
Jl. of Educational Multimedia and Hypermedia (2013), 22 (2), 39-56.

Roles of Animation Tools in Understanding
Programming Concepts

Andres Moreno
University of Eastern Finland

amoreno@student.uef.fi

Mike Joy
University of Warwick, UK
mike.joy@warwick.ac.uk

Erkki Sutinen
University of Eastern Finland

erkki.sutinen@uef.fi

Computer generated animations are resources used to explain
how programs are executed in order to clarify the relevant
programming concepts. However, whilst trying to understand
new programming concepts it is not clear how and when
students benefit from an animation if they are using the tool
on their own. To clarify the role of an animation tool in the
student learning process, six students from an introductory
programming course at a Tanzanian university attended three
individual sessions. In each session students used a program
animation tool to understand a new programming concept,
and they were asked to orally describe the animations as they
watched them. The authors conducted a qualitative analysis
on the video and audio recordings taken when the students
described the animations. Through an inductive category gen-
eration process, five roles played by the animation tool were
identified: no-role or empty, exploratory, confusing, teach-
ing, and evaluating. This classification of roles helps us to
understand the potential of animation tools, and suggests that
versatile use of an animation tool can enrich the teaching and
learning process. Animation tools could diagnose a student’s
current learning stage and adapt a different role to engaging
the student in the learning activity.

40 Moreno, Joy, and Sutinen

Keywords: Educational technologies, qualitative, animation,
multimedia, cognitive tools, programming, computer science,
Jeliot 3

Programming is often perceived as difficult to understand. Several multi-
institutional studies at international universities have revealed students’ low
level of programming skills after their first year at a computer science pro-
gram (McCracken et al., 2001, Whalley et al., 2006). Programming requires
skills that students might not have yet developed, and Mayer (1981) claims
that concrete models are beneficial for novices to acquire new programming
knowledge.

Programming animation tools are cognitive tools (Kim and Reeves,
2007) designed to scaffold the learning of programming. They have been
developed in an attempt to provide concrete models to students, who might
otherwise have problems with the abstract nature of programming. In such
tools, each programming concept or statement has a corresponding graph-
ical representation, which is consistent with, and descriptive of, the steps
taken by a program as it is executed.

Program animation is a resource that teachers can use to explain new pro-
gramming concepts to students. After the teacher has presented the basics of
a programming concept, they will demonstrate and explain the steps that the
programming animation tool animates when executing the introduced con-
cept. Students can later use the tool to review the concept or solve program-
ming assignments related to it. Two factors drive the use of animations ac-
cording to Byrne et al. (1999). First, it is expected that students will benefit
from the animation tool, as to a textbook, because the dynamic nature of
programming is not well represented either by the source code or by writ-
ten explanations, and secondly because of the concrete and visual model the
animation provides.

Although several studies claim that programming animation tools have
a beneficial impact in learning (Ben-Bassat Levy et al., 2003), Hundhausen
et al. (2002) note that the effectiveness of the tools is not yet clearly estab-
lished, with studies identifying only minor effects of the tools. For this and
other practical reasons, programming animation tools have as yet had little
acceptance from teachers (Ben-Bassat Levy and Ben-Ari, 2007). Solutions
have been proposed to overcome the practical problems found by teachers
(Naps et al., 2003), but it is not clear why animations are not always benefi-
cial to the students. One possible reason is that the concrete model provided
by the animation is not enough to advance the zone of proximal development
(Vigostky, 1978) of the student, that is, the student fails to understand a new
concept using the tool.

Studies considered by Hundhausen et al. (2002) in their meta-analysis
reflect the trend in evaluating animation tools in Computer Science educa-
tion. They mostly measured students’ performance before and after the in-

41Roles of Animation Tools in Understanding Programming Concepts

tervention with the animation tool, and the effectiveness of animations was
assessed and conclusions were drawn based on quantitative data. However
performance-based studies do not reveal students’ relationships with the
cognitive tool (Kim and Reeves, 2007), nor patterns using it.

This relationship can be uncovered by studying the patterns of tool us-
age, which Iiyoshi et al. (2005) define as “the manner in which tool use var-
ies according to learner differences, task complexity and tool flexibility”. As
a student’s knowledge varies, so does the use of the animation tool by the
student, even over short periods of time. For example, after a student has
completely understood a concept with the animation, the tool will not have
the same role. After understanding and identifying these patterns, or roles,
we can start rethinking the animation tools so they fulfil their potential.

