
Improved plagiarism detection with collaboration
network visualization based on source-code similarity

Matija Novak
Faculty of Organization and

Informatics
University of Zagreb

Varaždin, Croatia
matnovak@foi.hr

Mike S. Joy
Department of Computer

Science
University of Warwick

Coventry, United Kingdom
 M.S.Joy@warwick.ac.uk

Olfat M. Mirza
College of Computer and

Information Systems
Umm Al-Qura University

Makkah, Saudi Arabia
ommirza@uqu.edu.sa

Abstract—Plagiarism detection is a serious problem in higher
education. Teachers use similarity (plagiarism) detection systems,
which highlight similarities between student documents, to help
them find plagiarism. Most systems are built for text but there are
special systems to find similarities between source-code files. In
most cases the results are presented in table form showing
similarities between pairs of documents in descending order by
similarity, and then a teacher is responsible for confirming which
similar documents represent cases of plagiarism. While most
systems present their results in the form of tables, only few of them
present the results as a graph. Some studies indicate that using
clustering algorithms to represent such data graphically can
improve the speed and accuracy of finding potential instances of
plagiarism in large collections of source-code files. The purpose of
the study is to answer the following research questions. Can
visualization of student solutions (of source-code similarities) in
collaboration networks form help identify new cases of plagiarism?
What are the steps to do so? The study was designed in a form of
two case studies where one was performed on a graduate level
university course and one on a course in professional studies. The
article presents empirical results describing two cases where a
collaboration network (based on source-code similarity)
representation has been used. The article argues that the graphical
presentation is able to identify new clusters of plagiarised source-
code files that would have been missed using existing tabular
presentation of data.

Keywords—Plagiarism; Visualization; High Education;
Source-code; Collaboration Networks

I. INTRODUCTION

Automatic source-code plagiarism detection enables
teachers to easily find plagiarised cases in student
programming assignments. Various plagiarism detection
engines (further referred as tools) exist which can be used for
that purpose. There is no perfect tool, so reviews and
comparisons of the systems are performed constantly [1, 2],
which provide information to make a decision on which tool to
use.

Although different, all tools in some way “calculate”
similarity between two student solutions and give some kind of
a report, which usually indicates potentially plagiarized pairs of
solutions. The teacher then needs to check these pairs and
decide if some specific cases are really plagiarized or not. The
report itself comes in various forms, it can be just a simple
listing, table or a graph, or – as Mišić, Siustran, and Protić
observe – “Although tools usually present the results as a list

of student pairs, it is more natural to interpret those results as a
collaboration network.” [3]

According to [4]: “A collaborative network (CN) is
constituted by a variety of entities (e.g., organizations and
people) that are largely autonomous, geographically
distributed, and heterogeneous in terms of their: operating
environment, culture, social capital, and goals.” In this paper
the collaboration network is a network of students and the
similarities between their solutions for an assignment. The
proposed approach involves searching for groups of students
collaborating together using clustering algorithms, and
visualising the data as a graph. Close collaboration is
manifested as a separate group of nodes in the graph (which is
refer to as a “cluster”) and suggests possible plagiarism
between the students in that group. In a network which has no
plagiarism only one cluster should be present which includes
all students.

In this research a case study is performed to show the usage
of collaboration networks when detecting source-code
plagiarism in student programming assignments. The rest of the
paper is structured as follows. Section 2 describes the related
work. Section 3 explains the implementation which forms the
basis of the study, and in Section 4 the two cases are discussed.
Section 5 describes the steps for performing visualization and
gives suggestions on how to start to analyse the graphs. Section
6 suggests ideas for future work and Section 7 concludes.

II. RELATED WORK

Plagiarism detection systems had already been built in the
70’s and 80’s and research papers on the subject focused on the
detection of plagiarism rather than the representations of
results. Early plagiarism detection systems used only simple
text or table reports to present data. Systems like JPlag [5] used
improved versions of data presentation with two levels of
report. First they gave an overall report and then there was a
detailed report. The detailed report usually showed side by side
comparison on selected pairs indicating which lines of code
were similar.

Later on, systems incorporated graphical displays of results
in a form of a simple bar charts, such as those by Gitchell and
Tran [6]: “The bars are coloured red, yellow, and green in
decreasing similarity to the reference program according to
thresholds specified by the user”. This way it is much easier to
see at first glance to which degree the pairs may be plagiarised.
More advanced graphs like those used by [7] show similarities

2021 IEEE Technology & Engineering Management Conference - Europe (TEMSCON-EUR)

978-1-6654-4091-2/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 T
ec

hn
ol

og
y

&
 E

ng
in

ee
rin

g
M

an
ag

em
en

t C
on

fe
re

nc
e

- E
ur

op
e

(T
EM

SC
O

N
-E

U
R

) |
 9

78
-1

-6
65

4-
40

91
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

TE
M

SC
O

N
-E

U
R

52
03

4.
20

21
.9

48
86

44

Authorized licensed use limited to: University of Warwick. Downloaded on August 22,2021 at 02:39:06 UTC from IEEE Xplore. Restrictions apply.

between pairs in the whole corpus of submissions. Using
visualization today is normal, for example Makuc [8] uses

Force-Directed Graphs and Co-Occurrence matrices to
visualize similarities.

As already stated the focus in this research is on using
collaboration networks for visualization. Visualization methods
operating on all submissions are used for example in the tool
Sherlock [7] or by Mišić, Siustran and Protić [3, 9].

Mišić, Siustran and Protić [3] used the results from one
course in the academic year 2012/2013, obtained with the
MOSS [10] tool, and illustrated collaboration networks using a
tool called Gephi [11]. They state that by using graphs and
clustering they found three groups of students each containing
more than two students whose programs had a high degree of
similarity. By manual analysis they confirmed these
represented real cases of code sharing and ghost writing.

Research as performed in [12] first created social networks
of students’ desired partners (team members) for projects, and
then performed plagiarism detection on their assignments.
Some assignments were done at home, some were done in
class. They found out that assignments done at home correlated
better with the students' preferred workmates for projects. That
tells the teacher that they can tell something about the
relationship based on the similarity between pairs. Or, by
looking the other way around, it may be an indication that
students tend to collude more with their friends than with
classmates that they do not know, which gives another good
reason for using network analysis to improve plagiarism
detection.

Another related area comprises tools which use clustering
techniques like Pdetect [13] or the fuzzy-based source-code
plagiarism detection system described in [14]. In those systems
clustering is used as a way to help improve plagiarism
detection. Such tools, instead of just using string comparison
and making a decision based on the similarities between two
documents, create clusters based on the similarities. It is
expected that plagiarised cases should belong to the same
cluster. These projects report that clustering seems to have a
positive impact on improving plagiarism detection, and that it
can be combined with other tools.

In this paper an approach is suggested which uses only free
available tools, that can be used by teachers offline, that can
run different clustering algorithms and at the same time
visualize the data as a graph (a collaboration network). The
approach is also important since it offers the possibility to filter
out edges to get different clusters, and hence support
visualization of the results which potentially allows new
potential plagiarism cases to be identified quickly.

III. CASE STUDY PRESENTATION

The case study was performed on a graduate level
university course (case 1) and on a course in professional
studies (case 2). The student assignments were written in the
programming language Java in case 1, and in case 2 the
programming language PHP with HTML and CSS was used.
Students submitted their solutions to the online e-learning
system Moodle and the detection was performed using
Sherlock to do the similarity calculation. The detection process

and report that were used are the same as used by [15]. The
data were stored in a simple MySQL database.

The Sherlock system has been used for few years and has
helped to detect plagiarised cases, but for some cases this is
still not enough.

In this paper are described the two most interesting cases
that were found using visualization in a form of a collaboration
network. In each case, after the generation of the report, data
were analysed manually for pairs with more than 20%
similarity (this was decided by the teachers as a logical cut-off
threshold). For example, the results for the first case are
presented in Table 1 and show two pairs with high similarity
and two with similarity around 20%. The top two pairs were
clear cases of plagiarism. The other two, by looking at a side by
side comparison, were not so clear. But, since student 17 was
in three pairs, student 14 and student 22 in two pairs, further
analysis was performed. The analysis showed that different
parts of the students’ submissions were copied and therefore all
pairs were considered plagiarised.

TABLE I. TRADITIONAL RESULTS – CASE 1

Student ID 1 Student ID 2 Similarity (0%-100%)

17 14 45%
14 22 32%
17 22 25%
17 13 24%

Now the idea is to put the gathered data into the Gephi tool
to visualize the results in graph form, or more precisely in this
case it is a collaboration network (which is henceforth referred
to as a network) on which some clustering algorithms were
performed. This is the same principle as described by Mišić,
Siustran and Protić [3, 9]. The terms graph and network in the
rest of the paper are used synonymously.

Once the data were extracted from the database into CSV
format, the nodes and edges were imported using the import
function in Gephi, which automatically draws a graph (Fig. 1)
for the data. After experiment the layout OpenOrb (a way to
rearrange the nodes) with Nooverlap (to ensure that no node is
presented over another node) was considered suitable in most
cases, although sometimes the nodes were rearranged manually
based on cluster colours to present a clearer view. Once the
graph has been generated the clustering can be performed, and
an example of the graph after clustering is shown in Fig. 2. In
all figures with graphs the nodes represent students and the
edges the similarity between two student solutions. The thicker
the line the higher the similarity.

Fig. 1. Network display automatically generated by Gephi for the first case

2021 IEEE Technology & Engineering Management Conference - Europe (TEMSCON-EUR)

Authorized licensed use limited to: University of Warwick. Downloaded on August 22,2021 at 02:39:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Network display in OpenOrb with Nooverlap layout and after
performing the Chinese Whispers clustering algorithm for the first case

IV. DISCUSSION

In this section the results for each case are discussed. Since
each case is different, each will be discussed in a separate
subsection. A summary of the steps to get to visualization in
Gephi, and some suggestions on how to start looking at graphs,
are described in Section 5.

A. Case 1 - Dataset from graduate level university course

The first case described in the previous chapter was the first
that was analysed using Gephi and is from the academic year
2015/2016. This case was chosen as the first since it was
known that there must be at least one cluster as indicated by
Table 1. From the collaboration network presented in Fig. 1
nothing can be really concluded, but just by choosing a
different layout already it can be seen that some students are
separated. But one needs to be careful that this may not mean
anything. To further analyse the network, clustering algorithms
and partitioning algorithm Community Detection (CD) [16]
were performed. Fig. 3 shows the graph based on the Chinese
Whispers clustering algorithm [17]. Tested algorithms
available in Gephi (v.0.8.2 beta) and their results with default
parameters on this first dataset were:

 Markov Cluster Algorithm MCL (experimental) –
resulted in 1 cluster with 48 nodes;

 Chinese Whispers (Fig. 3) – resulted in 2 clusters with
5 and 46 nodes;

 KM Clustering – resulted in 1 cluster with all nodes;
 Markov Clustering – although multiple configurations

were tried, the algorithm did not manage to deliver
results even after 10 minutes of waiting, so it was
stopped manually;

 Girvan Newman Clustering – in the setup of this
algorithm one needs to select how many clusters
should be generated. In this case there was the
possibility to choose between 2, 3 or 51 clusters;
while 51 is the number of nodes, it does not make
sense to select that, so 2 and 3 clusters were tried out,
but the resulting clusters were not useful at all;

 Community detection algorithm (CD algorithm) – 4
clusters with 4, 7, 10 and 30 nodes.

The Chinese Whispers algorithm and Community Detection
algorithm gave the most interesting results, they formed
clusters with the expected students (in Gephi different node
colours represent the different clusters). After experimenting
with parameters only the MCL algorithm was also able to
partially form these expected clusters, all others failed to do

that. So only the Chinese Whispers (plugin version 0.8, with
10 iterations, propagation type ‘top’ and minimum edge weight
set to zero is used) and CD algorithms (with resolution set to 1
and use weights checked) were chosen to be used, and when
referred to a clustering algorithm in the text, Chinese Whispers
is meant if not stated otherwise.

Fig. 3 presents only the interesting part of the network
displayed in Fig. 2 using the Chinese Whispers clustering
algorithm. To get a better insight, all edges with similarity less
than 10% were hidden using filters and the similarity numbers
(ranging from 0% to 100%) are displayed.

Fig. 3. Graph part with removed edges with less than 10% similarity and
with similarity displayed for the first case

From Fig. 3 it can be clearly seen that student 41 does not
really belong to this group as correctly indicated by the Chinese
Whispers clustering algorithm. Student 47 has a connection to
student 17, but by a side by side source-code comparison it was
clear that this student also does not belong to this group. The
other students 26, 17, 13, 14 and 22 were correctly identified as
a group and side by side comparison source-code confirmed it.
For case 1 the Chinese Whispers algorithm gave excellent
results and the Community Detection algorithm can be
considered as very good. As already stated all other algorithms
failed to give any satisfactory results.

Another thing that needs to be noticed is that this analysis
showed one more student solution which was not identified in a
traditional report. It is also visible from Fig. 3 that every
student in this group has some similarity around 20% with
every other student in the group. The side by side analysis of
the source-code also showed that this involved different parts
of code when looking at one student and comparing their code
to others’. Also it was interesting to see (in Fig. 3) that almost
all students had similarity greater than 10%, which tells the
teacher that all cases could have been identified if the similarity
cut off was 10% instead of 20%. But then again they would
also get many other pairs which would lead to more false
positives. So when lowering the cut-off is not possible the
network analysis can help.

B. Case 2 – Dataset from course in professional studies

In the second case the interesting thing was that there were
many pairs with high similarity. The dataset was from the
academic year 2012/2013 and in this academic year no
plagiarism detection tool was used, only manual inspection by
the teacher was performed. It was interesting to see how high
the similarity rates actually were. The initial graph was again
not useful as in case 1. After performing the Chinese Whispers

2021 IEEE Technology & Engineering Management Conference - Europe (TEMSCON-EUR)

Authorized licensed use limited to: University of Warwick. Downloaded on August 22,2021 at 02:39:06 UTC from IEEE Xplore. Restrictions apply.

clustering algorithm and the CD algorithm nothing interesting
was found. There was one big cluster and several with only one
node.

The Chinese Whispers clustering algorithm had the
possibility to perform clustering only on the visible part of the
graph, but this was not possible with the CD algorithm, so only
the Chinese Whispers clustering algorithm was used further.
This feature was the key to case 2. So instead of performing the
clustering and then filtering based on similarity as in the first
case, the filtering was performed first. Multiple versions were
tried out. The first version removed all similarities below 30%
and performed clustering on the new graph, and this filter is
presented in Fig. 4.

Fig. 4. Network display after Chinese Whispers clustering with 30%-100%
similarity filter for case 2

In Fig. 4 one pair (cluster 2) was extracted as a separate
cluster, and side by side comparison confirms it was a
plagiarized pair but also there are two large clusters (cluster 1
and 3 which analysed further. Since the two bigger clusters
contained many nodes the first instinctive idea was to remove
everything with a high percentage similarity, so the percentage
was incrementally increased to 65%. This situation with all
edges filtered below 65% and the clusters looked fine at first,
but by analysing the clusters it was found out that all the pairs
had already been found by reading the existing report produced
by the plagiarism detection system. So, the problem was that
the clusters contained a lot of high similarity (more than 65%)
which are clear plagiarized cases and were already found in the
traditional way. So the new idea was to remove the high
similarities instead of the lower ones.

Fig. 5 presents the network leaving only the edges with
30%–47% similarity. Although most of the found pairs
remained, some new nodes were added into the clusters. By
analysing the source-code side by side for the newly added
nodes (in comparison to filtering out similarities above 65%) it
was found out that the larger cluster (cluster 1) contained six
new matches. In the smaller cluster (cluster 3) it was found out
that it contained one new match. Thus 7 more students did
plagiarize and were not found by only using the traditional
report. Although they were in the report there were too many
pairs with higher similarity so they were overlooked.

So this shows that visualization can help but it has to be
mentioned that it is not always easy and it takes time to “play”
with the filtering. But it can be “rewarding” as it was in this
case.

Fig. 5. Network display after Chinese Whispers clustering with 30% - 47%
similarity filter for case 2

V. STEPS AND SUGGESTIONS FOR USING VISUALIZATION
TECHNIQUES

From the two cases presented it is clear that this technique
can be useful, but since it has to be performed manually, in this
section it is described how to use the technique with Gephi and
some suggestions as to what to look for. Note, the following
suggestions are made based on previous experiences in using
Gephi on the two presented cases (Section IV) but also by
using this approach on other cases over the years.

More detailed information on how to use Gephi is available
on the official website (https://gephi.org/) and [11]. To enable
visualization using Gephi it is suggested using the following
steps.

1) Perform detection with a traditional plagiarism detection
tool like Sherlock, MOSS, JPlag or some other tool.

2) Extract the information about similarities between
student pairs into a database or Excel.

3) Transform the data into Gephi readable format by
creating two CSV files, one containing all nodes (representing
the individual students) and one containing all edges
(similarities between student submissions). The names of the
fields are important so the nodes CSV must contain Label and
Id fields. Labels will be displayed on the graph and Ids are the
matches to the edges file. The edges CSV must contain the
following fields: Source, Target, Type, Weight, and Label.
Where the Source and Target are the Ids from the nodes CSV,
the weight represents the similarity.

4) Import the two files into Gephi, first the nodes and
second the edges.

5) Choose and run the desired clustering algorithm. To
begin with suggestion is to use the Chinese Whispers clustering
algorithm as it was shown that it can give good results in the
described cases.

6) Analyse the graphs and use the filters to change the
information displayed on the graphs. Note that if filters are
applied you can rerun the clustering algorithm only on the
visible graph part. The most useful filter is the edge weight
filter, which is specified with two numbers, meaning remove
everything below the first number and remove everything
above the second number. Edge weight in this case represents
the similarity between two student solutions.

2021 IEEE Technology & Engineering Management Conference - Europe (TEMSCON-EUR)

Authorized licensed use limited to: University of Warwick. Downloaded on August 22,2021 at 02:39:06 UTC from IEEE Xplore. Restrictions apply.

Once the data are displayed and a clustering algorithm is
run, the question becomes what to look for. To simplify the
manual analysis for the teachers, presenting two main graphs
were found to have the best cost/benefit ratios. Of course, it can
be the case that there is no additional plagiarism to be found, or
conversely that substantial extra manipulation of the
parameters and filters would be needed to find new plagiarism
cases.

A. Analysing the full graph

The first kind of graph – the whole graph – is the easiest to
get, since no filtering is applied. Using filters to filter out
desired similarity intervals can be helpful to reduce the noise
created by “crossing lines”, but since each cluster is colour
coded (images in the paper are manually transformed to black
and white) in Gephi it is easy to spot the clusters and it is not
always necessary to use the filters. For quick removal of noise
it is sufficient to filter the “uninteresting”' edges weighted less
that (say) 10%.

A second action is to look for matches (suspected
plagiarized pairs) already known to exist, to see if the
clustering algorithm places the nodes of one pair in the same
cluster. If not, an analysis (side by side comparison) of those
nodes and the clusters containing the pairs will indicate why
there are differences. Also, this is an easy way of testing new
clustering algorithms. Sometimes analysing already known
groups can suggest some new cases (as for example in case 1).
Just check if the suspicious groups of students have some new
students that have smaller similarities (maybe around 20%) but
may have connections to other students in the same group.

Looking for small clusters with 2 to 5 nodes and
establishing why they were extracted as separate cluster is the
next stage in analysing a graph, and this is especially useful
with clusters of only 2 nodes, which should always be analysed
by pairwise comparison. Since the graph only gives numbers,
the teacher needs to scrutinise the detailed report of the tool
that was used to perform the detection in the first place. If there
are many small clusters, it is useful to start looking at those
containing the highest similarities.

Clusters with 6 or more nodes may take too much time to
analyse pairwise, unless the similarities between most of the
nodes in cluster are reasonably high (say, more than 20%, but
judgment must be applied). Visualization here is a big help
since Gephi uses line thickness to indicate the similarity value,
and hence clusters with more thick lines are likely to be of most
interest.

Big clusters are usually not of interest since they contain
many nodes (students) and probably deal with common
uninteresting similarities. Note that it is hard to specify what is
meant by a “big” cluster, and this will depend on the size of
dataset (class). For example, if there are 300 students in total
then a cluster of 10 may be seen as small, but in case of 50
students, a cluster of 10 is considered big. Also, in a large
group of students a cluster containing only 2 students is more
suspicious than in a smaller group. We suggest that a rule of
thumb is that a cluster is small if it contains up to 5 students, or
in large classrooms 5% or fewer of the students, and that a
cluster is big if it contains more than 20% of the students.

This graph will probably not identify many new cases,
since the highest similarities were already found by the tool’s
pairwise comparison which would have placed those highest
similarities at the top of its list.

B. Analysing the filtered graph

Running the clustering algorithm on the whole graph, then
filtering out the highest and the lowest similarities and
rerunning the clustering algorithm (as described above), will in
most cases exclude the highest similarities which would
already have been identified had a table format been used, and
are therefore not new information. Typically these are
similarities above 80%, but this figure is heavily dependent on
the dataset.

The lowest similarities (as already suggested up to 10%
similarity) are probably too low to be considered plagiarism
and represent only common similarities. The interesting
similarities are those in the middle range where new
suggestions of plagiarised cases are most likely to be found.
This is the biggest benefit of the proposed collaboration
network analysis.

Once the new clusters are available every cluster that has
few nodes (say, 2-5) is suspicious. Big clusters usually suggest
that similarities are there because of the template. But the
teacher knows best, and if there was a template given to
students to be used in the assignment then more than one big
cluster might be very interesting. It is important to note that
some clustering algorithms create one cluster which will
contain all nodes that are not related and some will create many
clusters contain only one node – both are uninteresting.

One could say that visualization is not necessary for
identifying the clusters – and this is undoubtedly true – but
visualization gives the teacher a quick insight into the clusters
and their sizes, and enables them to speed up the process of
analysing the graphs. We already gave one example in the
previous subsection regarding the decision as to which clusters
to analyse. Another benefit is that one can quickly change the
high and low cutoff points, rerun the algorithm, and quickly see
changes in the clusters and if some new interesting cluster has
emerged.

It is not possible to define more precise instructions (in
terms of percentages) since every case and every dataset is
different. The teacher must use their own judgement where
they think (based on the percentages) the missed cases might
hide. Usually after one year of using a plagiarism detection
tool, and dealing with plagiarism, the teacher gets a feeling for
where to look and the percentages for their own assignments,
and the same is true for pairwise comparisons. For the teachers
who are not used to plagiarism detection, a suggestion is to first
get familiar with one plagiarism detection tool and its report,
and only then follow the given instructions for visualization
and clustering, and always remember that no tool can find
plagiarism – a tool only finds similarities and suggests potential
plagiarism.

It helps to know if someone has plagiarised before and
which students are collaborating together in other courses or
projects, since students often have high similarities with their
friends or with the students that they work closest with (as

2021 IEEE Technology & Engineering Management Conference - Europe (TEMSCON-EUR)

Authorized licensed use limited to: University of Warwick. Downloaded on August 22,2021 at 02:39:06 UTC from IEEE Xplore. Restrictions apply.

shown by [12]), and such patterns of behaviour can be
confirmed by your own data. Many students who were accused
of plagiarism were room-mates or had bought the project from
the same third party – but data protection rules mean that they
can not be asked about their social status.

VI. FUTURE WORK

Since network representation is not incorporated into all
plagiarism detection tools, performing the analysis is
potentially time consuming, so in the future it would be
beneficial to incorporate the visualization software into
plagiarism detection tools. There are some exceptions like
Sherlock which has network presentations, but it is not always
acceptable, as described for example in [11], and it does not
include the multiple clustering algorithms and possibilities
which Gephi provides. Of course, Gephi is not a tool
specialized for plagiarism detection, so there is the problem of
trying out various clustering algorithms and experimenting
with their properties and other filters to get to best suitable ones
for each particular scenario, as it can be seen from the cases
presented. In the future a tool which combines Gephi (or
similar software) with traditional plagiarism detection tools
should be developed which then will have only the
functionalities useful for plagiarism detection.

At the current time, it is good to use standard procedures
(like side by side comparison) and incorporating collaboration
networks analysis as an additional functionality, since
collaboration network analysis created from similarity data can
help finding new cases of plagiarism (as it was argued in this
paper).

For future work it would also be useful to do a side by side
comparison of a whole group based on the clusters. This would
ease the process of side by side manual analysis following the
visual analysis.

VII. CONCLUSION

The empirical results confirm that using visualization in the
form of a collaboration network combined with clustering can
improve plagiarism detection and help find new cases of
plagiarism, and this agrees with the results from related work.
But also, it has to be stated that collaboration networks will not
always give new results, especially if there is none to be found.

This approach is particularly effective for cases where
similarity between two pairs is average (to low) and there is
substantial total similarity distributed amongst a group of
students. In other words, collaboration network analysis can
help identify groups of people who “cooperate” together. What
can also be seen from the cases presented is that there are no
specific parameters that give the best results. Everything
depends on the data available, but by trying different
parameters and configurations some useful results can be
obtained. Also, with practice the teacher will find out which
parameters work better for their datasets and it gets easier and
faster to obtain useful results. One algorithm has been found to
be very good and useful in all three cases, namely the Chinese
Whispers clustering algorithm, and if one is a newcomer to

visual analysis this algorithm is good to start with, even with
the default parameters

As with other plagiarism detection methods a created
network cannot be used directly to accuse somebody of
plagiarism, but rather to indicate that plagiarism might be
taking place and that there is evidence of similarities. The
teacher still needs to check the indicated pairs manually. For
future work it would be useful to do a further side by side
comparison of a whole group based on the clusters, to confirm
the results reported here.

REFERENCES

[1] Verco KL, Wise MJ (1996) Plagiarism à la mode: A comparison of
automated systems for detecting suspected plagiarism. Comput J
39:749–750

[2] Novak M, Joy M, Kermek D (2019) Source-code similarity detection
and detection tools used in academia: a systematic review. ACM Trans
Comput Educ 19:1–37 . https://doi.org/10.1145/3313290

[3] Mišić M, Siustran Z, Protić J (2016) A comparison of software tools for
plagiarism detection in programming assignments. Int J Eng Educ
32:738–748

[4] Camarinha-Matos LM, Afsarmanesh H (2005) Collaborative networks: a
new scientific discipline. J Intell Manuf 16:439–452

[5] Prechelt L, Malpohl G, Philippsen M (2002) Finding plagiarisms among
a set of programs with JPlag. J Univers Comput Sci 8:1016–1038 .
https://doi.org/10.3217/jucs-008-11-1016

[6] Gitchell D, Tran N (1999) Sim: A utility for detecting similarity in
computer programs. In: The proceedings of the thirtieth SIGCSE
technical symposium on Computer science education. ACM Press, New
York, New York, USA, pp 266–270

[7] Joy M, Luck M (1999) Plagiarism in programming assignments. IEEE
Trans Educ 42:129–133 . https://doi.org/10.1109/13.762946

[8] Makuc Ž (2013) Methods to Assist Plagiarism Detection. University of
Ljubljana

[9] Mišić MJ, Protić J, Tomašević M V. (2018) Improving source code
plagiarism detection: Lessons learned. In: 25th Telecommunication
Forum. IEEE, Belgrade, Serbia, pp 1–8

[10] Schleimer S, Wilkerson DS, Aiken A (2003) Winnowing: local
algorithms for document fingerprinting. In: Proceedings of the 2003
ACM SIGMOD international conference on on Management of data.
ACM Press, New York, New York, USA, pp 76–85

[11] Bastian M, Heymann S, Jacomy M, others (2009) Gephi: an open source
software for exploring and manipulating networks. ICWSM 8:361–362

[12] Luquini E, Omar N (2011) Programming plagiarism as a social
phenomenon. In: IEEE Global Engineering Education Conference.
IEEE, São Paulo, Brazil, pp 895–902

[13] Moussiades L, Vakali A (2005) PDetect: A Clustering Approach for
Detecting Plagiarism in Source Code Datasets. Comput J 48:651–661 .
https://doi.org/10.1093/comjnl/bxh119

[14] Acampora G, Cosma G (2015) A Fuzzy-based approach to programming
language independent source-code plagiarism detection. In: IEEE
International Conference on Fuzzy Systems. IEEE, Istanbul, Turkey, pp
1–8

[15] Kermek D, Novak M (2016) Process Model Improvement for Source
Code Plagiarism Detection in Student Programming Assignments.
Informatics Educ 15:103–126 . https://doi.org/10.15388/infedu.2016.06

[16] Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast
unfolding of communities in large networks. J Stat Mech Theory Exp
2008:P10008 . https://doi.org/10.1088/1742-5468/2008/10/P10008

[17] Biemann C (2006) Chinese whispers: an efficient graph clustering
algorithm and its application to natural language processing problems.
In: Proceedings of TextGraphs: the First Workshop on Graph Based
Methods for Natural Language Processing on the First Workshop on
Graph Based Methods for Natural Language Processing. Association for
Computational Linguistics, Morristown, NJ, USA, pp 73–80

2021 IEEE Technology & Engineering Management Conference - Europe (TEMSCON-EUR)

Authorized licensed use limited to: University of Warwick. Downloaded on August 22,2021 at 02:39:06 UTC from IEEE Xplore. Restrictions apply.

