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Abstract—Plagiarism detection is a serious problem in higher
education. Teachers use similarity (plagiarism) detection systems,
which  highlight  similarities  between  student  documents,  to  help
them find plagiarism. Most systems are built for text but there are
special  systems to  find  similarities  between source-code  files.  In
most  cases  the  results  are  presented  in  table  form  showing
similarities  between  pairs  of  documents  in  descending  order  by
similarity, and then a teacher is responsible for confirming which
similar  documents  represent  cases  of  plagiarism.  While  most
systems present their results in the form of tables, only few of them
present  the  results  as  a  graph.  Some studies  indicate  that  using
clustering  algorithms  to  represent  such  data  graphically  can
improve the speed and accuracy of finding potential instances of
plagiarism in large collections of source-code files. The purpose of
the  study  is  to  answer  the  following  research  questions.  Can
visualization  of  student  solutions  (of  source-code  similarities)  in
collaboration networks form help identify new cases of plagiarism?
What are the steps to do so? The study was designed in a form of
two  case  studies  where  one  was  performed  on  a  graduate  level
university course and one on a course in professional studies. The
article  presents  empirical  results  describing  two  cases  where  a
collaboration  network  (based  on  source-code  similarity)
representation has been used. The article argues that the graphical
presentation is able to identify new clusters of plagiarised source-
code  files  that  would  have  been  missed  using  existing  tabular
presentation of data.

Keywords—Plagiarism;  Visualization;  High  Education;
Source-code; Collaboration Networks

I. INTRODUCTION

Automatic  source-code  plagiarism  detection  enables
teachers  to  easily  find  plagiarised  cases  in  student
programming  assignments.  Various  plagiarism  detection
engines (further referred as tools) exist which can be used for
that  purpose.  There  is  no  perfect  tool,  so  reviews  and
comparisons of the systems are  performed constantly [1,  2],
which provide information to make a decision on which tool to
use.

Although  different,  all  tools  in  some  way  “calculate”
similarity between two student solutions and give some kind of
a report, which usually indicates potentially plagiarized pairs of
solutions.  The  teacher  then  needs  to  check  these  pairs  and
decide if some specific cases are really plagiarized or not. The
report  itself comes in various forms, it  can be just  a simple
listing, table or a  graph,  or  –  as  Mišić,  Siustran,  and Protić
observe –  “Although tools usually present the results as a list

of student pairs, it is more natural to interpret those results as a
collaboration network.” [3] 

According  to  [4]:  “A  collaborative  network  (CN)  is
constituted  by  a  variety  of  entities  (e.g.,  organizations  and
people)  that  are  largely  autonomous,  geographically
distributed,  and  heterogeneous  in  terms  of  their:  operating
environment, culture, social capital, and goals.” In this paper
the  collaboration  network  is  a  network  of  students  and  the
similarities  between  their  solutions  for  an  assignment.  The
proposed approach involves searching for groups of students
collaborating  together  using  clustering  algorithms,  and
visualising  the  data  as  a  graph.  Close  collaboration  is
manifested as a separate group of nodes in the graph (which is
refer  to  as  a  “cluster”)  and  suggests  possible  plagiarism
between the students in that group. In a network which has no
plagiarism only one cluster should be present which includes
all students.

In this research a case study is performed to show the usage
of  collaboration  networks  when  detecting  source-code
plagiarism in student programming assignments. The rest of the
paper is structured as follows. Section 2 describes the related
work. Section 3 explains the implementation which forms the
basis of the study, and in Section 4 the two cases are discussed.
Section 5 describes the steps for performing visualization and
gives suggestions on how to start to analyse the graphs. Section
6 suggests ideas for future work and Section 7 concludes.

II. RELATED WORK

Plagiarism detection systems had already been built in the
70’s and 80’s and research papers on the subject focused on the
detection  of  plagiarism  rather  than  the  representations  of
results.  Early plagiarism detection systems used only simple
text or table reports to present data. Systems like JPlag [5] used
improved  versions  of  data  presentation  with  two  levels  of
report. First they gave an overall report and then there was a
detailed report. The detailed report usually showed side by side
comparison on selected pairs  indicating which lines of  code
were similar. 