The four main roles identified in this study — exploratory, confusing,
teaching and evaluating — suggest a linear progress of students’ under-
standing, as depicted in Fig. 1. In other words, using the animation tool, the
student should go through the stages of exploration, confusion, teaching/
learning, and evaluation of their knowledge.

 exploration evaluation teaching confusion

Figure 1. Expected linear progress of students’ understanding of a program-
ming concept using an animation tool

In this paper, we report a qualitative analysis of students’ verbal descrip-
tions of animations. This analysis identifies the four main roles of an ani-
mation tool, and explores the changing role of the tool as it is used by the
student.

Jeliot 3

Jeliot 3 is a tool that animates object oriented programs step by step
(Moreno et al., 2004). The execution of a program shows how each line is
interpreted by the computer. We could say that the supporting theory behind
Jeliot 3 is epistemological validity: the animation is used to convey to the
student the expert’s representation of the program execution.

Jeliot 3’s main ability is to automatically create a representation of a Java
program in an animation window, see Fig. 2. Different actors in the program
are represented in the animation as boxes containing their name and val-
ue. Following program execution, new actors are displayed and values are
moved from box to box according to assignments and constructs dynami-
cally highlighted as the program is executed. Jeliot 3 can be used as a devel-

42 Moreno, Joy, and Sutinen

opment environment. After successful compilation of a student’s program,
Jeliot 3 animates the program at the user-adjusted speed. System output is
presented in a console window following animation steps. Thus, in order to
get the output of a program, Jeliot 3 animates the whole of it.

Figure 2. This screenshot of Jeliot 3 shows a new object being created. The
source code of the program is in the left-hand side side, and the animation is
on the right.

The study

Sample

Participants in the study were second year undergraduate students at Irin-
ga University College, Tumaini University (Tanzania) studying mathematics
education, a Bachelor programme with a strong ICT component. The stu-
dents were taking part in a 12-week introductory course to programming.
Course goals were to introduce basic imperative and object-oriented pro-
gramming using Java as the programming language.

Students were stratified according to a simple test that graded their com-
puter skills in low, medium and high competence. For each level of com-

43Roles of Animation Tools in Understanding Programming Concepts

petence, two participants were randomly chosen, adding up to a total of six
participants taking part in the study. The names of the participants have been
changed into pseudonyms in the article to avoid their identification.

Before joining the sessions, participants read and signed an authorization
allowing the collected data to be used for research purposes. Formal permis-
sion from the university was granted to collect the data within the university
campus.

Data Collection

In this study we wanted to see how the students developed their under-
standing of programming concepts and of their respective Jeliot 3 anima-
tions. Thus, to capture the relationship between both aspects and how they
evolved, we asked them to describe animations of programs as they were
animated.

Furthermore, to check how repeatedly visualizing animations affected
subsequent visualizations, students would afterwards visualize and describe
a similar program and then write down a description of the same steps they
had just watched. This enabled us to track the possible progress in students’
understanding and the effect of the animation.

Interviews have provided the data for most qualitative studies in compu-
ter science education research. Fleury (2000) showed a set of programs to
students and asked them whether those programs will work and why they
thought so. Holmboe (2000), on the other hand, asked directly “what is
..?” questions to find out students’ understanding of concepts, for example,
“what is a foreign key?” In both cases, interviews captured a static image of
the students’ knowledge, though Holmboe admits that students’ verbal an-
swers carry more information (such as hesitation) than written tests.

Verbal descriptions of animations have not previously been a source ma-
terial of qualitative analysis. In this study, we consider animation descrip-
tions to be analogue to interviews or think-aloud protocols (Ericsson and
Simon, 1993)., as they also answer the question “what is happening [on
the screen] now?”

Each participant attended three sessions, which were appointed individu-
ally and conducted by the first author. Each session focused on one concept,
namely, array creation, method calling, and object creation. These concepts
were chosen due to the detailed animation that Jeliot 3 produces when ani-
mating them. Ecological validity was assured by focusing each session on a
programming concept that had been recently taught in the lectures. Sessions
had no time limit, but each one lasted an average of 45 minutes. They con-
sisted of five consecutive tasks:

At the beginning of every experimental session students were asked to
complete a pre-test in order to assess if they had the basic knowledge of the

44 Moreno, Joy, and Sutinen

concepts before proceeding with the session. If students had problems with
the tested concept, the first author assisted them before the visualization
tasks. In order to ensure no student was disadvantaged by not taking part
in the experimental sessions, problems and misunderstandings encountered
during those sessions were later reviewed at the course lectures attended by
all of the students.

Following this, students moved to a computer where they were shown
the source code of a program. They were asked to suggest the purpose of the
program before starting its animation, and then were asked to describe every
action of the animation during this first visualization task. Voice recordings
of their descriptions and video recording of the simultaneous events happen-
ing on the screen were made while Jeliot 3 was animating a Java program.

Students were then asked to solve a simple programming task that re-
quired them to slightly modify (2-4 lines of code) the program previously
animated in the first task. This was followed by a second visualization task
in which their solution was again animated and students described it step by
step. Finally, students completed a written post-test that asked for written
descriptions of the steps taken in the animation.

Data Analysis

Recordings of the visualization tasks were transcribed. In order to assess
the learning and animation impact, deeper analysis of the transcriptions was
restricted to narration of session concepts — array creation, method calling,
object creation — as assessed in the pre- and post-tests. Preliminary anal-
ysis of the data focused on how the students’ knowledge changed as they
described Jeliot 3 animations. This analysis revealed that students were not
always describing what was happening on the screen as requested, which
made it difficult to assess their particular knowledge and its evolution from
the available data. Thus, the focus of the qualitative analysis shifted towards
the relationship between the student and the tool.

The data analysis reported here follows an inductive category generation
process, a technique also used by Eckerdal (2009, p 31) to extract categories
from students’ interviews. Using inductive category generation, the catego-
ries are extracted and refined through an iterative and “reductive” analysis
of the data. In her case, the aim was to reveal strategies computer science
students use to get unstuck. In our case we aimed to identify the roles of the
animation tool.

From their descriptions, four categories were initially identified to de-
scribe the role of the animations: teaching, exploring, asserting and con-
fusing. The categories were redefined and agreed by all the authors after
collaboratively coding a set of samples from a transcription. In this phase,
the main author’s experience with the tool was fundamental when discuss-

Roles of Animation Tools in Understanding Programming Concepts 45

ing the meaning of the narration fragments, and the possible roles that they
could reveal. This is similar to the importance given by Strauss and Corbin
(1998) to theoretical sensitivity in Grounded Theory, where the ability of the
researcher to gain “insight” due to previous professional or personal experi-
ence, allows the researcher to give meaning to the data and identify what is
“pertinent” or not to the research.

In this process, the asserting role was relabelled as evaluating role be-
cause it captured better the variety of predictive statements given by the par-
ticipants. With the redefined and agreed categories the rest of the transcrip-
tions were coded using the Transana software (www.transana.org) to find
trends on the changing roles of animations.

Table 1
Snippet of Student Transcription for the Animation of Array Creation in
Jeliot 3 and Categorization of Roles, with Examples of Exploring and

Teaching Roles.
Transcription Role Explanation
… Exploring The tool makes the student to watch the

animation in silence.

Ok, in this case the declaration is
String names

Teaching After watching the animation, the concept is
correctly identified.

String names this is in case of
arrays

Exploring The student tries to make sense of the
animation.

String brackets names equals new
string people

No role The student reads the source code

We use people, the one we have
declared above

No role The student explains the source code

There string names.. Exploring The tool prompts an explanation of the ani-
mation but the student cannot yet describe it
properly and keeps watching

What are you seeing now? NA Prompt by the interviewer to describe the
animation

int length is number of any kind of
element. Two in this case

Teaching Student correctly describes the array length
component

Tables 1 and 2 contain examples of the coding process we used, and il-
lustrate how we mapped the transcribed data to the role categories. In this
example, each sentence is categorized in one of the four roles (which are
described in the next section) and an explanation is provided to justify the
categorization.

46 Moreno, Joy, and Sutinen

Table 2
Snippet of Student Transcription for the Animation of Array Creation in
Jeliot 3 and Categorization of Roles with Examples of the Exploring,

Evaluating and Confusing Roles.
Transcription Role Explanation
This place... let me go to the next
step then I will explain...

Exploring The student is actively following the anima-
tion

There are two people

The name of the people will be
placed here.

Evaluating The student feels he understands the follow-
ing steps of the animation and tries to guess
what will happen next

The first person: names[0] Exploring The student is actively following the anima-
tion

Number of people is connected to
names.

Confusing The student mistakenly interprets the visual-
ization of the array and the arrow that points
to it. The visualization of an array in Jeliot
3 includes a field for the length of the array
(number of people), and the student thinks
that the arrow is only pointing at it, rather
than the whole array.
The picture on the left shows Jeliot 3’s
visualization with an array and the arrow that
points to it.

Findings

Roles of animations

The teaching role of the animations is the most obvious one and it shows
that animations can be considered beneficial in learning. As well, we can
distinguish three more roles, exploratory, evaluating, and confusing. Fur-
thermore, at times the tool had no observable role in the student learning,
and thus, we also consider an empty role.

Empty role
We say that the tool has an empty role when the student does not actively

visualize the animation, or when the visualization changes neither the stu-
dent’s knowledge nor their attitude in an appreciable way.

In our study, several students were quiet when animations of the new
concepts were shown repeatedly. In the post-test, most of the times, they
did not reveal a better understanding of the animation. For example, John
could not correctly describe most of the steps in the object creation, but he
was able to complete the programming task correctly. This reveals a gap be-
tween the conceptual or theoretical knowledge and the practical knowledge.

47Roles of Animation Tools in Understanding Programming Concepts

Holmboe (1996) developed a “cognitive framework for knowledge in
informatics” while analyzing people’s understanding of object orientation.
Knowledge is structured in four levels, from hunches, or first attempts to
understanding, to holistic knowledge, where the knowledge is the result of
interconnecting the two other kinds of knowledge, practical knowledge and
theoretical knowledge. Students advance in their knowledge starting from
hunches and by practice and study they achieve a holistic knowledge. It is at
this stage when students have accommodated the knowledge and can oper-
ate with it; in constructivism terms, the learnt concept is now part of their
first order language.

In Holmboe’s terms we can claim that John has a degree of practical
knowledge but he only has hunches of the theoretical knowledge about the
concept shown. After repeated views of the animation, he has not made the
connection between his practical knowledge and the theoretical knowledge.
We can conclude that the animation itself has not been able to improve his
knowledge of that concept. In his case we think he has not made an active
effort to understand the animation as he could have thought that the practi-
cal knowledge he already had was enough.

A similar effect was noted with animation of object references. Even if
they were present during the whole object creation process, students did not
attempt to describe them. While the concept of references is important, the
student still had a practical knowledge of objects that let them modify the
source code and understand what the program did.

Exploring role
Animation tools have an exploratory role when they prompt the student

to explore or to discover the meaning of the animation and the animated
concept through an active visualization.

Jeliot 3 animations regularly resulted in students making guesses of their
meaning independently of the students’ previous knowledge. Through their
narrations, we could detect students making a conscious effort to actively
visualize the animation.

The exploring attitude could be seen in a range of situations. David and
Martin, for example, did not narrate any of the object creation steps, but
asked what the animation meant and then watched it again. Their missing
knowledge became apparent to them, and they were ready to use the ani-
mation to gain new insights. At times, students halted their narrations while
they tried to understand the animation — they started describing the anima-
tion, but became silent when they found out that they could not describe
all the steps involved. We could detect the exploring role of the animation
because they tried to describe the animation. However, in some cases, after
watching the animation in silence a student would not describe what had
happened, resulting in an apparent empty role for the animation.

48 Moreno, Joy, and Sutinen

The exploring role is indicative of the potential of animation tools, as it
requires a mentally active visualization by the student that usually precedes
the learning. However, not all the students engaged in exploration, and not
all students who explored appeared to have improved their knowledge.

Confusing role
The confusing role of an animation tool is often an unintended one. Ani-

mations are made to clarify or to serve as a learning tool. It occurs when the
student cannot answer the questions that the active visualization provokes.

After exploring the animation, students’ first narrations often contained
statements that revealed their fragile knowledge (Perkins and Martin, 1986).
Four kinds of fragile knowledge were described by Perkins and Martin
— missing, inert, misplaced, and conglomerated — the last two being ex-
posed by the visualization tool through the students’ descriptions. Misplaced
knowledge represents knowledge that the student applies but is not relevant
in the current context, whereas conglomerated knowledge represents those
cases when students’ code contains “disparate elements” that are not sup-
posed to be together.

This fragile knowledge can relate to students’ understanding of the ani-
mation and the concepts the animation explains, and students’ conceptual
misunderstandings were revealed by incorrect usage of terms. In the de-
scription of an array creation, we can find good examples of this fragile
knowledge. For instance, David mixed the terms variable, literal and array,
showing his conglomerated knowledge. Michael described a newly created
array without using the word “array”, but used what he could recognize on
the screen, namely the variable called “length” of such an array. This is an
example of misplaced knowledge, as he equates array creation to variable
declaration.

Fragile knowledge is partly due to the confusing role of the animations,
which are not always self-explanatory — we have observed that they may
cause students in their descriptions to put disparate concepts together or to
focus on secondary/supporting actors.

Students’ descriptions are not only the result of the animation, but also
of their previous knowledge. Thus, their attempts to describe a phenome-
non for which they do not have words may result in an incoherent narration,
similar to the hunches described by Holmboe (1999).

After repeated visualizations in the sessions, most of the students’ de-
scriptions remained confusing, or students stopped describing the whole
concept, not being able to put the correct words to what they were seeing.
In a few cases the confusing description of the animation was the prelude
for learning, but we cannot identify the reasons that caused confusion to be
a trigger for learning.

