes attempting to showcase
plagiarised content as one's own work. Hannabuss [2]
defined plagiarism as “the unauthorized use or close
imitation of the ideas and language/expression of someone
else”.

Source code plagiarism has a very significant definition
and Parker and Hamblen [3] defined software plagiarism as
“A program that has been produced from another program
with a small number of routine transformations”.

Detection of source code plagiarism has been analysed in
various contexts [1], but research on the analysis of coding
style for large datasets is limited. We investigate a dataset
consisting of genuine student programming assignment
submissions to determine if it is sufficiently rich to form a
basis for coding style analysis, and in order to achieve this,
we used the BlackBox source code dataset [5]. In this paper,
content analysis is used to find out how suitable random
samples taken from the dataset are.

II. BACKGROUND AND RELATED WORK
Significant research has been done on how to identify

source code plagiarism [6]. One approach to source code
plagiarism detection attempts to identify the authorship of
the code from the way the code is written, the “coding style”,
which may be derived from coding conventions (sets of
guidelines for a programming language, perhaps defined for
use by a particular institution or company). These

conventions usually cover such aspects as file organization,
indentation, comments, declarations, use of white space,
naming of variables, programming practices, programming
principles, programming rules of thumb, and architectural
best practices.

Coding style is a characteristic which can be used to
detect source code plagiarism because it relates to
programmer personality but does not affect the logic of a
program and can thus be used to differentiate between
different code fragments which are functionally similar [7].

III. PROPOSED METHOD
In this paper, we perform a content analysis on random

samples of source code files taken from a large data set of
student coursework submissions in order to identify whether
the dataset contains sufficient files on which such a
technique is likely to work.

A. BlackBox Dataset
BlackBox is a project that collects data from users of the

BlueJ online educational software tool. BlueJ is a Java
integrated development environment (IDE) designed for
beginners, and BlueJ is free and open source software [4].
BlackBox contains code written by a wide variety of
programmers, ranging from complete beginners to
professional software developers.

B. Source Code Dataset and Sample Size
In this exploratory study, one of the focal issues was to

determine the intended sample size suitable to be used in this
and in future studies. This cannot be determined by number
only, and common factors include the aim of the study, the
population size and the sampling error. This paper considers
random samples downloaded from BlackBox, and containing
250 Java files each. The sample datasets were downloaded
from BlackBox to justify the study of coding style analysis.

C. Preprocessing the Source Code Files
Source code file preprocessing was applied in this study

and although the file name and the real ID of the author are
hidden in the code using hashes, each file has its own

2017 IEEE 17th International Conference on Advanced Learning Technologies

2161-377X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICALT.2017.117

296

author. The task of preprocessing the files was performed
using the following metrics:

1) Removing any white space;
2) Removing the file header.

IV. EXPERIMENT
In order to perform the experiment, we designed a small

program based on the Java programming language which
initially performs a random sample fetch from the BlackBox
dataset. BlackBox contains some duplicated files (identified
by having the same ID), and thus the fetcher was designed
to choose one file if there is more than one file with the
same ID to avoid duplication. The second stage is to count
the number of lines and the size of each source code file.
This is followed by measuring the complexity of each of the
files by (for example) counting the number of loops and
finding common loop words such as: for, if, if-else and
while. When the system identified the features, the next
stage was to group them according to pre-defined categories
(see below).

A. Grouping the Source Code Files
It is considered important to have a case study of what

types of source code files BlackBox contains. The random
groups of source code files were downloaded from the
BlackBox dataset and thereafter subgroups were created
based on features including the number of lines per source
code file and the complexity of the code in each file.

Five main subgroups, based on the number of code lines
and the complexity of code, were identified for the each
random group.

1. The first subgroup contains files which are
“templates” or “common ground files”.

2. The second subgroup consists of short and simple
code files. The length of the code is less than 40
lines and the maximum level of loops is 2.

3. The third subgroup consists of simple code files.
The length of the code is on average more than 40
lines and less than 100 lines. The level of loops is
more than 3 and includes some nested loops.

4. The fourth supgroup consists of code files which are
long and complex.

5. The fifth supgroup contains files which are
incomplete or empty.

B. Experimental Results
The main objective of the statistical analysis is to

validate the grouping methods and to find out how rich the
dataset can be in order to identify the coding style for the
purpose of detecting plagiarism in source code. Since the
first and the fifth groups contain files which a detection
algorithm can safely ignore, they have not been used in the
analysis discussed in this section. The statistics of first
random sample are presented in Table 1.
 In this analysis of the BlackBox source code there were
some clear indications that some portions of the BlackBox

source code would be usable for this coding style analysis
study. It is clear that group three got the highest number of
lines, and it gives a rich style analysis of this group. This
suggests that the random samples are representative of the
files contained in the BlackBox source code dataset.
According to the feature analysis based on physical
attributes that were applied to extract coding style, the
number of lines was one of the main features considered
when categorising the random sample into five subgroups.
The analysis of the results shows that the three subgroups
(subgroups 2-4) offer a rich source to which coding style
analysis can be applied for the purpose of detecting
plagiarism.

Table 1

V. CONCLUSION AND FUTURE WORK
This paper explores the suitability of methods based on
coding style analysis which unite a content based analysis
with random samples. The results suggest that the BlackBox
source code dataset of student coursework is suitable for
applying coding style based plagiarism detection techniques,
since such a dataset contains sufficient files which are rich
enough for such an analysis to be meaningful.

VI. REFERENCES
[1] O. Mirza, M. Joy, "Style analysis for source code plagiarism

detection." Plagiarism Across Europe and Beyond 2015: Conference
Proceedings. pp. 53-61, 2015.

[2] S. Hannabuss, "Contested texts: issues of plagiarism," Library
management, vol. 22, no. 6/7, pp. 311-318, 2001.

[3] A. Parker and J. Hamblen, "Computer algorithms for plagiarism
detection," IEEE Transactions on Education, vol. 32, no. 2, pp. 94-99,
1989.

[4] M. Kolling, "Lessons from the Design of Three Educational
Programming Environments: Blue, BlueJ and Greenfoot,"
International Journal of People-Oriented Programming (IJPOP), vol.
4, no. 1, pp. 5-32, 2015.

[5] N. Brown, M. Kolling, D. McCall and I. Utting, "Blackbox: A large
scale repository of novice programmers' activity," in Proceedings of
the 45th ACM technical symposium on Computer science education,
2014

[6] M. Joy and G. Cosma, "An Approach to Source-Code Plagiarism
Detection and Investigation Using Latent Semantic Analysis," IEEE
Transactions on Computers, vol. 61, no. 3, pp. 379-394, 2012.

[7] S. Burrows, A. Uitdenbogerd and A. Turpin, "Application of
information retrieval techniques for source code authorship
attribution," nternational Conference on Database Systems for
Advanced Applications, pp. 699-713, 2009.

297