Later on, systems incorporated graphical displays of results
in a form of a simple bar charts, such as those by Gitchell and
Tran  [6]:  “The bars  are  coloured  red,  yellow,  and  green  in
decreasing  similarity  to  the  reference  program  according  to
thresholds specified by the user”. This way it is much easier to
see at first glance to which degree the pairs may be plagiarised.
More advanced graphs like those used by [7] show similarities
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between  pairs  in  the  whole  corpus  of  submissions.  Using
visualization  today  is  normal,  for  example  Makuc  [8]  uses

Force-Directed  Graphs  and  Co-Occurrence  matrices  to
visualize similarities. 

As  already  stated  the  focus  in  this  research  is  on  using
collaboration networks for visualization. Visualization methods
operating on all submissions are used for example in the tool
Sherlock [7] or by Mišić, Siustran and Protić [3, 9]. 

Mišić,  Siustran and Protić  [3]  used  the results  from one
course  in  the  academic  year  2012/2013,  obtained  with  the
MOSS [10] tool, and illustrated collaboration networks using a
tool  called  Gephi [11].  They state that  by using graphs  and
clustering they found three groups of students each containing
more than two students whose programs had a high degree of
similarity.  By  manual  analysis  they  confirmed  these
represented real cases of code sharing and ghost writing. 

Research as performed in [12] first created social networks
of students’ desired partners (team members) for projects, and
then  performed  plagiarism  detection  on  their  assignments.
Some assignments  were  done  at  home,  some were  done  in
class. They found out that assignments done at home correlated
better with the students' preferred workmates for projects. That
tells  the  teacher  that  they can  tell  something  about  the
relationship  based  on  the  similarity  between  pairs.  Or,  by
looking  the  other  way  around,  it  may be  an  indication  that
students  tend  to  collude  more  with  their  friends  than  with
classmates that they do not know, which gives another good
reason  for  using  network  analysis  to  improve  plagiarism
detection.

Another related area comprises tools which use clustering
techniques  like  Pdetect  [13]  or  the  fuzzy-based  source-code
plagiarism detection system described in [14]. In those systems
clustering  is  used  as  a  way  to  help  improve  plagiarism
detection. Such tools, instead of just using string comparison
and making a decision based on the similarities between two
documents,  create  clusters  based  on  the  similarities.  It  is
expected  that  plagiarised  cases  should  belong  to  the  same
cluster. These projects report that clustering seems to have a
positive impact on improving plagiarism detection, and that it
can be combined with other tools. 

In this paper an approach is suggested which uses only free
available tools, that can be used by teachers offline, that can
run  different  clustering  algorithms  and  at  the  same  time
visualize the data as  a  graph (a  collaboration network).  The
approach is also important since it offers the possibility to filter
out  edges  to  get  different  clusters,  and  hence  support
visualization  of  the  results  which  potentially  allows  new
potential plagiarism cases to be identified quickly.

III. CASE STUDY PRESENTATION

The  case  study  was  performed  on  a  graduate  level
university  course  (case  1)  and  on  a  course  in  professional
studies (case 2). The student assignments were written in the
programming  language  Java  in  case 1,  and  in  case 2  the
programming language PHP with HTML and CSS was used.
Students  submitted  their  solutions  to  the  online  e-learning
system  Moodle  and  the  detection  was  performed  using
Sherlock to do the similarity calculation. The detection process

and report that were used are the same as used by [15]. The
data were stored in a simple MySQL database. 

The Sherlock system has been used for few years and has
helped to detect plagiarised cases, but for some cases this is
still not enough. 

In this paper are described the two most interesting cases
that were found using visualization in a form of a collaboration
network.  In each case, after the generation of the report, data
were  analysed  manually  for  pairs  with  more  than  20%
similarity (this was decided by the teachers as a logical cut-off
threshold).   For  example,  the  results  for  the  first  case  are
presented in Table 1 and show two pairs with high similarity
and two with similarity  around 20%. The top two pairs were
clear cases of plagiarism. The other two, by looking at a side by
side comparison, were not so clear. But, since student 17 was
in three pairs, student 14 and student 22 in two pairs, further
analysis  was  performed.  The  analysis  showed  that  different
parts of the students’ submissions were copied and therefore all
pairs were considered plagiarised. 

TABLE I.  TRADITIONAL RESULTS – CASE 1

Student ID 1 Student ID 2 Similarity (0%-100%)

17 14 45%
14 22 32%
17 22 25%
17 13 24%

Now the idea is to put the gathered data into the Gephi tool
to visualize the results in graph form, or more precisely in this
case it is a collaboration network (which is henceforth referred
to as  a  network)  on which some clustering algorithms were
performed. This is the same principle as described by Mišić,
Siustran and Protić [3, 9]. The terms graph and network in the
rest of the paper are used synonymously. 

Once the data were extracted from the database into CSV
format, the nodes and edges were imported using the import
function in Gephi, which automatically draws a graph (Fig. 1)
for the data. After experiment the layout OpenOrb (a way to
rearrange the nodes) with Nooverlap (to ensure that no node is
presented over another node) was considered suitable in most
cases, although sometimes the nodes were rearranged manually
based on cluster colours to present a clearer view. Once the
graph has been generated the clustering can be performed, and
an example of the graph after clustering is shown in Fig. 2. In
all  figures  with graphs  the nodes represent  students  and  the
edges the similarity between two student solutions. The thicker
the line the higher the similarity.

Fig. 1. Network display automatically generated by Gephi for the first case
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Fig. 2. Network  display  in  OpenOrb  with  Nooverlap  layout   and  after
performing the Chinese Whispers clustering algorithm for the first case

IV. DISCUSSION

In this section the results for each case are discussed. Since
each  case  is  different,  each  will  be  discussed  in  a  separate
subsection. A summary of the steps to get to visualization in
Gephi, and some suggestions on how to start looking at graphs,
are described in Section 5.

A. Case 1 - Dataset from graduate level university course

The first case described in the previous chapter was the first
that was analysed using Gephi and is from the academic year
2015/2016.  This  case  was  chosen  as  the  first  since  it  was
known that there must be at least one cluster as indicated by
Table 1. From the collaboration network presented in  Fig. 1
nothing  can  be  really  concluded,  but  just  by  choosing  a
different layout already it can be seen that some students are
separated. But one needs to be careful that this may not mean
anything. To further analyse the network, clustering algorithms
and  partitioning  algorithm  Community  Detection  (CD)  [16]
were performed.  Fig. 3 shows the graph based on the Chinese
Whispers  clustering  algorithm  [17].  Tested  algorithms
available in Gephi (v.0.8.2 beta) and their results with default
parameters on this first dataset were: 

 Markov  Cluster  Algorithm  MCL  (experimental)  –
resulted in 1 cluster with 48 nodes;

 Chinese Whispers (Fig. 3) – resulted in 2 clusters with
5 and 46 nodes;

 KM Clustering –  resulted in 1 cluster with all nodes;
 Markov Clustering – although multiple configurations

were tried,  the algorithm did not manage to deliver
results  even  after  10 minutes  of  waiting,  so  it  was
stopped manually;

 Girvan  Newman  Clustering  –  in  the  setup  of  this
algorithm  one  needs  to  select  how  many  clusters
should  be  generated.  In  this  case  there  was  the
possibility  to  choose  between  2,  3  or  51  clusters;
while 51 is the number of  nodes,  it  does  not make
sense to select that, so 2 and 3 clusters were tried out,
but the resulting clusters were not useful at all;

 Community detection algorithm (CD algorithm) – 4
clusters with 4, 7, 10 and 30 nodes.

The Chinese Whispers algorithm and Community Detection
algorithm  gave  the  most  interesting  results,  they  formed
clusters  with the  expected  students  (in  Gephi  different  node
colours  represent  the different  clusters).  After  experimenting
with  parameters  only  the  MCL  algorithm  was  also  able  to
partially form these expected clusters, all others failed to do

that.  So only the Chinese Whispers (plugin version 0.8, with
10 iterations, propagation type ‘top’ and minimum edge weight
set to zero is used) and CD algorithms (with resolution set to 1
and use weights checked) were chosen to be used, and when
referred to a clustering algorithm in the text, Chinese Whispers
is meant if not stated otherwise. 

Fig. 3  presents  only  the  interesting  part  of  the  network
displayed  in  Fig.  2  using  the  Chinese  Whispers  clustering
algorithm. To get a better insight, all edges with similarity less
than 10% were hidden using filters and the similarity numbers
(ranging from 0% to 100%) are displayed. 

Fig. 3. Graph part  with removed edges with less  than 10% similarity  and
with similarity displayed for the first case

From Fig. 3 it can be clearly seen that student 41 does not
really belong to this group as correctly indicated by the Chinese
Whispers clustering algorithm. Student 47 has a connection to
student 17, but by a side by side source-code comparison it was
clear that this student also does not belong to this group. The
other students 26, 17, 13, 14 and 22 were correctly identified as
a group and side by side comparison source-code confirmed it.
For  case  1  the  Chinese  Whispers  algorithm  gave  excellent
results  and  the  Community  Detection  algorithm  can  be
considered as very good. As already stated all other algorithms
failed to give any satisfactory results. 

Another thing that needs to be noticed is that this analysis
showed one more student solution which was not identified in a
traditional  report.  It  is  also  visible  from  Fig. 3  that  every
student  in  this  group  has  some similarity  around  20% with
every other student in the group. The side by side analysis of
the source-code also showed that this involved different parts
of code when looking at one student and comparing their code
to others’. Also it was interesting to see (in Fig. 3) that almost
all  students had similarity  greater  than 10%, which tells  the
teacher that all cases could have been identified if the similarity
cut off was 10% instead of 20%. But then again they would
also  get  many  other  pairs  which  would  lead  to  more  false
positives.   So when lowering the cut-off  is  not possible the
network analysis can help. 

B. Case 2 – Dataset from course in professional studies

In the second case the interesting thing was that there were
many  pairs  with  high  similarity.  The  dataset was  from  the
academic  year  2012/2013  and  in  this  academic  year  no
plagiarism detection tool was used, only manual inspection by
the teacher was performed. It was interesting to see how high
the similarity rates actually were. The initial graph was again
not useful as in case 1. After performing the Chinese Whispers
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clustering algorithm and the CD algorithm nothing interesting
was found. There was one big cluster and several with only one
node. 

The  Chinese  Whispers  clustering  algorithm  had  the
possibility to perform clustering only on the visible part of the
graph, but this was not possible with the CD algorithm, so only
the Chinese Whispers  clustering algorithm was used further.
This feature was the key to case 2. So instead of performing the
clustering and then filtering based on similarity as in the first
case, the filtering was performed first. Multiple versions were
tried out. The first version removed all similarities below 30%
and performed clustering on the new graph, and this filter is
presented in Fig. 4. 

Fig. 4. Network display after Chinese Whispers clustering with 30%-100%
similarity filter for case 2

In  Fig. 4 one pair (cluster 2) was extracted as a separate
cluster,  and  side  by  side  comparison  confirms  it  was  a
plagiarized pair but also there are two large clusters (cluster 1
and 3 which analysed  further.  Since the two bigger clusters
contained many nodes the first instinctive idea was to remove
everything with a high percentage similarity, so the percentage
was  incrementally  increased  to  65%.  This situation with  all
edges filtered below 65% and the clusters looked fine at first,
but by analysing the clusters it was found out that all the pairs
had already been found by reading the existing report produced
by the plagiarism detection system. So, the problem was that
the clusters contained a lot of high similarity (more than 65%)
which are clear plagiarized cases and were already found in the
traditional  way.  So  the  new  idea  was  to  remove  the  high
similarities instead of the lower ones.

Fig.  5  presents  the network leaving only the  edges  with
30%–47%  similarity.  Although  most  of  the  found  pairs
remained, some new nodes were added into the clusters. By
analysing  the source-code side by side for  the newly  added
nodes (in comparison to filtering out similarities above 65%) it
was found out that the larger cluster (cluster 1) contained six
new matches. In the smaller cluster (cluster 3) it was found out
that  it  contained one new  match.  Thus 7 more students  did
plagiarize  and were  not  found by  only  using  the  traditional
report. Although they were in the report there were too many
pairs with higher similarity so they were overlooked.

So this shows that visualization can help but it has to be
mentioned that it is not always easy and it takes time to “play”
with the  filtering. But it can be “rewarding” as it was in this
case.

Fig. 5. Network display after Chinese Whispers clustering with 30% - 47%
similarity filter for case 2

V. STEPS AND SUGGESTIONS FOR USING VISUALIZATION
TECHNIQUES

From the two cases presented it is clear that this technique
can be useful, but since it has to be performed manually, in this
section it is described how to use the technique with Gephi and
some suggestions as to what to look for.  Note, the following
suggestions are made based on previous experiences in using
Gephi  on  the  two presented  cases  (Section IV)  but  also  by
using this approach on other cases over the years. 

More detailed information on how to use Gephi is available
on the official website (https://gephi.org/) and [11]. To enable
visualization using Gephi it  is suggested using the following
steps.

1) Perform detection with a traditional plagiarism detection
tool like Sherlock, MOSS, JPlag or some other tool. 

2)  Extract  the  information  about  similarities  between
student pairs into a database or Excel. 

3)  Transform  the  data  into  Gephi  readable  format  by
creating two CSV files, one containing all nodes (representing
the  individual  students)  and  one  containing  all  edges
(similarities between student submissions). The names of the
fields are important so the nodes CSV must contain Label and
Id fields. Labels will be displayed on the graph and Ids are the
matches to the edges file.  The edges CSV must contain the
following  fields:  Source,  Target,  Type,  Weight,  and  Label.
Where the Source and Target are the Ids from the nodes CSV,
the weight represents the similarity. 

4)  Import  the  two  files  into  Gephi,  first  the  nodes  and
second the edges.

5)  Choose  and  run  the  desired  clustering  algorithm.  To
begin with suggestion is to use the Chinese Whispers clustering
algorithm as it was shown that it can give good results in the
described cases. 

6)  Analyse  the  graphs  and  use  the  filters  to  change  the
information displayed  on the  graphs.  Note  that  if  filters  are
applied  you  can  rerun  the  clustering  algorithm only  on  the
visible graph part.  The most useful  filter  is  the edge weight
filter, which is specified with two numbers, meaning remove
everything  below  the  first  number  and  remove  everything
above the second number. Edge weight in this case represents
the similarity between two student solutions. 
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Once the data are displayed and a clustering algorithm is
run, the question becomes what to look for.  To simplify the
manual analysis for the teachers, presenting two main graphs
were found to have the best cost/benefit ratios. Of course, it can
be the case that there is no additional plagiarism to be found, or
conversely  that  substantial  extra  manipulation  of  the
parameters and filters would be needed to find new plagiarism
cases.

A. Analysing the full graph

The first kind of graph – the whole graph – is the easiest to
get,  since  no  filtering  is  applied.  Using  filters  to  filter  out
desired similarity intervals can be helpful to reduce the noise
created  by “crossing  lines”,  but  since  each  cluster  is  colour
coded (images in the paper are manually transformed to black
and white) in Gephi it is easy to spot the clusters and it is not
always necessary to use the filters. For quick removal of noise
it is sufficient to filter the “uninteresting”' edges weighted less
that (say) 10%.

A  second  action  is  to  look  for  matches  (suspected
plagiarized  pairs)  already  known  to  exist,  to  see  if  the
clustering algorithm places the nodes of one pair in the same
cluster. If not, an analysis (side by side comparison) of those
nodes and the clusters containing the pairs will indicate why
there are differences. Also, this is an easy way of testing new
clustering  algorithms.  Sometimes  analysing  already  known
groups can suggest some new cases (as for example in case 1).
Just check if the suspicious groups of students have some new
students that have smaller similarities (maybe around 20%) but
may have connections to other students in the same group.

Looking  for  small  clusters  with  2  to  5  nodes  and
establishing why they were extracted as separate cluster is the
next stage in analysing a graph, and this is especially useful
with clusters of only 2 nodes, which should always be analysed
by pairwise comparison. Since the graph only gives numbers,
the teacher needs to scrutinise the detailed report of the tool
that was used to perform the detection in the first place. If there
are many small clusters, it  is useful to start looking at those
containing the highest similarities.

Clusters with 6 or more nodes may take too much time to
analyse pairwise,  unless the similarities between most of the
nodes in cluster are reasonably high (say, more than 20%, but
judgment  must  be applied).  Visualization here  is  a  big help
since Gephi uses line thickness to indicate the similarity value,
and hence clusters with more thick lines are likely to be of most
interest.

Big clusters are usually not of interest  since they contain
many  nodes  (students)  and  probably  deal  with  common
uninteresting similarities. Note that it is hard to specify what is
meant by a “big” cluster, and this will depend on the size of
dataset (class). For example, if there are 300 students in total
then a cluster of 10 may be seen as small, but in case of 50
students,  a  cluster  of  10  is  considered  big.  Also,  in  a  large
group of students a cluster containing only 2 students is more
suspicious than in a smaller group. We suggest that a rule of
thumb is that a cluster is small if it contains up to 5 students, or
in large classrooms 5% or fewer of  the students,  and that  a
cluster is big if it contains more than 20% of the students.

This  graph  will  probably  not  identify  many  new  cases,
since the highest similarities were already found by the tool’s
pairwise comparison which would have placed those highest
similarities at the top of its list.

B. Analysing the filtered graph

Running the clustering algorithm on the whole graph, then
filtering  out  the  highest  and  the  lowest  similarities  and
rerunning the clustering algorithm (as described above), will in
most  cases  exclude  the  highest  similarities  which  would
already have been identified had a table format been used, and
are  therefore  not  new  information.  Typically  these  are
similarities above 80%, but this figure is heavily dependent on
the dataset.

The lowest  similarities  (as  already  suggested  up to  10%
similarity) are probably too low to be considered plagiarism
and  represent  only  common  similarities.  The  interesting
similarities  are  those  in  the  middle  range  where  new
suggestions of plagiarised cases are most likely to be found.
This  is  the  biggest  benefit  of  the  proposed  collaboration
network analysis.

Once the new clusters are available every cluster that has
few nodes (say, 2-5) is suspicious. Big clusters usually suggest
that  similarities  are  there  because  of  the  template.  But  the
teacher  knows  best,  and  if  there  was  a  template  given  to
students to be used in the assignment then more than one big
cluster might be very interesting. It is important to note that
some  clustering  algorithms  create  one  cluster  which  will
contain all nodes that are not related and some will create many
clusters contain only one node – both are uninteresting.

One  could  say  that  visualization  is  not  necessary  for
identifying the clusters  – and this is  undoubtedly true – but
visualization gives the teacher a quick insight into the clusters
and their sizes, and enables them to speed up the process of
analysing  the  graphs.  We already  gave  one  example  in  the
previous subsection regarding the decision as to which clusters
to analyse. Another benefit is that one can quickly change the
high and low cutoff points, rerun the algorithm, and quickly see
changes in the clusters and if some new interesting cluster has
emerged.

It  is  not  possible  to  define  more  precise  instructions  (in
terms of  percentages)  since  every  case  and  every  dataset  is
different.  The  teacher  must  use  their  own  judgement  where
they think (based on the percentages) the missed cases might
hide.  Usually after  one year  of  using a plagiarism detection
tool, and dealing with plagiarism, the teacher gets a feeling for
where to look and the percentages for their own assignments,
and the same is true for pairwise comparisons. For the teachers
who are not used to plagiarism detection, a suggestion is to first
get familiar with one plagiarism detection tool and its report,
and only then follow the given instructions for  visualization
and  clustering,  and  always  remember  that  no  tool  can  find
plagiarism – a tool only finds similarities and suggests potential
plagiarism.

It  helps  to  know if  someone  has  plagiarised  before  and
which students are collaborating together in other courses or
projects, since students often have high similarities with their
friends  or  with the  students  that  they  work  closest  with (as
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shown  by  [12]),  and  such  patterns  of  behaviour  can  be
confirmed by your own data. Many students who were accused
of plagiarism were room-mates or had bought the project from
the same third party – but data protection rules mean that they
can not be asked about their social status. 

VI. FUTURE WORK

Since  network  representation  is  not  incorporated  into  all
plagiarism  detection  tools,  performing  the  analysis  is
potentially  time  consuming,  so  in  the  future  it  would  be
beneficial  to  incorporate  the  visualization  software  into
plagiarism  detection  tools.  There  are  some  exceptions  like
Sherlock which has network presentations, but it is not always
acceptable, as described for example in [11], and it does not
include  the  multiple  clustering  algorithms  and  possibilities
which  Gephi  provides.   Of  course,  Gephi  is  not  a  tool
specialized for plagiarism detection, so there is the problem of
trying  out  various  clustering  algorithms  and  experimenting
with their properties and other filters to get to best suitable ones
for each particular scenario, as it can be seen from the cases
presented.   In  the  future  a  tool  which  combines  Gephi  (or
similar  software)  with  traditional  plagiarism  detection  tools
should  be  developed  which  then  will  have  only  the
functionalities useful for plagiarism detection. 

At the current time, it is good to use standard procedures
(like side by side comparison) and incorporating collaboration
networks  analysis  as  an  additional  functionality,  since
collaboration network analysis created from similarity data can
help finding new cases of plagiarism (as it was argued in this
paper).  

For future work it would also be useful to do a side by side
comparison of a whole group based on the clusters. This would
ease the process of side by side manual analysis following the
visual analysis.

VII. CONCLUSION

The empirical results confirm that using visualization in the
form of a collaboration network combined with clustering can
improve  plagiarism  detection  and  help  find  new  cases  of
plagiarism, and this agrees with the results from related work.
But also, it has to be stated that collaboration networks will not
always give new results, especially if there is none to be found.

This  approach  is  particularly  effective  for  cases  where
similarity between two pairs is average (to low) and there is
substantial  total  similarity  distributed  amongst  a  group  of
students.  In  other  words,  collaboration  network  analysis  can
help identify groups of people who “cooperate” together. What
can also be seen from the cases presented is that there are no
specific  parameters  that  give  the  best  results.  Everything
depends  on  the  data  available,  but  by  trying  different
parameters  and  configurations  some  useful  results  can  be
obtained. Also, with practice the teacher will find out which
parameters work better for their datasets and it gets easier and
faster to obtain useful results. One algorithm has been found to
be very good and useful in all three cases, namely the Chinese
Whispers  clustering algorithm, and if one is  a  newcomer  to

visual analysis this algorithm is good to start with, even with
the default parameters

As  with  other  plagiarism  detection  methods  a  created
network  cannot  be  used  directly  to  accuse  somebody  of
plagiarism,  but  rather  to  indicate  that  plagiarism  might  be
taking  place  and  that  there  is  evidence  of  similarities.  The
teacher still needs to check the indicated pairs manually. For
future  work it  would be useful  to  do a further  side by side
comparison of a whole group based on the clusters, to confirm
the results reported here.
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