49Roles of Animation Tools in Understanding Programming Concepts

To summarise, we consider that Jeliot 3 had a confusing role when the
animations failed to improve students’ fragile knowledge; this role was
identified when students’ descriptions consisted of apparently incoherent
sentences.

Teaching role
An animation tool will have a teaching role when it has successfully been

used for learning by the student. This role is expected for any animation
tool, as learning through animations is the final goal.

In the case of Jeliot 3 in this experiment, the teaching followed a behav-
iouristic approach: students were supposed to learn when they watched re-
peatedly the animation. In our study, students improved their descriptions
of the animations after two visualizations, albeit in different grades, and not
for every concept. In other words, they were able to describe correctly more
steps in the post-test, and to some extent in the second visualization than in
the first visualization. Thus, animations have had a general teaching effect.

The teaching role was not only seen after repeated visualizations, but also
during the visualizations, for example, when students gave a proper descrip-
tion of the animation after a moment of exploration. The exploring role in
this case was a catalyst for learning.

Repeated visualizations of the animation also prompted students to cor-
rect their confusing statements, improving their understanding. For example,
Nicholas’s first description of the object creation mentioned a new method
call when the object reference was returned by the constructor. His explana-
tion was an incorrect interpretation of the animation. When he described it
in the second visualization, the return related steps were correctly described,
and there was no mention of any new method call.

Evaluating role
The animation tools have an evaluating role when students use them to

evaluate or assert their own knowledge.
The evaluating role of the animation was evident when students were de-

scribing the animation steps before they actually happened. The required de-
scriptions turned into spontaneous predictions which showed how students
had already matched the code to its corresponding animation. However, the
fact that they wanted to predict rather than describe was two-fold. On one
hand, the predictions were actually assertions of the students’ knowledge
— students considered that the animation itself would not produce any new
information, and that there was no need to actually watch it to describe it.
On the other hand, the predictions had a self-evaluating component — we
observed that students actually watched the animation and incorrectly pre-
dicted it. After visualizing the animation, students either corrected their pre-
dictions or did not do so.

50 Moreno, Joy, and Sutinen

The most common assertion referred to assigning values to parameters
and attributes. This could be explained by the fact that simple assignments
had been visualized several times before, and the students thought that they
had mastered that concept. However, for more complex statements, their
predictions were incomplete or confusing, and the evaluating role of the an-
imation tool showed students’ misunderstandings. For example, Michael’s
prediction of a method call shows a problem expressing clearly what he
thinks is going to happen. He refers to the method call animation as a substi-
tution of values, in other words, the method call representation is substituted
by the value it returns.

When predicting, and as a part of the self-evaluation role of the tool,
some students attempted to add an explanatory prediction. For example,
Timothy tried to go beyond merely describing the change of flow that a re-
turn statement would cause, but also tried to explain why it has happened,
suggesting a higher level of understanding.

As mentioned before, incorrect assertions were often maintained after
watching the animation, revealing students’ fragile knowledge. In this case,
while the tool prompted students to evaluate their knowledge, it did not
have a role to correct it. For example, David’s confusion with “array” and
“length” was a prediction that was repeated after two visualizations. So in
his case, the tool had three simultaneous roles: 1) confusing, as he cannot
distinguish the length from the whole array; 2) asserting, as he is repeating
the confusion in a prediction; and 3) empty, as the tool did not help him gain
the correct understanding.

Variation of animation roles across time

In the introduction, we hypothesized that these four roles would linearly
guide students’ progress towards understanding: from exploring new con-
cepts to evaluating the knowledge they have gained, passing through confu-
sion and learning. However, the analysis of the data revealed that was often
not the case.

In Fig. 3 we have depicted the variety of usage trends of the anima-
tion tools by individual students. Links between the roles indicate the role
change of the tool, or lack of it in the case of a loop, when a student tries to
understand a single concept.

evaluating

exploratory

no role

teaching

confusing initial

51Roles of Animation Tools in Understanding Programming Concepts

Figure 3. The tool takes several roles as students use it to learn a new con-
cept. In the Figure the arrows represent the changes of roles as the anima-
tion of the new concept is watched once or more times.

Before reaching the evaluating role, students used the tool in many
different combinations, and a clear pattern did not emerge from the data.
Moreover, not all of the students used the tool to evaluate their knowledge
of a given concept. In some cases, these students found themselves only us-
ing the tool to explore; in other cases, the animation remained confusing to
them, even after having used Jeliot 3 repeatedly to understand the same con-
cept. Also, some students started by evaluating their knowledge, with ani-
mations seemingly not taking any active role during the session. This is rep-
resented by the path in the bottom of Fig. 3: initial  no role  evaluating.

A good example of the linearly changing roles of the tool is Martin’s nar-
rations of array creation. He was brief in his narrations; he abstained from
predicting the array creation on the first event, and requested to watch the
animation first. After watching the array creation for the first time, he con-
fused the box representing the length of the array with the whole array.
When the second array creation was going to be visualized he anticipated
the reference assignment step, albeit at the wrong time. He made the same
error the next time the second event was animated. Finally, in the post-test
he showed knowledge about space allocation and the reference assignment.
During his visualization of the array creation, the animation tool prompted

evaluating

exploratory

no role

teaching

confusing initial

52 Moreno, Joy, and Sutinen

him to explore the animation; he became confused when describing one of
the steps, and finally showed that the tool had taught him the steps in the
animation as reflected in the post-test. In this occasion the tool had not had a
role in evaluating Martin’s knowledge of array creation.

Discussion

Think-aloud protocols have been used before to investigate learning in
context (Chi, 1997), when students are solving a task, and to infer the men-
tal models of the students regarding the topic. In our case, students were not
solving a problem by describing the animations, but describing animations
resulted in a problem, where students have to think and produce explana-
tions they have not thought of before the task itself.

Asking students to describe animations on the screen proved not to be as
descriptive as we had expected. Students’ descriptions usually related to the
source code rather than its representation on the screen. On the other hand,
students’ timing of the narrations has given us insight into the role of the
tool, especially for the evaluating role.

The fact that the animation tool also has an empty role was unexpected,
and may be explained by several factors that we had no control over. For ex-
ample, a student may not have been motivated to use the tool, or may have
missed the lecture about the animated concept, resulting in a non-ideal use
of the tool by the student.

The exploring and evaluating roles reported here may be dependent on
the task that students were involved in. The act of describing an animation
can force the student to explore it and to ask himself whether he will know
what will happen next. If the student had been using the animation tool for
debugging purposes, exploring or evaluating the animation would have tak-
en a secondary role. These two roles are important for learning, and anima-
tion tools can deliver them.

The confusing role of the animation reveals one problem from Jeliot 3,
and potentially other animation tools. Simple concepts and their anima-
tions were described better than the complex ones. Students’ descriptions
of complex concepts, or lack thereof, revealed the problems they had in un-
derstanding the animations and the concepts explained with the animations.
Students were seeing what was happening in the program, but they were not
able to abstract the animation metaphors to programming concepts. When
they tried, they showed a mix of conglomerated and misplaced knowledge.

This partly matches Ben-Bassat Levy et al.´s (2003) findings: Jeliot 3 is
more beneficial with simpler concepts than with complex ones. Ben-Bassat
Levy et al. also mention that Jeliot 3 helps students by establishing a com-
mon vocabulary to communicate with the teacher. In our case, this did not
happen when complex concepts were being described. Following Holm-

53Roles of Animation Tools in Understanding Programming Concepts

boe’s (2000) interpretation of Vygotsky’s ideas on language and learning,
one possible reason is that for simpler concepts, a student’s previous vocab-
ulary is enough to describe what happens on the screen and in the program.
For more complex concepts, students are still assimilating the concept, and
the terms required to describe the concept do not form part of the students’
first order language (composed of the words that are self-explanatory).

We can assume that when the tool is taking a confusing role, the students
find themselves in the zone of proximal development (Vigostky, 1978), in
which they need the assistance of a tutor to advance to the learning role. If
the tool or the teacher were able to determine when the tool is taking the
confusing role, they could react and provide the necessary scaffolding, or
interaction with the student, to make the student achieve a holistic knowl-
edge of the explained concept.

Repeated use of Jeliot 3 in order to complete the exercises or to describe
the animations has not helped all the students to understand the animations
or the concepts, showing a lack of theoretical knowledge.

The lack of theoretical knowledge is not helped by the fact that Jeliot 3
provides visual clues to the concept, and little verbal information about what
is happening. Mayer and Anderson (1992) have noted the importance of si-
multaneously providing verbal explanations for visual animations to benefit
from simultaneous aural and visual processing. Animation tools should be
used in contexts where the link between the visual material and the theory is
emphasized, especially the relevant vocabulary.

The roles described here could be the basis of real time adaptation of ani-
mation tools. First, real time data could be collected by means of interactive
features, such as simple questions (Myller, 2007). Then, for example, when
the tool identifies its own no-role, the tool would adapt to make itself more
relevant. Loboda and Brusilovsky (2010) have created a tool, WADEIn
II, which adapts the visualization and textual commentary to the variable
knowledge of the user. Moreover, it features two modes of interacting with
the tool — exploration and evaluation — akin to the roles explained here. In
WADEIn II, the student chooses which role the tool takes; adaptation could
be taken to another level if the tool changed seamlessly between the ex-
ploration and evaluation roles, and if the tool identified the two new active
roles: teaching and confusing.

Further research should explain the reasons for successful transitions
from the confusing role to the teaching role in animation tools. One trig-
ger for the transition is a cognitive conflict in the student’s mind (Ma et al.,
2008), which happens when a student is informed that their current percep-
tion or understanding is incorrect. In the research carried out by Ma et al.
(2008) students were asked specific programming questions, and watching
animations resulted in better learning for those who were confronted first

Moreno, Joy, and Sutinen54

with their incorrect assumptions. Thus, the first stage for a successful transi-
tion is for students to be aware of the confusing role of the animation and of
their own lack of understanding.

The results of this study suggest that the novel activity of describing the
animation, rather than just watching it, have had a positive impact on stu-
dents’ learning. A future empirical study could compare the learning impact
of describing animations with other ways of interacting with visualization,
as those from engagement taxonomy described by Naps et al. (2002).

Conclusion

This study has identified and described four roles that an animation tool
takes when it is used to describe new programming concepts. The four roles
— exploring, confusing, teaching and evaluating — reflect the relationship
of the students with the tool. When learning a new programming concept,
the roles taken by the tool may change in unpredictable ways.

The task of describing the animations stimulated students to explore the
animations and to evaluate their learning through the animation, thus pro-
moting active visualization. This active visualization revealed the potential
of the tool’s automatic animations. It also revealed that, sometimes, students
could not understand or explain its animations. Based on our findings, we
will modify the tool to include verbal descriptions to explain complex con-
cepts. For educators, we suggest that they encourage their students to use
the tool in versatile ways, especially for active visualization of the anima-
tion that promotes the exploring and evaluating roles of the tool. Finally,
further research should look into the transition of the roles of the tool and
how to make identify the current role to guide the student to learn the new
concept using the tool.

References
Ben-Bassat Levy, R., and Ben-Ari, M. (2007). We work so hard and they don’t use it: ac-

ceptance of software tools by teachers. SIGCSE Bulletin, 39(3), 246–250.
Ben-Bassat Levy, R, Ben-Ari, M., and Uronen, P. A. (2003). The Jeliot 2000 program

animation system. Computers and Education, 40(1), 1-15.
Byrne, M. D., Catrambone, R., and Stasko, J. T. (1999). Evaluating animations as student

aids in learning computer algorithms. Computers and Education, 33(4), 253-278.
Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: A practical guide.

Journal of Learning Sciences, 6, 271-315.
Eckerdal, A. (2009). Novice programming students’ learning of concepts and practise.

Doctoral dissertation, Uppsala University. URL: http://uu.diva-portal.org/smash/re-
cord.jsf?pid=diva2:173221

Ericsson, K., and Simon, H. (1993). Protocol Analysis: Verbal Reports as Data (2nd ed.).
Boston: MIT Press

55Roles of Animation Tools in Understanding Programming Concepts

Fleury, A. E. (2000). Programming in java: student-constructed rules. SIGCSE Bulletin,
32(1), 197-201.

Holmboe, C. (1999). A cognitive framework for knowledge in informatics: the case of ob-
ject-orientation. In ITiCSE ’99: Proceedings of the 4th annual SIGCSE conference
on innovation and technology in computer science education (pp. 17–20). New
York, NY, USA: ACM.

Holmboe, C. (2000). A framework for knowledge: Analysing high school students’ under-
standing of data modelling. In A. B. E. Bilotta (Ed.), 12th workshop of the psychol-
ogy of programming interest group (pp. 267–279).

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. (2002). A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages and Computing, 13(3),
259–290.

Iiyoshi, T., Hannafin, M., and Wang, F. (2005). Cognitive tools and student centred learn-
ing: rethinking tools, functions and applications. Educational Media International,
42(4), 281–296.

Loboda, T. D., and Brusilovsky, P. (2010). User-adaptive explanatory program visualiza-
tion: evaluation and insights from eye movements. User Modeling and User-Adapt-
ed Interaction, 20(3), 191-226

Kim, B., and Reeves, T. C. (2007). Reframing research on learning with technology: in
search of the meaning of cognitive tools. Instructional Science, 35(3), 207–256.

Ma, L., Ferguson, J. D., Roper, M., Ross, I., and Wood, M. (2008). Using cognitive
conflict and visualisation to improve mental models held by novice programmers. In
Proceedings of the 39th SIGCSE technical symposium on computer science educa-
tion (pp. 342–346). New York, NY, USA: ACM.

Mayer, R., and Anderson, R. (1992). The instructive animation: helping students build
connections between words and pictures in multimedia learning. Journal of Educa-
tional Psychology, 84, 444-452.

Mayer, R. E. (1981). The psychology of how novices learn computer programming. ACM
Computer Survey, 13(1), 121–141.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., Laxer,
C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. In Working
Group Reports From ITiCSE on innovation and Technology in Computer Science
Education (pp. 125-180). ITiCSE-WGR ‘01. ACM, New York, NY.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., et
al. (2001). A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students. SIGCSE Bulletin, 33(4), 125–180.

Moreno, A., Myller, N., Ben-Ari, M., and Sutinen, E. (2004). Program animation in Jeliot
3. SIGCSE Bulletin, 36(3), 265–265.

Myller N. (2007). Automatic Generation of Prediction Questions during Program Visual-
ization. Electron. Notes Theor. Comput. Sci. 178, 43-49.

Naps, T.L., Rößling, G.R., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Kor-
honen, A., Malmi, L., McNally, M., Rodger, S. and Velázquez-Iturbide, J.A. (2002).
Exploring the Role of Visualization and Engagement in Computer Science. SIGCSE
Bulletin, 35(2), 131-152.

Naps, T., Cooper, S., Koldehofe, B., Leska, C., Rößling, G., Dann, W., Korhonen, A.,
Malmi, L., Rantakokko, J., Ross, R. J., Anderson, J., Fleischer, R., Kuittinen, M.,
and McNally, M. (2003). Evaluating the educational impact of visualization. SIGCSE
Bulletin, 35(4), 124-136.

56 Moreno, Joy, and Sutinen

Perkins, D. N. and Martin, F. (1986). Fragile knowledge and neglected strategies in nov-
ice programmers. In Papers Presented At the First Workshop on Empirical Studies
of Programmers on Empirical Studies of Programmers (pp.213–229). E. Soloway
and S. Iyengar, Eds. Ablex Publishing Corp., Norwood, NJ, 213-229.

Strauss, A., and Corbin, J. M. (1998). Basics of qualitative research : Techniques and
procedures for developing grounded theory. SAGE Publications. Paperback.

Vygotsky, L. S. (1978). Interaction between learning and development. In M. Cole, V.
John-Steiner, S. Scribner, & E. Souberman (Eds.), Mind in society: The develop-
ment of higher psychological processes (pp. 79-91). Cambridge, MA: Harvard Uni-
versity Press.

Whalley J. L., Lister R., Thompson E., Clear T., Robbins P., Kumar A., and Prasad C.
(2006). An Australasian study of reading and comprehension skills in novice pro-
grammers, using the bloom and SOLO taxonomies. In Proceedings of the 8th
Australasian Conference on Computing Education - Volume 52 (ACE ‘06), Denise
Tolhurst and Samuel Mann (Eds.), Vol. 52. Australian Computer Society, Inc., Dar-
linghurst, Australia, Australia, 243-252.

Author Notes
Andrés Moreno is a PhD student in the Department of Computer Science and Statistics at the Uni-
versity of Eastern Finland. He is currently working in educational technology and his main interests
are visualization tools, programming education, and ICT for development. He has been an active
developer of the programming visualization tool Jeliot 3, which he has used to teach programming in
Finland, England and Tanzania, and he has published more than 20 papers in journals and confer-
ences.

Mike Joy received the masters’ degrees in mathematics from Cambridge University and in postcom-
pulsory education from the University of Warwick, the PhD degree in computer science from the
University of East Anglia, and has also received both the CEng and CSci degrees. He is an associate
professor in the Department of Computer Science at the University of Warwick and a member of the
Intelligent and Adaptive Systems research group. His research interests include educational technol-
ogy, computer science education, object-oriented programming, and Internet software, and he is the
author or coauthor of more than 100 papers. He is a chartered fellow of the British Computer Society
and a fellow of the Higher Education Academy.

Erkki Sutinen received the PhD degree in computer science from the University of Helsinki in 1998.
He is the leader of the edTech group (www.cs.joensuu.fi/edtech). He has been the head of the
Department of Computer Science and Statistics at the University of Joensuu, currently University
of Eastern Finland. His research interests include ICT for development (ICT4D) and designing and
analyzing technologies for complex subject domains, like programming, in developing countries, and
within special education. The applied techniques cover visualization, information retrieval, data min-
ing, robotics, and design models. He has coauthored and published more than 100 research papers,
and 12 of his supervised or cosupervised PhD students have completed their studies. He has also
worked at Purdue University (1998-1999), the University of Linköping (2000-2001), and Massey Uni-
versity (2006), and is an adjunct professor at Tumaini University, Tanzania.

