
To What Extent Mathematics Correlates With

Programming: Statistical Analysis

Ayman Qahmash

The Department of Computer Science

University of Warwick

Coventry, UK

A.qahmash@warwick.ac.uk

Mike Joy

The Department of Computer Science

University of Warwick

Coventry, UK

M.S.Joy@warwick.ac.uk

Adam Boddison

Center for Profeesional Education

University of Warwick

Coventry, UK

A.boddison@warwick.ac.uk

Abstract— Generally, mathematical abilities have a certain

degree of importance in computer science education and a

correlation between mathematics and programming, derived

from small samples, had been suggested. However, our study

investigates whether the correlation is statistically significant or

not by analysing a large data set spanning nineteen years for two

programming modules and two mathematics modules with

syllabi which had undergone minimal changes. In this paper, a

statistical analysis based on students’ performance has been used

to determine the relationship between mathematics and

programming in general and between two specific mathematics

modules and two programming modules. Compared with small

sample analyses derived from previous research, the large sample

of 2,161 students’ grades in the present study indicates a positive

moderate correlation that is statistically significant. The results

also suggest that discrete mathematics correlates with

introductory programming more than calculus whereas data

structures could relate positively to student performance in

calculus more than discrete mathematics.

Keywords-component; Programming; Mathematics; Statistics

I. INTRODUCTION

Recently, the number of computer programming vacancies
has been increasing around the globe. In the U.S., there will be
an increasing demand for computing skills. Similarly, the U.K.
has placed more emphasis on computing at schools by
replacing the Information and Communication Technology
module with a computing curriculum in which students will be
able to develop and acquire computational thinking abilities
[13].

The role of mathematics in learning programming is still a
debated issue among computer science educators. Students’
mathematical ability might be considered to be an indicator of
programming aptitude, as mathematics provides a variety of
skills, such as reasoning and problem solving, that are required
during computational thinking. Mathematics has been used as a
significant factor when predicting student success in
programming [6, 13] as well as designing programming
aptitude tests based on mathematical ability. However, it has
been claimed that most mathematics concepts have not been
used effectively in most programming modules, and that the

important relations between mathematical concepts and
computer science fundamentals have not been made apparent
to students [5]. For instance, it is essential that students must
acquire basic algebra and logic to help them to learn
programming fundamentals, whereas it might be confusing for
students to understand the role of calculus in an introductory
programming course.

However, introducing discrete mathematics basics may
help first year computer science students to grasp the basics of
programming and could be a much more valuable foundation
for the third and fourth years of instruction, when advanced
computing courses are introduced. A study conducted by Pioro
[7] suggests a positive correlation between students' grades in a
computer programming course and the averages of two grades
obtained in Discrete Mathematics I and Calculus I. However, if
the mathematics modules were instead Calculus I and Calculus
II, the correlation between the mathematics grades and the
programming grades was insignificant.

When such a question as “What is the correlation between
mathematics and programming?” has been raised, the
following concerns should also be addressed: “What types of
mathematics are we referring to?” “How do we define
programming, and which programming paradigms are we
refer- ring to?” “In which context, whether it is a professional
or an educational context, do we do programming?”

In this paper, the aim is to focus on the correlation be-tween
first year student performance in computer programming
modules and in mathematics modules. In addition, the purpose
of the study is to determine whether different types of
mathematics may relate to certain programming paradigms.
Driven by a large sample of 2,161 students, two programming
modules, and two mathematics modules, this study aims to
provide statistical analyses to determine the relationship
between mathematics and programming.

II. RELATED WORKS

While studying mathematics and its role in learning

programming has been an interesting research area in

mailto:A.qahmash@warwick.ac.uk
mailto:M.S.Joy@warwick.ac.uk
mailto:A.boddison@warwick.ac.uk

computer science education, research has focused on how

mathematics ability could affect student performance in

programming [7, 14, 3]. Mathematical abilities, such as

problem solving, reasoning and abstraction, have been vital

predictor variables to determine student success in

programming [11, 12, 8] and to be important factors for

designing programming aptitude tests.

Several studies have focused on finding the relationship

between students' mathematics background and their

programming aptitude. A study conducted by Pacheco [6]

aimed to verify an assumption that a lack of problem solving

ability could lead to difficulties in learning programming. The

study focused on two cohorts of freshmen studying in two

different institutions. Both groups' grades were analysed to

identify the correlation with different learner characteristics

such as programming background, problem solving ability,

motivation, and learning styles. The results shown in Table 1

indicated a positive correlation between programming and

calculus ability, as well as a relationship between students'

mathematics grades in secondary education and students'

performance in programming.

Another study, which predicts a variety of success factors in

programming, concluded that mathematics grades from high

school positively correlated with programming exam grades

[1]. An additional study applied the SAT standardised test in

mathematics as a predictor variable to measure student

performance in programming, finding the correlation to be

positive [4]. Similarly, a mathematics background plays a

positive role on programming performance [2]. However,

research aimed to apply a programming aptitude test and other

factors, including mathematics grades, from high school to

predict students outcomes in programming [12] concluded

with controversial findings indicating a statistically

insignificant negative correlation as shown in Table 1.

Issues that may be of concern include sampling methodology

and sample size. For instance, in [6], the two cohorts of the

sample are from different institutions, so that multiple

educational factors could affect their results. Thus, quality of

teaching and curriculum could be reflected positively or

negatively on students' performance. Second, a small sample

size could affect the statistical significance of the correlation.

III. RESEARCH DESIGN

While the work of [6] was based on determining whether

students' previous mathematics background grades could

relate to students' performance in programming, our study

aims to find the correlation between mathematics and

programming measured in the first year, providing an in-depth

analysis of the variety of mathematics modules that can affect

students programming abilities by performing a statistical

analysis.

A. Research Questions

RQ 1: What is the correlation between mathematical ability

and programming in general?

RQ 2: What is the correlation between discrete mathematics

and an introductory programming module?

RQ 3: What is the correlation between discrete mathematics

and a data structure and algorithms module?

RQ 4: What is the correlation between calculus and an

introductory programming module?

RQ 5: What is the correlation between calculus and a data

structure and algorithms module?

B. Data
This study was conducted in the Department of Computer

Science at the University of Warwick. The raw data consist of
2,161 students' marks during the period from 1996 to 2014.
The marks include two programming modules and two
mathematics modules, all core modules for first year computer
science students.

The first module, Programming for Computer Scientists
CS118, has used Java since the year 2000 to introduce
programming fundamentals; prior to this, Pascal had been
taught. The second programming module, Design of
Information Structures CS126, involves data structures and
algorithms, requiring CS118 as a prerequisite. For both
modules, marks consist of examined and assessed components
of a large programming assignment contributing 40% of the
total mark. Mathematics modules as conceived from 1996 to
2005 are Mathematics for Computer Scientists CS124 and
Discrete Mathematics CS127. In 2006, the replacement
modules, Mathematics for Computer Scientists I CS130 and
Mathematics for Computer Scientists II CS131, were
introduced; these modules syllabi overlap with those of the
previous modules, CS124 and CS127, respectively.

Study Variable 1 Variable 2 N
Pearson

Correlation

Pacheco [6] Calculus Programming with C 59 .49**

Pacheco [6] Calculus Programming with Python 36 .41*

Pacheco [6] Math grades Programming with Python 36 .37**

Harris [4] Math SAT grades Programming aptitude test 16 .54*

Tukiainen [12] Pre-UNI math grades CS1 programming 33 -.28

Bennedsen [1] Pre-UNI math grades CS1 programming 20 .39

Bergin [2] Pre-UNI math grades CS1 programming 30 .46
** Correlation is significant at the 0.01. * Correlation is significant at the 0.05.

Table 1: Previous research correlation results for mathematics and programming.

 Figure 1: Linear relationship between programming and mathematics.

Figure 2: Distribution of students' means in programming modules.

C. Analyses
We used the Pearson product-moment correlation

coefficient which requires four assumptions to be fulfilled prior
to the test. The first assumption is that variables must be
continuous and can be measured either at the interval or ratio
level. In our case, there exist two variables (students' marks)
which are continuous and can be measured.

The second assumption is that the two variables must
possess a linear relationship which can be proved by plotting a
scatterplot and inspecting it visually. Figure 1 presents the
scatterplot for the two variables and shows a positive weak to
moderate linear relationship.

The third assumption is that there should be no significant
outliers. Outliers could be the data which do not follow in the
same pattern as other data points. In order to identify outliers,
we use interquartile range to determine lower and upper
bounds; data which are not within the boundaries could be
outliers. Visual inspection of left tail of Figure 2 suggests the
number of outliers with programming average below 31.

Figure 3: Distribution of students' means in mathmatics modules.

In our research context, it was realistic to have a number of
students who were underachieving due to various factors; thus,
we believe that those students' marks are not outliers and they
will therefore not be removed from the data set.

The fourth assumption that needs to be addressed is to find
whether variables are normally distributed, either by using
numerical tests or graphic methods. Numerical tests, such as
the Shapiro-Wilk and the Kolmogorov-Smirnov tests, indicate
normality for small samples [10], whereas large sample sizes
can be inspected visually for normal distribution using
histogram. Figure 2 shows that the programming averages have
imperfect normal distribution whereas Figure 3 indicates that
averages for mathematics have normal bell-shaped distribution.

Table 2: Correlation between mean of programming modules and mean of
mathematics modules.

Mathematics

100.080.060.040.020.0.0

P
r
o
g
r
a
m
m
i
n
g

100.0

80.0

60.0

40.0

20.0

.0

Programming Mathematics
N Correlation

1840 .56**
** Correlation is significant at the 0.01.

Intro Programming Discrete Math N Correlation

CS118 CS127 1456 .52**

CS118 CS130 668 .57**
** Correlation is significant at the 0.01.

Table 3: Correlation between introductory programming and discrete
mathematics.

Table 4: Correlation between data structure and discrete mathematics.

IV. RESULTS

A. Mathmeatics and programming (RQ 1)

Comparing the large sample with previous studies that

aimed to find the relationship between mathematics and

programming in the context of determining the success factors

in programming, we aim to find the general correlation

between the average of two programming modules, CS118

and CS126, and the average of two mathematics modules,

CS124 or CS130 and CS127 or CS131. In order to calculate

the correlation between the two averages, each student was

required to have marks for all programming modules and for

all mathematics modules. Thus, the total observations were

reduced to 1,840. The result of the Pearson test indicated that

there was a moderately positive correlation between

mathematics and programming, as shown in Table 2.

B. Maintaining the Integrity of the Specifications and

Programming (RQ 2 and 3)

Discrete mathematics plays a role in computer science

education; most CS degree providers urge first-year students

to enrol in discrete mathematics, and this discipline has been

included in the ACM curriculum. However, the significance of

discrete mathematics should be based on mutable factors, such

as teaching methods, that help students to grasp, apply and

evaluate mathematical concepts. Another element that needs

to be considered by curriculum designers is how certain

categories of mathematics could be appropriate to specific

programming paradigms; for instance, teaching functional-

driven language could be linked to function concepts in

discrete mathematics [8]. In contrast, in object-oriented

paradigms, the use of predefined set classes might not require

students' understanding of mathematical set theory. In this

stage of our analysis, we focus on object oriented

programming module CS118. The results shown in Table 3

and 4 revealed that discrete mathematics correlated positively

with introductory programming and data structures.

C. Calculus and Programming (RQ 4 and 5)

Teaching calculus to undergraduates in computer science

is required in many institutions, but relevant questions include:

how much calculus do students need, and how do they apply

calculus in programming? It has been argued that requiring

calculus as a prerequisite for the intermediate or upper-level

mathematics courses that CS/SE students might take (e.g.

combinatorics, graph theory, logic) is nonsensical because

knowledge of calculus plays essentially no role in such

Table 5: Correlation between introductory programming and calculus.

Table 6: Correlation between data structure and calculus.

courses and that, instead of calculus, discrete mathematics

develops essential skills for computer science students [9].

Calculus could be seen to be less correlated with introductory

programming than discrete mathematics is, as prior re- search

suggests that students enrolled in calculus performed

significantly less well in programming courses than others

enrolled in discrete mathematics [7, 6], which explains that

learning the basics of programming requires basic algebra and

discrete mathematics. However, our results shown in Table 6

indicate that calculus has a more positive effect on student'

performance in data structures compared with calculus role in

introductory programming as shown in Table 5. Thus, calculus

is a general mathematics concept that could play a role in

learning programming by teaching specific problems that

require the implementation of calculus. Further investigation

into the role of calculus in different programming paradigms,

such as functional, is still needed.

V. CONCLUSION

Generally, the statistical analysis of students' performance

indicated that programming and mathematics had a positive,

moderate correlation and there was no evidence in this study

of causation. The roles of discrete mathematics and calculus in

programming have been statistically analysed and resulted in a

positive relationship. The analysis derived from a large sample

of students' marks and a variety of computer science and

mathematics modules in which the results could be more

accurate than in previous, related work that had analysed small

samples. In the educational context in which multiple factors

are involved, it is difficult to draw a conclusion from statistical

analysis; thus, other qualitative methods need to be considered

in order to understand how other educational variables could

affect the correlation between programming and mathematics.

In addition, we need to investigate which programming

paradigms, such as logical or functional programming, require

different types of mathematics such as calculus.

REFERENCES

[1] J. Bennedsen and M. E. Caspersen. An investigation of potential
success factors for an introductory model-driven programming course.
In Proceedings of the First International Workshop on Computing
Education Research, pages 155–163. ACM, October 2005.

[2] S. Bergin and R. Reilly. Programming: Factors that influence success.
SIGCSE Bull., 37(1):411–415, February 2005.

[3] A. Gomes and A. