IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.3, NO.2, APRIL-JUNE 2010 139

Layered Architecture for Automatic
Generation of Conflictive Animations
In Programming Education

Andrés Moreno, Mike Joy, Niko Myller, and Erkki Sutinen

Abstract—Fundamental concepts of programming and data structures are usually taught with graphical tools such as simulations and
animations. Conflictive animations have been proposed to improve students’ understanding of programming concepts. In conflictive
animations, errors are introduced in the animations to motivate students to constantly check their knowledge against what is being
animated. We have implemented a framework in an animation tool that allows the automatic generation of conflictive animations of
statements, expressions, and other programming constructs. The automatic generation is challenging due to the alternative paths
execution can take and their side effects. The architecture of the tool consists of several layers that can alter the normal interpretation
or visualization of the program. The framework and the tool have been evaluated by creating conflictive animations of two
programming concepts—for-loops and inheritance—and by running a set of 27 examples taken from Java textbooks. Of these, over
two thirds (19) required no modification or only minor changes to create the conflictive animations. The reasons that the remaining
examples did not generate conflictive animations automatically were divided between the layered architecture used and the example

program itself.

Index Terms—CS1, animation, programming education, conflictive animation, object-oriented programming, Java, errors.

1 INTRODUCTION

C ONFLICTIVE animations form a new approach to the use of
animations in programming education [1]. Conflictive
animations are created so that they do not animate faithfully
what the programs intend to do. They aim to compel the
student to review the animation critically by asking them to
identify possible errors or mistakes in the animation.

Previously, program animation has been used to demon-
strate the fundamental concepts of programming. Teachers
present programming concepts along with their visual
representation using program animation tools. Programs
written by teachers or students are animated step by step
showing how the computer executes its statements. Tea-
chers can concentrate on the explanations as the tool
provides the correct graphical representation. Students can
later use these same tools to review the lessons or debug
their own programs.

It is expected that students construct their knowledge as
they write and visualize their own programs. Ben-Bassat
Levy et al. [2] found that animations helped the “mediocre”
students to express their knowledge and communicate with
the teacher, but that weak and strong students did not benefit
as much. Their study was carried out in a high school, and

e A. Moreno, N. Myller and, E. Sutinen are with the Department of
Computer Science and Statistics, University of Joensuu, PO Box 111,
80101 Joensuu, Finland.

E-mail: {amoreno, niko.myller, erkki.sutinenj@cs.joensu.fi.

o M. Joy is with the Department of Computer Science, University of

Warwick, Coventry CV4 7AL, UK. E-mail: M.S.Joy@uwarwick.ac.uk.

Manuscript received 29 Apr. 2009; revised 29 June 2009; accepted 31 July
2009; published online 20 Aug. 2009.

For information on obtaining reprints of this article, please send e-mail to:
[t@computer.org, and reference IEEECS Log Number TLT-2009-04-0086.
Digital Object Identifier no. 10.1109/TLT.2009.36.

1939-1382/10/$26.00 © 2010 IEEE

they emphasized that animations should be explicitly taught
and explained, as they are not usually self-explanatory.

In another study, Moreno and Joy [3] used an animation
tool (Jeliot 3) to support the lectures and assignments of a
project-based course at a university. In this setting, they
found that students often failed to use the tools properly
and to understand the concepts represented in the anima-
tion. When asked about complex concepts such as object
construction, students could not explain the steps depicted
by the animation, but they still regarded the animation as
useful. Their pragmatic approach to using the program
animation tool was nonetheless useful for creating simple
programs, since they used it as a debugger. However, the
students appeared not to be making an effort to understand
the concepts being animated, such as variables or loops.

When students visualize conflictive animations and
engage in detecting the errors, the intention is that they
carefully follow the animation and check their knowledge
and lecture notes with what happens on the screen. This kind
of activity should motivate students to better understand
programming concepts and their detailed implementation.

Common misconceptions that students have can poten-
tially be corrected if students pay more attention to
animations. For example, Sorva described misconceptions
students held about variables in programming [4]. Program
animations (in Jeliot 3) provide a self-contained visual
explanation of what variables are and how they behave;
however, the meaning may not be apparent unless the
students observe the animation carefully.

Hundhausen et al. [5] reviewed the evaluations of
algorithm animation tools found in the literature. Their
metareview concluded that animations were usually posi-
tive for students’ attitudes, but not always beneficial for

Published by the IEEE CS & ES

140 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.3, NO.2, APRIL-JUNE 2010

learning. They suggested that the importance of the
animation is not what is animated, but how students
interact with it, revealing the importance of engagement in
animation tools. Thus, the lack of engagement is one of the
problems found in current animation tools. Naps et al. [6]
acknowledged this and developed a taxonomy of engage-
ment for visualization tools consisting of six main levels of
engagement: viewing, responding, changing, constructing,
and representing.

When using animation tools, teachers often complain
about the time-consuming task of creating animations of
their own examples [7]. lhantola et al. reviewed the
degree of effortlessness of visualization tools [8]. Their
taxonomy includes three categories—scope, integrability,
and interaction—which were deemed important by the
surveyed educators when adapting visualization tools to
their learning practice. The scope category evaluates
whether the tool can be used in a single lecture, for a
whole course, within a computing domain, or whether it
does not impose any limit to where it is used. Integrability
refers to the ability of the tool to integrate with the
teaching environment, materials, and practices, e.g., the
ability to run in several platforms, or for the animations to
be customized. Finally, interaction is divided into two
subcategories: the producer-tool interaction (time required
to prepare a task with the tool), and the user-tool
interaction (ways a user can interact with the produced
task following the taxonomy described by Naps et al. [6]).

This paper presents a framework for creating conflictive
animations, and describes its implementation in an existing
programming animation tool, Jeliot 3. The resulting new
tool has been named Jeliot ConAn, for conflictive anima-
tions. Adding conflictive animations to Jeliot 3 should
increase the level of engagement of the student in an
effortless manner for the instructor, so that conflictive
animations can be used within the course scope, and with
no changes to the instructor’s examples. Varied program-
ming concepts, such as statements or expressions, are a
possible source for conflicts in the framework. Jeliot 3 has a
layered and interpretative architecture which provides the
means to generate the conflictive animations for those
concepts automatically.

First, the topic of programming animation and errors in
education is presented, and Jeliot 3 is described in Sections 3
and 4. The following sections categorize conflictive anima-
tions and propose a framework to implement them in
current program animation systems. An actual implementa-
tion of the framework in Jeliot 3 is described in Section 7, and
both the framework and its implementation are evaluated in
Section 8 according to its technical and effortlessness merits.

2 REeLATED WORK

The concept of automatic generation of conflictive anima-
tions merges two previously separate threads—program
animation tools and errors in education—which have not
usually been considered together before. Program animation
tools can automatically generate explanatory animations of
programs, and these animations are usually correct as they
have been used as means to convey knowledge. On the other
hand, errors in education have been proposed as a way to
engage students to become critical and deep thinkers [9].

[WyCiass.main

I Expression
evaluation
Method area
area

CONSTANTS [int wiaen[_3
|-m heigth| 3
Constant foesal 3]
:
4 area Instance
35
. area
39 int area = square. getArea();
40 }
41)
e
Rl pers § T
g @ | F| > 0|«
J Step. _Pay Bewind

Eait 1P
Jeler gui =

Fig. 1. User interface of Jeliot 3.

In this section, we briefly describe the state of the art in
programming animation tools, with special focus on how
they are implemented. We also introduce how errors have
been used up to now in education, especially in program-
ming education.

2.1 Program Visualization

Automatic generation of program animations is possible
with tools like Jeliot 3 [10], Problets [11], and WinHipe [12].
Algorithm animation tools like MatrixPro [13] allow the
automatic creation of animations of certain data structures
and operations on them.

WinHipe animates functional programs written in the
Hope language. The animation consists of a step-by-step
execution of the program showing how functional state-
ments and expressions are evaluated. The animation dis-
plays the trace of the function calls in a tree. Each node in
the tree represents a function call and contains the value of
the parameters it has been called with. The animation is
produced by a functional interpreter that generates each
image after every step in the interpretation, resulting in an
efficient but highly coupled implementation. Different
visualization paradigms, or modifications to the current
one, would require modifications to the Hope interpreter.

Jeliot 3 allows the user to visualize Java programs by
producing a step-by-step animation of the program flow as
it is executed by a Java interpreter. In this case, the
interpreter and the animation are separated. The interpreter
produces an intermediate code that is used to later direct
the animation, and this is discussed in more detail in
Section 3 and Fig. 1.

Kumar and Kasabov developed Problets [11], which are
randomly generated C++ programs that include an anima-
tion and an explanation of its execution. Rather than
focusing on the program flow as Jeliot 3 does, Problets’
animations focus on the data space, animating the changes to
values of variables and changes to the execution stack. The
implementation of Problets completely separates the ani-
mation from the execution using an Observer architecture. In
the Observer architecture, the visualization engine observes
when the values of structures relative to the executed

MORENO ET AL.: LAYERED ARCHITECTURE FOR AUTOMATIC GENERATION OF CONFLICTIVE ANIMATIONS IN PROGRAMMING... 141

TABLE 1
Summary of Features of Automatic Program Animation Tools and MatrixPro

Tool Paradigm Architecture Data Flow Control Flow Multiple visual- Backward exe-
ization cution
WinHipe Functional Interpreter Yes Yes No Yes
Jeliot 3 OOP Interpreter Yes Yes Yes No
Problets OOP Observer Yes No Yes Yes
MatrixPro ~ Algorithms = Model-View-Controller ~ Yes No Yes Yes

program (variables, method stack, ...) change, and then it
updates the graphical representation accordingly.

Finally, the MatrixPro environment focuses on animating
data structures and algorithms [13], such as sorting an
array. Users can enter their own data sets and watch how
the algorithm performs its operations in the selected data
structure. The implementation of MatrixPro is based on the
Model-View-Controller architecture, similar to the Observer
architecture. This gives the necessary flexibility to visualize
the same algorithm in different data structures.

Table 1 summarizes the main features of these environ-
ments. The last two columns specify whether the tool and
its architecture provide support for generating multiple
animations of the same source code, and whether an
animation can go backwards seamlessly. In our case, we
focus on creating tools for imperative or object-oriented
programming (OOP), thus WinHipe and MatrixPro are not
relevant. Both Problets and Jeliot 3 can provide automatic
generation of program animations for the data space or data
flow; however, the ability of Jeliot 3 to animate the control
flow of a program makes it better suited to produce
conflictive animations relative to those concepts (if state-
ments, loops, ...).

2.2 Errors in Education

Traditional education has focused on conveying correct
information to students. A constructivist approach, on the
other hand, views students as the ones constructing their
own knowledge with the guidance of tutors [14]. In this
setting, expressing oneself and making errors is encour-
aged. The process of debating about the concepts, and the
different perceptions of them, helps students to form their
own understanding. Postman argues that students would
be more engaged in their own education if they were shown
that people fail, make errors, and if they were encouraged
to identify those errors [9].

Grofle and Renkl studied how fixing errors in incorrect
worked examples could foster learning in physics education
[15]. According to the study, far transfer of knowledge
improved on those students with prior knowledge that
used both correct and incorrect worked examples. The
possible explanation given for this improvement is that “the
contrasting features (here, the error) attract attention and
elicit related learning processes.” Moreover, students
correcting the errors were not given any feedback on how
to correct the error, and Grofse and Renkl suggest the use of
a computer-based learning environment to link the incor-
rect and the correct solutions to provide the student with a
self-assessment of their explanation.

Exercises that use incorrect code are common in program-
ming education. Students are often asked to find and correct
syntax or design errors [16]. These kinds of exercises
are usually simple and do not assess the understanding of
the dynamic behavior of programs. At different level, the
MatrixPro algorithm simulation tool [13] contains an activity
in which students are asked to work with a faulty
implementation of a binary search tree. Students have to
graphically add keys to the tree that will result in breaking
one of the properties of such trees. This particular activity
assesses not only whether the student understands how the
correct implementation works, but also evaluates what
makes a faulty binary tree. At the time of writing there is no
published report on the effectiveness of this kind of activity.

In their taxonomy of “visual algorithm simulation
exercises” [17], Korhonen and Malmi describe this Matrix-
Pro activity as a “complete open question,” where all of the
exercise components—the algorithm used, its input, and its
output—are explicitly questioned. In the exercise, the
algorithm would be devised by the student to be faulty.
The student freely chooses input to simulate an algorithm
that will result in a faulty output, a broken binary search
tree. With this kind of activity, Korhonen and Malmi
implicitly add a correctness dimension to their taxonomy,
but it is not developed further.

Cognitive conflict activities, a technique commonly used
in physics education, put the students in situations where
they are faced with their misconceptions. According to
cognitive conflict theory [18], students are then ready to
accept a correct understanding as their own previous
understanding has been shown to be not valid. In a recent
study, Ma et al. [18] used cognitive conflict to solve
comprehension issues with variable assignment. Students
who held misconceptions were shown animations of correct
assignments. Ma et al. found that cognitive conflict and
animation help students to resolve misconceptions.

Ma et al. used animations to resolve a previously
identified misconception or conflict. However, in our case,
the animations will also create the conflicts automatically
and students will be the ones self-assessing their knowledge
and understanding.

3 JELIOT 3

In order to demonstrate the capabilities of conflictive
animations in learning programming, we have used the
Jeliot 3 program animation environment, which has been
shown to be effective in improving the learning of
elementary computer science and programming [2]. It
visualizes Java programs automatically without any user

142 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 3,

involvement, and thus novices can start using Jeliot 3 on
their first day of learning to program. Jeliot 3 supports the
addition of “stop and think” questions, which ask the
students about the result of executing the following
statement or expression.

The user interface of Jeliot 3 is illustrated in Fig. 1. The
source code editor is in the left-hand pane, while the right-
hand pane is used to display the animation. VCR-like
buttons to control the animation are located in the lower left
corner. Fully dynamic animation of the data and control
flow of the program is displayed, including every aspect of
the program execution (e.g., method calls, object construc-
tion, and expression evaluation). The animation is created
automatically from the source code, so that the student
needs only to learn to use the control buttons in order to
work with the tool.

Jeliot 3 requires each program to be assembled in one
file, even if it contains several classes, before it is animated.
A further restriction is the use of the libraries that are
supported by Jeliot 3.

An animation in Jeliot consists of a step-by-step execu-
tion of the program and no step is omitted, and students can
thus match every single line of code with its actual
execution through the animation.

The Jeliot 3 animation pane is divided in four main areas:
method area, evaluation area, constants area, and instance
area. Method calls result in frames displayed in the method
area, and these frames contain the local variables, which can
hold primitive values or references to objects and arrays
located in the object area. When an expression is to be
evaluated (e.g., “a+b”), the values that the expression is
composed of move from the method frame, object area, or
constant area to the evaluation area, where the operation is
executed and the result shown. In Jeliot 3, control flow
statements (if statements, for loops, ...) are animated in
detail, and the user is informed of what is going to happen
next (e.g., the else branch will be executed). Fig. 1 shows
in the animation pane a reference to an object located in the
instance area that is going to be assigned to a variable in the
method frame. This object contains three primitive values.

Jeliot 3 has the potential to create conflictive animations
either by altering the data flow, for example, by changing
the values of the variables, or by altering the flow of the
execution, such as by exiting the while loop when the
condition is true. In Section 5, we present in more detail
the possible levels of conflictive animations which can be
applied in programming education.

4 ARCHITECTURE

One of the architectural goals of Jeliot 3 was to make it
modular so that it could easily be integrated with other
systems, and new packages or subsystems could be
integrated with it [19]. Furthermore, this allowed the use
of components of the previous Jeliot versions (for example,
the animation engine of Jeliot 2000 was reused with only
minimal modifications).

The interpretation and animation of Java programs are
separated into two modules in Jeliot. For the former,
DynamicJava,' an open source Java interpreter, processes

1. http:/ /koala.ilog.fr/djava/.

NO. 2, APRIL-JUNE 2010

Interpretation
of the program
code done by
DynamicJava

Intermediate
code of the
program
execution

Source code
of the
program

8
4
' A
6 o 5
User interface Vlsuah.zamon Intermediate
engine 7 code
interpreter

Fig. 2. The functional architecture of Jeliot 3.

the user program. In the latter module, Jeliot’s graphical
engine creates an animation of the program interpretation.
To connect these parts, an intermediate code, MCode, was
designed.

MCode [20] is a textual representation of the interpreta-
tion of a running program, or a program trace. It not only
describes the changes in variables and stacks, as a normal
Java debugger would do, but it also details the operations
that produced those changes. All this information is
required to animate every step in the execution of a
program. At present, there are two MCode interpreters in
Jeliot 3: One that produces the complete animation of the
program and another one that builds the method calls tree
during the execution. Program animation designers can
build their own animations and integrate them into Jeliot 3
by writing a new MCode interpreter. MCode aims to be
language independent—for example, a version of Jeliot has
integrated a Python interpreter to produce MCode for
Python programs, which can be now visualized with Jeliot 3.

The functional structure of Jeliot 3 is shown in Fig. 2. A
user interacts with the user interface and edits the source
code of the program (1). The source code is sent to the Java
interpreter and the intermediate code is extracted from the
interpretation (2 and 3). The intermediate code is then
interpreted (4) and directions are given to the animation
engine (5). The user can control the animation by playing,
pausing, rewinding, or playing step by step the animation
(6). Furthermore, the user can input data (6), numbers, or
strings, to the program executed by the interpreter (7 and 8).

The intermediate language provides a source of inter-
pretation information that can be used for different
visualizations. A new intermediate code interpreter and
an animation engine can be developed to produce a
different visualization of the same program (such as call
tree visualization). Thus, Jeliot 3 can be extended internally
with multiple visualizations of the same program.

Readers interested to get more specific information about
the design of Jeliot 3 and the MCode intermediate code are
referred to Myller [19] and Moreno [20] for detailed
explanations of Jeliot 3 development.

The architecture of Jeliot 3 allows the production of
conflictive animations at several of its layers, from source
code to interpretation to animations. Thus, it is a good
platform to highlight the possibilities of conflictive anima-
tions. These different layers will be analyzed in Section 6

MORENO ET AL.: LAYERED ARCHITECTURE FOR AUTOMATIC GENERATION OF CONFLICTIVE ANIMATIONS IN PROGRAMMING... 143

TABLE 2
Summary of Programming Concepts
and Examples of Conflictive Animations

Concept What Example of Possible
conflict in Jeliot
Module Program level Animating a No
concepts like different program
algorithms
Statement Assignments and Altering Yes
flow control behaviour of
structures loops
Expression Binary and unary Calling an Yes
operations. incorrect method
Method calls and
object creation
Operator ~ Logical and The opposite Yes
arithmetic operator is
operators visualized
Literal Constant values Converting the Yes

numerical value
to a less precise
type, from double
to int

in variables,
expressions

discussing their possibilities and drawbacks of producing
conflictive animations.

5 PROGRAMMING CONCEPTS IN CONFLICTIVE
ANIMATIONS

Moreno et al. [21] present five different levels of conflictive
animations for programming. These levels were derived
from the main production rules of the Python abstract
grammar,” which is simpler than the Java abstract gram-
mar. However, these five main levels (module, statement,
expression, operators, and literals) correspond to the
fundamental building blocks of Java and other program-
ming languages.

Object-oriented concepts are indirectly addressed at the
module and expression levels. Classes relate to modules
and message passing and object constructions relate to
expressions. It should be noted that this categorization does
not consider software design issues that are central to
object-oriented programming.

The possibility of automatically generating conflictive
animations in Jeliot 3 for the concepts presented by Moreno
et al. [21] are discussed in the following paragraphs. Table 2
summarizes the possibilities of Jeliot 3 to produce con-
flictive animations of the concepts described.

5.1 Module

Conflictive animations at this level animate either a
completely different program or a different implementation
of a class from the one the user provides—that is, the
module is replaced before being animated. Automatic
generation of such a conflictive animation is not possible
in Jeliot 3, since it only uses the source code of the program
and cannot make inferences on what will be a good program
with which to replace the existing one. Jeliot 3 could give the
educator the option to select two programs, one that would
be animated and one that would be displayed in the code

2. http://docs.python.org/lib/Python.txt.

editor pane. However, this would lead to problems as the
code highlighting cannot highlight the displayed source
code. This level is better suited for algorithm animation,
where a data structure could be substituted by a different
one or by a faulty one, such as the faulty binary tree used in
MatrixPro, as discussed in Section 2.1.

5.2 Statement

Statements include assignments and control structures like
loops and if statements. Automatic generation of conflictive
animation of statements is possible in the current design of
Jeliot 3. Interpretation of statements can be changed to
produce incorrect animations of their execution. This new
interpretation requires careful planning so that it is close to
the original one and reflects possible misconceptions
students have with those statements. For example, an
incorrect animation of a for loop could execute the
initialization of the counter in every iteration. The incorrect
animation should not be too similar to the original, because
there is the risk that the resulting conflict cannot be
perceived in the animation by the student.

5.3 Expression

Logical and mathematical expressions are not exclusive to
programming, and we tend to assume that students know
about them. However, if Jeliot 3 is used as a debugger,
simple expressions like string concatenation are usually
overlooked by students [3]. Simple conflictive animations
can be automatically generated in Jeliot 3 to test students’
attention and to make them realize that an expression can
also be a source of problems in their own programs. The
conflictive animation will just interpret operators differ-
ently. For example,”<” behaves like a “>" or “<=.” These
conflictive expressions can produce a conflictive behavior of
a loop or an if statement if they are used within a condition.
Such a conflictive behavior of a loop or if statement can make
the student think that the source of the error is somewhere
else than in the execution of the conflictive expression.

Jeliot 3 also shows the steps taken with complicated
expressions involving increments and decrements, both in
the pre (++a) or post (a++) form. Identifying incorrect
animations of increments is an activity that could lead to a
better understanding of such concepts. Two other main
concepts are also considered as expressions.

Function calls. These are key building blocks for program-

ming and together with statements they determine the flow

of a program. Automatic conflictive animations can be

generated by altering the name resolution that is inherent to

Java. This way a method call can be conflictively animated

by actually executing a method with a signature different
from the original method call.

Instance creation. Object-oriented programs rely on creating
objects. However, object creation is a difficult concept as it
involves several steps that are not explicit in the code [22].
Jeliot 3 animates those steps and can create an automatic
conflictive animation of them. It would involve either
changing the order those steps are animated or eliminating
some or all of them.

5.4 Operator

The operator level is tightly linked with the expression level.
At this level, however, operators will not change their

144 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.3, NO.2, APRIL-JUNE 2010

meaning or interpretation, but they will change their
graphical representation in the animation. For exam-
ple,”3 < 4” may show like “3 > 4" or “3 <=4,” and the
result will be “true,” the correct one for “3 < 4.” In this case,
the program flow will continue as it was intended, but the
animation was wrong for the brief time the operator
appeared on the screen. As the result of the expression not
being consistent with what the shown operator indicated,
we call this type of animation nonconsistent. Generating this
kind of conflict is trivial, as it only requires changing the
animation of the operator. This level should be used to
introduce students to conflictive animations as it requires
attention to detail rather than correct understanding.

5.5 Literal

The literal level is the lowest and, like the operator level,
conflictive animations at this level will not demand much
knowledge from the student. Automatic conflictive anima-
tions in Jeliot 3 at this level may focus on the data types.
Conlflictive animations of values will change the representa-
tion of numbers, so that, for example, an integer can be
represented as a real, or vice versa.

5.6 Summary

Of the five programming concepts or levels presented here,
for four of them it is possible to conflictively animate them
in Jeliot 3. However, statement and expression are the
concepts that have an influence on the execution or
interpretation of the program, and it is at these levels
where we can find the concepts needed for object orienta-
tion and program flow. Thus, we consider that being able to
automatically create conflictive animations at these two
levels will be beneficial for students.

Technically, these two levels are the most challenging to
implement as their conflictive interpretation can produce
side effects that are neither supported nor expected by
traditional animation tools, since such tools are only
prepared for the correct execution of a program.

6 LAYERED GENERATION OF CONFLICTIVE
ANIMATIONS

The previous section introduced the possibilities for
conflictive animations of different programming concepts.
When it comes to the actual generation of conflictive
animations we need to take into account the implementa-
tion details of the animation tool. In our case, we have
chosen Jeliot 3, since its architecture allows for several ways
to implement the examples given in the previous section.
This section analyzes the layers that create animations in
Jeliot 3 and explores the possibilities for them to be part of
the conflict creation process.

As said before, animations in Jeliot 3 are generated from
the Java source code to be animated. This code is interpreted
by DynamicJava, which parses the source code and creates
the syntax tree, and then interprets the code by traversing
the tree. This interpretation creates the intermediate code,
which is in turn interpreted to create the animation through
the engine. We can identify then five main layers or stages
that run sequentially and can be the source for conflictive
animations (from bottom to top): program source code, Java

parser, DynamicJava’s tree interpretation, MCode interpre-
tation, and visualization engine.

Automatically generating conflictive animations imply
modifying the normal behavior of one or more of the stages
of the process. The linear generation of the animation
implies that changes in one of the lower layers of the
process will propagate up to the animation stage. This
propagation requires adapting the levels to the new
possible incorrect states. In the original design of Jeliot 3,
upper layers relied on the correctness of the information
handed by lower layers. Thus, upper levels should know
when the interpretation is in a conflictive state to allow for
possible deviations from the norm.

Because the process of animating is mostly done in one
direction, lower layers will not be aware of conflicts
introduced in the upper layers. Thus, the rest of the animation
will not be consistent with the conflicts introduced by the
upper layer. For example, if the animation layer changes the
graphical representation of “5 < 4” to “5 > 4” it will create a
conflictive animation of an operator, but the result of the
comparison is still evaluated in the tree interpretation layer
(“false”), which is not aware of that change, and the
animation will continue as if no conflict has happened.

We reflect on the problems and possible benefits on
using these layers. At the end of the section, we summarize
the benefits and disadvantages and propose a solution to
implement conflictive animations within Jeliot 3.

6.1 Source Code Layer

The first possibility for creating conflictive animations in
Jeliot 3 is by transparently modifying the source code before
it is interpreted. This altered program could be the source
for the conflictive animation, and by doing this, there is no
need for other major changes in Jeliot 3 to make conflictive
animations happen. However, that will require the addition
of a structure which will parse the Java program and that
will modify the program without adding syntax and
grammar errors.

Adding that structure would result in duplicating the
work done by the Java interpreter, which already under-
stands the Java source code, and provides a programmatic
way to alter the interpretation tree.

This layer could be used to implement conflictive
animations at the module level of programming concepts.
Jeliot 3 could let educators specify two source files, one that
would be animated in the animation window and that
would be conflictive, and another one that would just be
displayed in the code pane. This would not be automatic
and it would not allow for the automatic spotting of the
error, but it could be useful in certain scenarios, such as
when creating conflictive animations of operations on data
structures where one method is replaced by a faulty one.

6.2 Parser Layer

A conflictive parser could alter the syntax rules of Java. For
example, a redefined grammar could change the priority of
binary expressions, and all the programs interpreted accord-
ing to that grammar will evaluate mathematical expressions
in the wrong order prompting several conflictive animations.

Two main problems appear if conflicts are generated at
this layer. First, the generation of several types of conflicts

MORENO ET AL.: LAYERED ARCHITECTURE FOR AUTOMATIC GENERATION OF CONFLICTIVE ANIMATIONS IN PROGRAMMING... 145

would require the generation of a specific grammar for each
type and the ability to change them at runtime. Also, it
would be difficult to know whether the animation is in a
conflictive state or not.

Grammars could be designed to be more flexible
accepting common mistakes and misspellings. Implement-
ing this feature would allow the possibility of animating
students” programs that contain syntax errors. In this case,
students could learn not to rely in the compiler when looking
for syntax errors, but to carefully write their programs.

6.3 Tree Interpretation Layer

This layer is the one that stores the most of the state
information of a running program. The tree structure also
stores completely the semantics of Java execution, which
allows for “tweaking,” or fine tuning, the interpretation of
Java statements and expressions.

Tree interpretation actually consists of two interpreta-
tions, or visits. In the first one, the static class is resolved,
and in the second visit the evaluation is performed. The first
visit is used to collect data that could be relevant for
conflictive animations of method calls.

It is in the second visit where the main work is done to
produce the conflictive animations. Evaluation of expres-
sions or statements, such as “i++,” can take two paths: the
normal path, where it is evaluated according to the Java
rules, or the alternative path, where an incorrect interpreta-
tion of the statement or expression is carried out. This
incorrect interpretation will produce the MCode that
reflects its execution, and this MCode is sent normally to
the intermediate code interpreter to generate the animation.

Conflictive interpretation can lead the program to an
unexpected halt. This problem could arise when an if
statement condition is evaluated to “true” when it should
be “false.” If this condition was guarding a division by zero
error, the conflictive animation will display the Divided by
Zero exception, even when the program was written to
avoid that. In such cases, educators should prepare the
conflictive animation examples and assignments carefully
so the execution of the example will not encounter
uninitialized values errors or exceptions.

For complex expressions, such as method calls, the
possibility of simultaneous conflicts is disabled. This is
done to reduce the number of possible conflicting interac-
tions in the interpretation.

6.4 MCode Interpretation Layer

According to the architecture of Jeliot 3, it is possible to add a
new intermediate code interpreter to produce a new
visualization of the program, such as a conflictive one. Thus,
modifying the program interpretation at this layer would
have the benefit that the modifications at this layer will not
interfere with the normal behavior of the Java interpreter.

However, the layer lacks the information to be able to
decide when and how to produce conflictive statements as
most of the context is only dealt with at the previous layer.
Moreover, in order to generate an animation that is
consistent, the new interpreter should be able to interpret
the conflictive statement. As in the source code layer, the
modifications needed will replicate much of the work of the
Java interpreter.

6.5 Visualization Layer

This layer basically follows the instructions that the MCode
interpretation layer generates and it does not have any
knowledge about the semantics of programs.

At this level, it is straightforward to create nonconsistent
conflictive animations, like the ones described above in the
Operator and Literal level. The graphics are changed so that
incorrect signs or values are drawn.

At this level, there is insufficient information to decide
when it is better to change the representation, so the layer
will only animate incorrectly animation occurrences of
operators and literals according to predefined rules.

6.6 Summary

The five layers presented here have shown capabilities to be
the mechanical creators of conflictive animations. However,
in some cases, major additions to the code are required in
order to provide the intelligence needed for the creation.

In this analysis, we have found out that the Tree
Interpreter layer is the most suitable layer for the task of
creating conflictive animation. This layer keeps most of the
information about the program that can be used to create
new conflicts. Furthermore, changes done to the imple-
mentation at this layer will automatically propagate
through the upper layers and create the conflictive anima-
tion with reduced side effects.

7 JELIOT CONAN

The previous considerations have led us to develop Jeliot
ConAn. Jeliot ConAn maintains all the features of Jeliot 3
and adds the possibility of creating animations that contain
known errors. The implementation of Jeliot ConAn incor-
porates a framework for adding support to new program-
ming concepts being conflictively animated. Developers
have to alter the behavior of the interpreter and create new
conflict objects.

Fig. 3 gives an overview of the reworked Jeliot 3
architecture including the conflict generation. Conflict
objects are central to Jeliot ConAn as they hold the logic
of the conflict and the information needed to present them.
Presentation and interaction of the conflict objects with the
user are taken care of by the framework. Thus, the
framework can be divided into two parts: generating
conflicts objects (numbers 1-5 in Fig. 3) and presenting
them to the user (numbers 6-10 in the same figure).

7.1 Generating Conflictive Animations

The generation of conflicts starts when the user enters the
source code for a program (1) that is sent for interpretation
by the conflicting version of DynamicJava. The interpreter
produces the intermediate code for the execution. At some
point, the interpreter will misinterpret a statement in the
program according to preprogrammed behavior—for ex-
ample, an overridden method may be called instead of the
overriding method. This misinterpretation will produce an
alternative execution that is reflected in the MCode. The
resulting intermediate code is surrounded by specific
MCode instructions marking the beginning and the end of
the conflictive part (3). At this time, the conflict object will
have been created (4) containing all the relevant information

146

Conflictive
interpretation
of the program
code done by
DynamicJava

4
9

Intermediate
code of the
faulty
program
execution

Source code
of the
program

Conflict
manager
10 6
8 A A
User interface VlSu&l{zatwn 7 Intermediate
engine code
interpreter

User

Fig. 3. The functional architecture of Jeliot ConAn.

of that conflict (location, method called, class information,
etc.). This MCode is sent to the intermediate code interpreter
(5), which will interpret the intermediate code line by line as
the animation progresses step by step.

7.2 Presenting Conflictive Animations

When the MCode interpreter receives the instruction
marking the beginning of a conflictive part (5), it will
report to the conflict manager that the conflict is about to
start, or to end (6). The visualization engine will receive the
commands to animate normally from the interpreter (7).
The last stage of the presentation occurs when the user
presses the relevant button and checks for the conflict (8). If
a conflict is happening or has happened, the information
about it is retrieved (9), and returned to the user through
the user interface (10).

7.3 User Interaction

Jeliot 3 user interface has been slightly modified in Jeliot
ConAn. As the mission of the student is to identify the
error, we include a Fault Button which, when pressed,
indicates to the animation tool that the user thinks a conflict
(i-e., error) has occurred. Moreover, the Play Button has been
removed to force the student go step by step. See Fig. 4 to
see the user interface of Jeliot ConAn when conflictive
animations are shown.

Conflictive animations can be used in assessment
by asking students to press the Fault Button whenever they
detect a conflict. To avoid random trials, there is a limit—by
default 3—to the number of times the Fault button can be
pressed in a single run of the animation. If this limit is
reached, the animation is restarted. In addition to this, the
conflict may only be apparent to the students a long time
after it has happened. In Jeliot ConAn, students have a
varying number of steps after which they can still report the
occurrence of an error.

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.3, NO.2, APRIL-JUNE 2010

0\ Jeliot 37,2 forjava.

Control Animation Options Help
t Jeliot.i0.%;

=/ 31 Theater | Calt Tree [Histony |
Method Area

|3 public class MyClass { Expressian Evaluati(

4 public static void main() { | [MyClass.main

5 // Your algorithw goes here.

| intb=3; r |
7 for(int 1 = 0; 1<2; #0){ i int h|II

8 b |
10) |
T »

\g 6 Multiple-Choice-Question =

14

[| E Multiple Choice Question

ffou found the error, why do you think there is an error
in the animation? |
2 I 1 The nitial value of the for loop is wrong 1

INone of the others

G I The updale stalement was executed ahead of
125 | #3ime |
i | |

27 g | CRONOL S3Y.

| I — 3 Submit Response

@ f-‘f'r 6 « | Consol | No answer submitted yet
|_Edit_|com) pile step 1 Fault [Pause glwlnn!

LYY S e

Fig. 4. User interface of Jeliot ConAn. In the picture, the student has
pressed the Fault button and they are asked why they think there is an
error.

When the student presses the Fault button, they are
informed of the success of the trial. If unsuccessful, they
continue watching the animation looking for an error. If the
student has pressed the Fault button at the correct time, a
multiple choice question checks whether the reason for
pressing it was the correct one. This helps the student to
reflect better on what has happened and why, and teachers
can collect this feedback to identify misunderstandings held
by the students.

Finally, when a conflict animation has been identified,
Jeliot ConAn rewinds itself and correctly animates the
conflictive concept. If, however, the animation reaches the
end and the student has not spotted the error, they are given
a hint of where the error is and asked to try again.

7.4 Awareness of the Conflicts

It is still not clear how we should make the students aware
of the possible conflicts in the animation. On one hand,
students should be aware of the types of conflicts that are
possible in the current animation in order to be able to
concentrate on the correct fragments of the program
animation. Due to the interpretative nature of Jeliot ConAn,
it cannot detect and warn in advance of the types of
conflicts that are going to happen.

On the other hand, if students are given a clear indication
of where to look when the animation is running, the
possible benefits from conflictive animations are reduced.
In this case, students may not check the knowledge about
programming but their knowledge about errors.

8 EVALUATION

To evaluate the framework, we have implemented in Jeliot
ConAn three conflictive objects. Two of them aim to create
conflictive animations related to inheritance topics (Con-
flictive Overriding and Conflictive Implicit Super Call) and one
is related to the for loop (Conflictive For Update Statement).
These three are just a selection of the possible conflictive
animations that could be implemented in Jeliot ConAn.
The selection of these three objects is informed by both
technical and pedagogical reasons. Pedagogically, inheri-
tance and object construction are difficult concepts to learn

MORENO ET AL.: LAYERED ARCHITECTURE FOR AUTOMATIC GENERATION OF CONFLICTIVE ANIMATIONS IN PROGRAMMING... 147

class A{
public void m(){...}
}

public class B extends Af
public void m(){...}
public static void main
(string[] argv) {
B b = new B();
b.m();
}
}

Fig. 5. Overriding method call code.

[22], and students have problems describing the processes
involved [3]. Technically, the three conflictive objects have
been chosen because they show two levels of programming
conflicts (expression and statement) which are deemed to
be the most important ones, as discussed in Section 5. In our
framework, we have relied on the Tree Interpretation layer
to automatically generate several kinds of conflictive
animations. The selected conflictive objects will indicate if
enough information can be gathered at that stage to create
conflictive animations.

The evaluation described here aims to test Jeliot ConAn
and its framework from a technical point of view—is the
framework able to automatically create conflictive anima-
tions? If so, how much effort does it require from the
developer to implement the conflict, and how much effort
from the teacher to use the implemented concepts? To
answer both questions, we have first implemented the
chosen conflictive objects (see Section 8.1), and then tested
whether the objects can create the conflicts from a repository
of test programs collected from Java textbooks and online
sources, as discussed in Section 8.2. These programs were
collected from the chapters where inheritance and for loops
were explained. The repository contains authentic examples
teachers have readily available to explain the concepts.

In this setting, the evaluation can be regarded as
positive if 1) the framework allows for the creation of
conflictive objects, and 2) the implemented conflict objects
can create conflictive animations from independent sources
with none or little modification.

8.1 Creation of Conflict Objects

The following implemented conflicts were designed to be
automatically created in those situations where the code
matched certain conditions. These conditions are different
for each conflictive object. Implementing them according to
the framework consisted of a series of steps, as follows:

1. Implement a new Conflict subclass that can hold the
details of the conflict for later reference.

2. Modify the normal tree interpretation of the source
code so that it:

a. creates an object of the Conflict subclass with the
information about the particular conflict,

b. changes the implementation from the original
and correct interpretation to an alternative and
potentially conflictive one, and

c. indicates the start and end of the conflictive
interpretation using the intermediate code
instructions.

class A{

A0 {...}
}

public class B extends A{
int 1i;

B(){
}

public static void main
(String[] argv){
B b = new B();

= 0;

Fig. 6. Implicit super call code.

The second step required more programming effort, in
particular, changing the implementation of the interpreta-
tion. Object-oriented conflicts proportionally required more
work than procedural ones.

We now describe the three conflictive objects implemen-
ted in ConAn. We specify what makes them conflictive, and
how we have implemented them following the steps
described above.

8.1.1 Inheritance: Conflictive Overriding

Conflictive overriding animations are those that animate the
execution of the overridden method from a parent class
rather than the overriding one which was the one invoked.
Thus, the programming concept they are related to is
Expression level. Fig. 5 shows a code fragment that should
activate this conflict. To identify this conflict, the student
has to read the source code in advance and to acknowledge
that there is an overriding method.

A new class, ConflictiveOverriding, was added to
the framework to implement this conflictive object. The main
fields of the class hold the values for the name of the class
and the overridden method. Jeliot ConAn creates the conflict
object in the first iteration of the tree interpretation, when the
data types and class are resolved, see Section 6.3. It is in the
second iteration that the alternative and wrong execution
path is taken according to the data contained in the conflict
object. The presentation of the conflict allows the student to
detect the conflict throughout the time the wrong method is
being animated as we consider that not only the call, but also
its animation, are part of the conflict.

8.1.2 |Inheritance: Conflictive Implicit Super Call

Implicit super calls are added in Java when a constructor
does not include a call to its parent class constructor. Fig. 6
shows an example code fragment. This conflict is useful
when students are learning about object creation and
inheritance in Java. Students have to carefully watch each
single step in the animation to identify the missing call to a
constructor in the parent class. As the previous one, this
conflict belongs to the Expression as it relates to method calls.

In the first step, we implemented the class Conflicti-
veImplicit, which contained variables for the names of a
class and its parent class. The second step starts with the
construction of the conflict object. This requires correct
identification of the existence of an implicit super call, which
is done in the first pass of the tree interpreter. It is in the
second pass, the actual evaluation, that the implicit super

148 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.3, NO.2, APRIL-JUNE 2010

call is evaluated. For Java consistency reasons, we cannot
prevent that from happening, but we mark the beginning
and the end of interpretation of the super call using the
intermediate code instructions. When the intermediate code
interpreter receives code relative to the implicit super call,
this code is ignored and it is not animated.

8.1.3 Conflictive for Update Statement
When a for loop is executed, the update statement is only
executed after the loop block has ended. This conflictive
object changes the order of execution, and executes the
update statement at the beginning. This conflict relates to
the Statement programming concept. This conflictive anima-
tion can be identified straightforwardly if the student
knows the behavior of the for loop, or maybe later when
they acknowledge that the loop has skipped one iteration.

In this case, ConflictiveForUpdate is implemented
containing only the line where the for loop is located. The
interpretation of the for loop is tweaked in the second pass
of the for loop. We changed the order of interpretation of
the different parts of a for loop. Now, the alternative and
potentially conflictive execution will interpret the update
statement before the body of the loop. The conflict
beginning and end is determined by the interpretation of
the update statement.

The presentation of the conflict allows the student to
detect the conflict while the update statement is conflic-
tively animated or three steps after its animation.

8.2 Conflictive Animation of Programs

To assess the framework and the implemented conflicts, we
have constructed a test set consisting of 27 programs,
which are divided into two subsets. One relates to the for
loop (15 programs), and one to inheritance in general
(12 programs). These programs have been gathered from
five popular Java books and a website (see the Appendix).
The chosen programs are only from those chapters that
present the for loop, and those which deal exclusively with
inheritance. Examples that contained loops or inheritance,
but were not trying to explain them, were discarded.

The for loop programs (15) were basically variations on
two themes: single update statements and complex update
statements. The average size of the programs was 20 lines of
code. Thus, 15 programs represent a good sample of possible
combinations. Inheritance programs (12) presented a wide
range of topics related to inheritance, object construction,
overriding, abstract classes, and basic inheritance design
concepts, and had an average size of 49 lines of code.

The programs have been modified to follow Jeliot 3’s
conventions, i.e.,, combining the multiples files in a single
file and using the input libraries recognized by Jeliot 3.
Moreover, some of the test programs have been extended
with the source code required to start executing the
program, i.e., adding a main method so the program will
demonstrate the implemented features.

The results of creating the conflictive animations are
divided into four categories, and each program was
assigned a category after being tested with Jeliot ConAn.
The categories are as follows:

e Automatic generation: The program did not require
any modification to create the conflictive animation.

TABLE 3
Summary of Testing

Result Inheritance For Loop
Automatic generation 3 13
Automatic generation with 2 0
minor changes

Automatic generation with 1 0
major changes

No generation due to exam- 5 0
ple program

No generation due to 1 2
framework

Total 12 15

e Automatic generation with minor changes: The
program source code had one or two lines edited or
removed to trigger the conflictive animation, e.g.,
changing a method call in the main method.

e Automatic generation with major changes: Impor-
tant modifications were done to trigger the con-
flictive animation, e.g., a new constructor was added
to the class.

e No generation due to program: In this case, it was
not conveniently possible to modify the program so
that it would trigger the conflict animation. Thus, the
animation showed no conflict.

e No generation due to the framework: Again, the
animation did not show any conflict, or the anima-
tion could not be created. However, the framework
should have created a conflictive animation because
the program contained the elements that should
trigger the conflictive animation.

8.2.1 Results

The results of executing the tests in Jeliot ConAn are
summarized in Table 3 and described in the following
paragraphs. These results are discussed in Section 9.

Of the 12 inheritance programs tested, 6 programs did not
produce conflictive animations. The reason is that these
programs did not contain any example either of implicit
super calls or of overriding methods, and thus the imple-
mented conflicts could not be triggered. They contained basic
inheritance examples that demonstrated how classes could
extend other classes with new methods or implement abstract
methods. In one program, Jeliot ConAn failed to animate an
overridden method, and this was due to a limitation in the
framework as it could not detect the calling object properly.

The remaining six inheritance programs produced
conflictive animations for either conflictive overriding or
conflictive implicit super method calls. Three of these did
not require any change in the source code and two required
minor changes. Minor changes consisted of altering one or
two lines in the source code. Two of these five programs
had the potential to animate both of the possible inheritance
conflicts, but the framework only allows for one conflict to
be animated per program. One program animated a conflict
after a constructor was added to it, and a new object
creation had to be added. We considered these to be major
changes to the program.

MORENO ET AL.: LAYERED ARCHITECTURE FOR AUTOMATIC GENERATION OF CONFLICTIVE ANIMATIONS IN PROGRAMMING...

149

TABLE 4
Engagement Taxonomy and Conflictive Dimension [1]

Level = Well-behaved animation Conlflictive animation Supported by
Jeliot ConAn
Viewing Students can visualize animations, either step Students should be aware of the possibility of Yes
by step or continuously. viewing an incorrect animation.
Responding Students are asked to respond to questions re- Students have to detect the errors in the anima- Yes
lated to an animation and the concepts pre- tion.
sented in it.
Changing Students change the animation to explain a Students change and correct a conflictive ani- No
different concept that the animation was meant mation.
for.
Constructing Students use the animation tools to create an an- Students purposely create a conflictive anima- No
imation that explains an algorithm or a simpler tion.
concept.
Presenting Students verbally present an animation to an Students present the conflictive animation and No
audience. try to confuse peers.

Of the 15 for loop examples, 13 produced conflictive
animations without any modification. The two programs that
did not produce conflictive animations used external
libraries that Jeliot could not access, such as java.util.*, and
thus animation could not be generated. From the 13 programs
that generated conflicts, 10 contained simple update state-
ments (1++), and 3 contained complex update statements
(i++,J++). In both cases, Jeliot ConAn animated those
statements ahead of time in each iteration of the loop until the
Fault button was pressed.

9 DiscusSION

The evaluation and testing of the framework has provided
us with useful insights about the effort required to create
conflictive animations from different sources. It has also
allowed us to better identify the relationship between the
effort to create conflictive animations and the usage of these
animations in authentic settings.

Once a new conflictive object is implemented in the
framework, the framework can reliably produce a con-
flictive animation for that object when the conditions are
met. Only in one occasion did the framework fail to produce
the conflictive animation when it should have done. In this
case, the interpreter-based execution could not gather the
required information about the conflict. We do not consider
this limitation of the framework to be significant, as for the
rest of the cases, the framework worked as expected. The
occurrence of the limitation is due to how the Java
interpreter builds new objects using the Java virtual
machine. If new conflicts related to object creation in Java
were to be implemented in the framework, we would
recommend building a test set in advance to be sure that the
conflict object will be suitable for a wide range of programs.

These results show the potential to create conflictive
animations from other textbooks or teachers” own example
programs. This way, teachers can make use of conflictive
animations when they think it is necessary, and do not need
to be concerned about adapting their examples to run in
Jeliot ConAn.

Comparatively, implementing the “for update” state-
ment conflict was significantly faster than implementing the
inheritance conflicts. This factor, combined with the fact

that every program tested in the evaluation that contained a
for loop correctly produced a conflictive animation, shows
us that it is important to assess the relevance of the possible
conflict in a repository of Java examples. Making conflictive
animations applicable to a wide range of existing examples
will make their adoption by educators easier.

The animation of inheritance conflicts only happened in
half of the example programs. The implemented conflicts
relate to subtle Java specification details that are not always
taught in elementary Java courses, and thus, they less likely
to appear in the example programs. However, the ability to
create conflicts at a more advanced levels should attract
experienced students to use Jeliot ConAn and benefit from
the animation.

According to the effortlessness taxonomy [8], Jeliot
ConAn can be regarded as a low effort tool for adoption
by instructors. The scope of the tool can be considered
course wide, as it can create animations for most program-
ming concepts taught in CS1 or CS2. Jeliot ConAn’s
integrability lacks the possibility to customize the animation
or the interaction, however, the interaction of Jeliot can
be regarded as low effort from the producer point of view.
The evaluation in the previous section has shown how with
little modification programs can make use of conflictive
animations. Moreover, students can also use the examples
on their own. From the user point of view, several ways of
interacting are possible as described in Table 4 following
the engagement taxonomy [6]. Jeliot ConAn can be a tool to
create activities for passive viewing and interactive viewing
(responding). As it is focused on the automatic generation of
animations, Jeliot ConAn cannot be used by students to
manipulate the animation to create their own animations—
animations can only react to changes in the source code.

We have discussed how conflictive animations have to
take into account the existing body of examples and cater
for both novice and advanced students. Another factor that
could improve their value is by creating a set of conflictive
animations that reveal common misconceptions students
have when learning programming [23].

The kind of exercise implemented in Jeliot ConAn—
detecting and identifying the wrong step in an animation—
has not been considered in previous taxonomies of
visualization exercises [17], [24]. These taxonomies consider

150

whether the input and output are known in advance or not,
but they do not explicitly mention the correctness of their
values. For example, specifying the correct or incorrect
content of the output in an exercise could make new kinds
of exercises available. Here, we have only considered one of
these exercises, where the program is correct (that is, it does
not have semantic or syntactic errors, the input to the
program is fixed, and the exercise question lies in the
output which is a conflictive and erroneous animation).
Several other exercises could be devised if we take into
account the correctness of the different elements, such as an
incorrect program producing correct animations.

We are currently analyzing data from an empirical
evaluation of the pedagogical effect of conflictive anima-
tions compared to the use of well-behaved animations, and
initial results show improvement over well-behaved anima-
tions. Benefits from the conflictive animations could be well
similar to what Grofle and Renkl discovered: students with
good prior knowledge will benefit the most when trying to
look for the errors by trying to explain the error [15].

10 CONCLUSION

Jeliot 3’s modular architecture has been extended to add
support for alternate and potentially conflictive animations.
Jeliot 3 has been converted to Jeliot ConAn, which can
automatically create conflictive animations. Three concepts
are already implemented in Jeliot ConAn for potential
conflictive animation including basic loop operation and
advanced inheritance concepts. Thus, any source code that
contains at least one of the implemented conflictive concepts
leads to a conflictive animation that students can interact
with. The framework that has been implemented in Jeliot
ConAn provides the structure to add more conflicts for
other concepts with relative ease.

Jeliot 3 has resulted in a flexible platform for developing
the idea of conflictive animations in a way that is almost
effortless for teachers. Teachers can use their examples with
few or no modifications to produce conflictive animations
activities. In implementing Jeliot ConAn, two main deci-
sions were made: using the tree interpreter layer and
focusing on expressions and statements to create the conflicts.
This combination has been technically a success as it has
enabled us to create conflictive animations that are not
trivial for students to identify and that expose possible
misconceptions students might have.

In the paper, we have discussed only three conflictive
objects, which relate to two programming concepts. How-
ever, we have laid out the foundation for creating new
conflictive objects within the framework. Future iterations of
the tool will include more conflictive objects that address
other important programming topics. New conflictive objects
will be evaluated according to the effort necessary to use
textbook examples as sources for conflictive animations.

APPENDIX
List of Java resources:

e Rogers Cadenhead, Java 2 Trainer. ITPress, 1999.
e David Flanagan, Java in a Nutshell. O’Reilly, 2005.

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL.3, NO.2, APRIL-JUNE 2010

Pekka Kosonen, Juha Peltoméki, and Simo Silander,
Java 2 Ohjelmoinen peruskirja. Docendo Finland Oy,
2005.

Y. Daniel Liang, Introduction to Java Programming.
Pearson Education, 2009.

Sun Microsystems, The Java Tutorials, http:/ /java.
sun.com/doc/books/tutorial, retrieved on 20 Jan.
2009.

Arto Wikla, Ohjelmoinnin perusteet Java-kielelld.
OtaDATA, 2003.

REFERENCES

(1]

(2]

B3]

[4]

5]

(6]

(71

8]

]

(10]

(1]

[12]

[13]

(14]

(15]

[10]

(171

A. Moreno, E. Sutinen, R. Bednarik, and N. Myller, “Conflictive
Animations as Engaging Learning Tools,” Proc. Seventh Baltic Sea
Conf. Computing Education Research (Koli Calling '07), R. Lister and
B. Simon, eds., vol. 88, pp. 203-206, 2007.

R. Ben-Bassat Levy, M. Ben-Ari, and P.A. Uronen, “The Jeliot 2000
Program Animation System,” Computers and Education, vol. 40,
no. 1, pp. 1-15, 2003.

A. Moreno and M.S. Joy, “Jeliot 3 in a Demanding Educational
Setting,” Electronic Notes in Theoretical Computer Science, vol. 178,
pp- 51-59, 2007.

J. Sorva, “The Same But Different: Students” Understandings of
Primitive and Object Variables,” Proc. Eighth Baltic Sea Conf.
Computing Education Research (Koli Calling '07), A. Pears and
L. Malmi, eds., 2008.

C.D. Hundhausen, S.A. Douglas, and].T. Stasko, “A Meta-Study
of Algorithm Visualization Effectiveness,” J. Visual Languages and
Computing, vol. 13, no. 3, pp. 259-290, 2002.

T.L. Naps, G. Rofiling, V. Almstrum, W. Dann, R. Fleischer, C.
Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and
J.A. Velazquez Iturbide, “Exploring the Role of Visualization and
Engagement in Computer Science Education,” Proc. Working
Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education (ITiCSE-WGR '02), pp. 131-152, 2002.

T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Ro88ling, W. Dann,
A. Korhonen, L. Malmi, J. Rantakokko, R.J. Ross, J. Anderson, R.
Fleischer, M. Kuittinen, and M. McNally, “Evaluating the
Educational Impact of Visualization,” Proc. Working Group Reports
from ITiCSE on Innovation and Technology in Computer Science
Education (ITiCSE-WGR ’03), pp. 124-136, 2003.

P. Thantola, V. Karavirta, A. Korhonen, and J. Nikander,
“Taxonomy of Effortless Creation of Algorithm Visualizations,”
Proc. First Int'l Workshop Computing Education Research (ICER '05),
pp- 123-133, 2005.

N. Postman, “The Fallen Angel,” The End of Education, Vintage
Books, 1996.

A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing
Program with Jeliot 3,” Proc. Int'l Working Conf. Advanced Visual
Interfaces (AVI '04), pp. 373-380, 2004.

A. Kumar and S. Kasabov, “Observer Architecture of Program
Visualization,” Electronic Notes in Theoretical Computer Science,
vol. 178, pp. 153-160, 2007.

J. Angel Veldzquez Iturbide and C. Pareja-Flores, “An Approach
to Effortless Construction of Program Animations,” Computers &
Education, vol. 50, no. 1, pp. 179-192, 2008.

V. Karavirta, A. Korhonen, L. Malmi, and K. Stalnacke,
“MatrixPro—A Tool for Demonstrating Data Structures and
Algorithms Ex Tempore,” Proc. IEEE Int’l Conf. Advanced Learning
Technologies (ICALT "04), pp. 892-893, 2004.

M. Ben-Ari, “Constructivism in Computer Science Education,”
J. Computers in Math. and Science Teaching, vol. 20, no. 1, pp. 45-73,
2001.

C. Grofie and A. Renkl, “Finding and Fixing Errors in Worked
Examples: Can This Foster Learning Outcomes?” Learning and
Instruction, vol. 17, pp. 612-634, 2007.

A. Rudder, M. Bernard, and S. Mohammed, “Teaching Program-
ming Using Visualization,” Proc. Sixth Conf. IASTED Int’l Conf.
Web-Based Education (WBED '07), pp. 487-492, 2007.

A. Korhonen and L. Malmi, “Taxonomy of Visual Algorithm
Simulation Exercises,” Proc. Third Program Visualization Workshop,
pp. 118-125, 2004.

MORENO ET AL.: LAYERED ARCHITECTURE FOR AUTOMATIC GENERATION OF CONFLICTIVE ANIMATIONS IN PROGRAMMING... 151

[18] L. Ma, J.D. Ferguson, M. Roper, I. Ross, and M. Wood, “Using
Cognitive Conflict and Visualisation to Improve Mental Models
Held by Novice Programmers,” Proc. 39th SIGCSE Technical Symp.
Computer Science Education (SIGCSE "08), pp. 342-346, 2008.

[19] N. Myller, “The Fundamental Design Issues of Jeliot 3,” master’s
thesis, Univ. of Joensuu, 2004.

[20] A.Moreno, “Intermediate Code in Program Animation Software,”
master’s thesis, Univ. of Joensuu, 2005.

[21] A. Moreno, E. Sutinen, and M. Joy, “Understanding and
Evaluating Conflictive Animations,” to be submitted.

[22] N. Ragonis and M. Ben-Ari, “Teaching Constructors: A Difficult
Multiple Choice,” Proc. 16th European Conf. Object-Oriented
Programming Workshop, vol. 3, 2002.

[23] S. Holland, R. Griffiths, and M. Woodman, “Avoiding Object
Misconceptions,” Proc. 28th SIGCSE Technical Symp. Computer
Science Education (SIGCSE '97), pp. 131-134, 1997.

[24] M. Bruce-Lockhart, P. Crescenzi, and T. Norvella, “Integrating
Test Generation Functionality into the Teaching Machine Envir-
onment,” Proc. Fifth Program Visualization Workshop, G. Roflling
and J.A. Velazquez Iturbide, eds., vol.. 224, pp. 115-124, 2009.

Andrés Moreno is a PhD student in the
Department of Computer Science and Statistics
at the University of Joensuu. He is currently
working in educational technology and his main
interests are visualization tools, programming
education, and ICT for development. He has
been an active developer of the programming
visualization tool Jeliot 3, which he has used to
teach programming in Finland and Tanzania,
and he has published more than 20 papers in
journals and conferences.

Mike Joy received the masters’ degrees in mathematics from Cambridge
University and in postcompulsory education from the University of
Warwick, the PhD degree in computer science from the University of East
Anglia, and has also received both the CEng and CSci degrees. He is an
associate professor in the Department of Computer Science at the
University of Warwick and a member of the Intelligent and Adaptive
Systems research group. His research interests include educational
technology, computer science education, object-oriented programming,
and Internet software, and he is the author or coauthor of more than
100 papers. He is a chartered fellow of the British Computer Society and a
fellow of the Higher Education Academy.

Niko Myller received the BSc degree in 2003,
the MSc degree in 2004, and the PhD degree in
2009, from the Department of Computer Science
and Statistics at the University of Joensuu. His
research interests lie in the fields of visualization
and concretization technologies, CSCL, informa-
tion retrieval, computer ethics as well as
adaptive systems. He has published more than
40 papers related to these topics in international
journals and conferences.

Erkki Sutinen received the PhD degree in
computer science from the University of Helsinki
in 1998. He is the leader of the edTech group
(www.cs.joensuu.fi/edtech). Since 2006, he has
been the head of the Department of Computer
Science and Statistics at the University of
Joensuu. His research interests include ICT for
development (ICT4D) and designing and analyz-
\ ing technologies for complex subject domains,
\ \ like programming, in developing countries, and
W|th|n special educatlon The applied techniques cover visualization,
information retrieval, data mining, robotics, and design models. He has
coauthored and published more than 100 research papers, and 12 of his
supervised or cosupervised PhD students have completed their studies.
He has also worked at Purdue University (1998-1999), the University of
Linkdping (2000-2001), and Massey University (2006), and is an adjunct
professor at Tumaini University, Tanzania.

