

Figure 1. Program Plagiarism Modification (Faidhi and Robinson

(1987))

Suitability of BlackBox Dataset for Style Analysis in Detection of Source Code

Plagiarism

Olfat M. Mirza and Mike Joy

Department of Computer Science

University of Warwick

Coventry, CV4 7AL, UK

{O.M.Mirza,M.S.Joy}@warwick.ac.uk

Georgina Cosma

School of Science and Technology

Nottingham Trent University

Nottingham, NG1 4FQ, UK

Georgina.Cosma@ntu.ac.uk

Abstract—Plagiarism is one of the most common problem

that has been increasing in the field of higher education. Many

research papers have highlighted the issue of plagiarism in

context to its detection and source that is often obtained from

the text books and online sources, there is a variety of easy

ways for students to copy others’ work. Coding style can be

used to detect source code plagiarism because it relates to

programmer personality but does not affect the logic of a

program, thus offering a way to differentiate between different

code authors. The immediate objective of this paper is to

identify whether a data set consisting of student programming

assignments is rich enough to apply coding style metrics on in

order to detect similarities between code sequences, and we use

the BlackBox data set as a case study.

Keywords-component; Source Code Plagairism Detection;

Style Analysis; Coding Style

I. INTRODUCTION

In the field of higher education, the issue of plagiarism is

becoming a crucial concern, and many researchers have also

highlighted this in their study [1]. The main reason for this

is the way technology has transformed the lifestyle and the

way of gathering information; people now rely more on the

computer, internet sources, and use web engines to find a

solution to every question and get a detailed overview. This

has indeed increased the dependency of people on these

elements. In regards to education perspective, traditional

system has been collaborated with online resources, web

equipped classrooms, and has eased the access to online

references that are major incentives that give rise to

plagiarism.

Plagiarism is reusing, copying or paraphrasing somebody
else’s work without making appropriate references to the
original author, or by intentionally attempting to make the
plagiarized work appear to be original (as in the case of
student plagiarism). Hannabuss [2] defined plagiarism as
“the unauthorized use or close imitation of the ideas and
language/expression of someone else”. There are various
forms of (text) plagiarism and Martin [3] clarifies plagiarism

from an ethical point of view and identifies six plagiarism
forms:

i. Copying word-to-word;

ii. Paraphrasing the original text;

iii. Plagiarism through secondary source;

iv. Plagiarism in the form of any source;

v. Plagiarism of thoughts;

vi. Plagiarism of authorship.

Parker and Hamblen have given a very apt definition for

source code plagiarism, which is “A program that has been
produced from another program with small number of
routine transformations”. This modification can be related to
simple transformation to very complex ones that may belong
to any of the six categories of program modifications, which
have been identified by Faidhi and Robinson [5].

Detection of source code plagiarism has been analysed in
various contexts [24], but research on the analysis of coding
style for large datasets is limited. We investigate a dataset
consisting of genuine student programming assignment
submissions to determine if it is sufficiently rich to form a
basis for coding style analysis [23], and in order to achieve
this, we used the BlackBox source code dataset. In this
paper, content analysis approach is used to answer our two
research questions (detailed in section III), and the analysis is

978-1-5090-3989-0/17/$31.00 ©2017 IEEE

The Seventh International Conference on Innovative Computing Technology (INTECH 2017)

90

based on finding out how suitable random samples taken
from the dataset are.

The paper is organized as follows. In section II we

present the background to the use of coding style as a
technique to identify source code plagiarism. We then
identify in section III the proposed methods used and the
source code file sampling strategy. Section IV details the
results of the data analysis. The paper concludes with a
summary and suggestions for future research on this topic.

II. BACKGROUND AND RELATED WORK

This section summarises the background of the work

related to identifying source code plagiarism, and details

several different methods and sampling strategies for using

different coding style techniques to identify source code

plagiarism.

A. Literary Stylistic

Many researches have been undertaken over identifying

source code plagiarism. For instance, packages containing

both structural dependent [6], [7] and syntactic plagiarism

makes the use of latent semantic analysis technique [8]. The

perspective of a student about source code plagiarism

should also be considered when prevention techniques are

developed and used. In the study conducted by Joy et al. [9],

the perspective of students was studied through a survey

conducted in 18 universities on computer science students.
One method to identify source code plagiarism in order

to proclaim the authorship of the text is by identifying the
way in which the code has been written, often referred as
“coding style,” which can be decoded from the set guidelines
of a programming language that defines its usage in context
to any organisation or institute. These conventions include a
wide range of aspects such as declaration, programming
practices, programming rules of thumb, white space,
comments, indentation, architectural best practices file
organisation, and naming of variables.

As per Kernighan and Plauger [11], the style of coding a
particular computer program should fulfil the requirements
of personal programmer style and also enhance the
readability aspect of humans. Every coding style follows
different programming languages that are distinct in their
styles, for instance, a program written in the C language may
not be apt for the usage in BASIC programing language.
Most of the rules of programming languages are commonly
followed in all programming languages.

B. Computational

Coding style is a powerful tool that can identify different

sources of plagiarism, as it refers to the personality of the

programmer and does not influence the logic for which the

program runs and thereby, it can be easily put into the use of

finding the difference between varied code fragments.

managements that are similar in function. A number of

research projects have investigated authorship analysis for

source code, and four particular methodological approaches

have been documented: manual inspection, statistical

analysis, machine learning and similarity measurement [10].

Prechelt et al. [7] have classified it into two main groups of

automated plagiarism identification for the program code

that are, feature comparison and structure comparison [12].

The detection of plagiarism involves a number of

techniques that are classified on the basis of the approaches

mentioned below.

1) String/token-based approach: Under this approach,

the process of tokenizing the text is followed, and a

sequence is created by normalizing a simple string, which

involves (for example) omitting the white spaces from the

document.

2) Structure-based approach: This method involves

identifying similar words keeping in mind the structure of

the document. This task is performed by creating tree like

structures for program source code and later comparing

them.

3) Metrics-based approach: The approach has used

quantified static features that were extracted as metrics from

source codes to calculate similarity.
This section has identified the characteristics of coding

style that can be used to detect source code plagiarism
without affecting a programming language’s logic. The
techniques for detecting plagiarism which are based on
different approaches are also mentioned.

III. PROPOSED METHOD

 In this paper, we perform a content analysis on random

samples of source code files taken from a large data set of

student coursework submissions in order to identify whether

the dataset contains sufficient files on which such a

technique is likely to work. The questions that are often

asked are the following.

RQ1: What is an appropriate dataset for testing the accuracy

of plagiarism detection?

RQ2: Does the testing dataset contain rich enough data to

be used?

The next subsection describes and discusses the

BlackBox dataset and the sample size used to extract data.

Furthermore, it summaries the efficiency of BlackBox as a

tool that is used to collect data.

A. BlackBox Dataset

The study sample of the exploratory study was a random

sample of Java code files from a repository called BlackBox

[20]. BlackBox is a project that collects data from users of

the BlueJ online educational software tool. BlueJ is a Java

integrated development environment (IDE) designed for

beginners [22] and BlueJ has become free and open source

software [14]. The primary focus for development of BlueJ

was to address the issues related to teaching programming

91

languages that are oriented towards objects: higher level

abstraction and more complex program structure [15], [16],

and [17].
There have been previous experiments which have used

BlueJ to identify the user’s behavior while they write Java
code. The studies considered (for example) error types such
as missing semicolons, bracket expected, illegal start of
expression and unknown class [18]. These data included
source code edits, compilation results, and the use of various
tools within BlueJ (such as the debugger).

BlackBox has been running for over two years and
contains the results of over 100 million compilation events
from over one million programs run with BlueJ. BlackBox
contains code written by a wide variety of programmers,
ranging from complete beginners to professional software
developers [19], [20]. Furthermore, the BlackBox dataset is
totally anonymous for the purpose of supporting any
research experiment.

B. Source Code Dataset and Sample Size

In this exploratory study, one of the focal issues was to

determine the intended sample size suitable to be used in this

and in future studies. The question that is usually posed is,

what number is reflective of the actual population? This

question cannot be answered or determined by number only,

and common factors include the aim of the study, the

population size and the sampling error [13].
The sample size of a dataset like BlackBox is measured

as Random Sample Size. According to Cohen et al. [21] a
random sample is 250 for any population more than a million
with a 90 percent confidence level and ±3 confidence
intervals. The population here is formed of Java source code
files. For qualitative experiments, which gathered initial
ideas and pointers for the research, smaller scale populations
were used in order to keep the process manageable.
Therefore, four random samples were downloaded from
BlackBox, with each of the random samples containing 250
Java files. These sample datasets were downloaded from the
BlackBox dataset to justify the study of coding style analysis
and to determine the percentage in the sample belonging to
each group.

C. Preprocessing the Source Code Files

Source code file preprocessing was applied in this study

and although the file name and the real ID of the author are

hidden in the code using hashes, each file has its own

author. The task of preprocessing the files was performed

using the following metrics:

1) Removing any white space;

2) Removing the file header.

After initial preprocessing, the content analysis of the

files identified five sub groups, as explained in section IV-

A, to which some significant proportion of the files from

BlackBox dataset could be assigned based on their

properties.

IV. EXPERIMENT

In order to perform the experiment, we designed a small

program based on the Java programming language which

initially performs a random sample fetch from the BlackBox

dataset. BlackBox contains some duplicated files (identified

by having the same ID), and thus the fetcher was designed

to choose one file if there are more than one files with the

same ID to avoid duplication. After preprocessing the

source code files, the second stage is to count the number of

lines and the size of each source code file. This is followed

by measuring the complexity of each of the files by

counting the number of loops by searching in the file and

finding common loop words such as: for, if, if-else and

while. Documentation in the files was also searched. When

the system identified the features, the next stage was to

group them according to the pre-defined categories.

A. Grouping the Source Code Files

It is considered important to have a case study of what

types of source code files BlackBox contains. The first

random group of source code files was downloaded from the

BlackBox dataset and thereafter subgroups were created

based on: features of the number of lines per source code

file; and the complexity of the code in each file in the group.

Each file in the first random group was analyzed according

to its content. The content of these files relates to the

structure of the source code. Then to validate the

subgrouping categories, three more random groups were

downloaded in order to examine what the majority of file

types in the dataset were and whether the initial file

subgroupings were valid for the remaining three random

groups. Five main subgroups, based on the number of code

lines and the complexity of code, were identified for the

each random group.

1. The first subgroup contains files which are called

“template” or “common ground” files (62 out of

250 files in the first random sample). This means

that the files are the same in terms of layout, style

and structure, and that this is provided by the BlueJ

IDE. Files such as these are usually not going to

provide help in identifying similarity or detecting

plagiarism, and we propose such files can be

ignored by plagiarism detection algorithms.

2. The second subgroup consists of short and simple

code files. The length of the code was less than 40

lines and the level of loops was less than 3. The

majority of the files were assigned to this sub

group. The simplicity, and consequent similarity,

of such files may cause them to be difficult to

distinguish for the purpose of plgiarism detection.

3. The third subgroup consists of simple code files.

The length of the code was on average more than

40 lines and less than 100 lines. The level of loops

was more than 3 loops and included some nested

loops.

92

4. The fourth supgroup consisted of code files which

were long and complex. The length of the code was

more than 100 lines and the level of the loops and

the nesting of the loops was more complex than for

group 3. Such files contain rich data and coding

style based detection algorithms are likely to be

successful when applied to them.

5. The fifth supgroup in this study contained files

which were incomplete or empty, and can thus be

safely excluded by detection algorithms.

B. Experimental Results

The main objective of the statistical analysis is to

validate the grouping methods and to find out how rich the

dataset can be in order to identify the coding style for the

purpose of detecting plagiarism in source code. Since the

first and the fifth groups (see section IV-A) contain files

which a detection algorithm can safely ignore and they have

not been used in the analysis discussed in this section. The

names of the second, third and fourth subgroup have been

changed to first, second and third. The statistics of each

random sample are presented in Tables 1-4. Each random

sample comprises source-code files belonging to the three

subgroups.

Table 1

Table 2

Table 3

Table 4

 In this analysis of the BlackBox source code there were

some clear indications that some portions of the BlackBox

source code would be usable for this coding style analysis

study. First, the number of valid files in each random

sample are similar. For example, the number of valid files in

random sample 1 in group two is 50, in random sample 2 it

is 60, in random sample 3 it is 41 and in random sample 4 it

is 61. Also, the number of files found in group three across

the random samples is similar. The maximum and the

minimum values corresponding to the number of source-

code lines in each group for each random sample is similar.

It is clear that group three got the highest number of lines,

and it gives a rich style analysis of this group. This suggests

that the random samples are representative of the files

contained in the BlackBox source code dataset. According

to the feature analysis based on physical attributes that were

applied to extract coding style, the number of lines was one

of the main features considered when categorising the

random sample into five subgroups. In addition, the mean,

the median and the mode in random samples 1- 4 are similar

to each other. The analysis of the results shows that the

three subgroups (subgroups 2-4 described in section IV-A)

offer a rich source to which coding style analysis can be

applied for the purpose of detecting plagiarism.

93

V. CONCLUSION AND FUTURE WORK

This paper explores the suitability of methods based on

coding style analysis which unite a content based analysis

with random samples. The random samples were taken from

the BlackBox source code dataset which contains student

coursework, to justify using such a dataset to detect

plagiarism. Preprocessing was an important first step to

categorising groups of files based on coding style, and the

groups have been divided into subgroups according to

specific features identified through the content analysis of

the random samples. The results suggest that the BlackBox

source code dataset of student coursework is suitable for

applying coding style based plagiarism detection techniques,

since such a dataset contains sufficient files which are rich

enough for such an analysis to be meaningful.
Future work will include applying machine learning

algorithms to the random samples to study the frequency of
the keywords and identifiers which are found in the files, and
to determine how these approaches can improve the
plagiarism detection approach.

VI. REFERENCES

[1] M. Hammond, "Cyber-plagiarism: are FE students getting away with

words?," in Plagiarism: Prevention, Practice and Policies

Conference, 2004.

[2] S. Hannabuss, "Contested texts: issues of plagiarism," Library

management, vol. 22, no. 6/7, pp. 311-318, 2001.

[3] B. Martin, "Plagiarism: a misplaced emphasis," Journal of
Information Ethics, vol. 3, no. 2, p. 36, 1994.

[4] A. Parker and J. Hamblen, "Computer algorithms for plagiarism

detection," IEEE Transactions on Education, vol. 32, no. 2, pp. 94-99,
1989.

[5] .J. Faidhi and S. Robinson, "An empirical approach for detecting

program similarity and plagiarism within a university programming
environment," Computers & Education, vol. 11, no. 1, pp. 11-19,

1987.

[6] K. Bowyer and L. Hall, "Experience using" MOSS" to detect cheating
on programming assignments," in Frontiers in Education Conference,

1999. FIE'99. 29th Annual, 1999.

[7] L. Prechelt, G. Malpohl and M. Philippsen, "Finding plagiarisms
among a set of programs with JPlag," J. UCS, vol. 8, no. 11, 2002.

[8] M. Joy and G. Cosma, "An Approach to Source-Code Plagiarism

Detection and Investigation Using Latent Semantic Analysis," IEEE
Transactions on Computers, vol. 61, no. 3, pp. 379-394, 2012.

[9] M. Joy, G. Cosma, J. Y.-K. Yau and J. Sinclair,, "Source code

plagiarism—a student perspective," IEEE Transactions on Education,
vol. 54, no. 1, pp. 125-132, 2011.

[10] S. Burrows, A. Uitdenbogerd and A. Turpin, "Application of
information retrieval techniques for source code authorship

attribution," nternational Conference on Database Systems for

Advanced Applications, pp. 699-713, 2009.

[11] B. Kernighan and P. Plauger, "The elements of programming style,"

The elements of programming style, by Kernighan, Brian W.; Plauger,

PJ New York: McGraw-Hill, 1978.

[12] E. Jones, "Metrics based plagarism monitoring," Journal of

Computing Sciences in Colleges, vol. 16, no. 4, pp. 253-261, 2001.

[13] G. Israel, Determining sample size, University of Florida Cooperative
Extension Service, Institute of Food and Agriculture Sciences, EDIS,

1992.

[14] M. Kolling, "Lessons from the Design of Three Educational
Programming Environments: Blue, BlueJ and Greenfoot,"

International Journal of People-Oriented Programming (IJPOP), vol.

4, no. 1, pp. 5-32, 2015.

[15] . M. Kolling and D. Barnes, "Objects first with Java: A practical

introduction using BlueJ," in Prentice Hall, 2005.

[16] . M. Kolling, "Using BlueJ to introduce programming," in Reflections
on the Teaching of Programming, Springer, 2008, pp. 98-115.

[17] R. Barrett and J. Malcolm, "Embedding plagiarism education in the

assessment process," International Journal for Educational Integrity,
vol. 2, no. 1, 2006.

[18] M. Jadud, "A first look at novice compilation behaviour using BlueJ,"

Computer Science Education, vol. 15, no. 1, pp. 15-40, 2005.

[19] A. Altadmri and N. Brown, "37 million compilations: Investigating

novice programming mistakes in large-scale student data," in

Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, New York, 2016.

[20] N. Brown, M. Kolling, D. McCall and I. Utting, "Blackbox: A large

scale repository of novice programmers' activity," in Proceedings of
the 45th ACM technical symposium on Computer science education,

2014.

[21] L. Cohen, L. Manion and K. Morrison, Research methods in
education, 2013: Morrison, Keith.

[22] M. Kolling and J. Rosenberg, "Guidelines for teaching object

orientation with Java," in ACM SIGCSE Bulletin, 2001.

[23] O. Mirza, M. Joy and G. Cosma, Style Analysis for Source Code

Plagiarism Detection – an Analysis of a Dataset of Student

Coursework, The 17th IEEE International Conference on Advanced
Learning Technologies (ICALT). Timisoara, Romania, 3-7 Jul 2017.

[24] O. Mirza, M. Joy, "Style analysis for source code plagiarism

detection." Plagiarism Across Europe and Beyond 2015: Conference
Proceedings. pp. 53-61, 2015.

94

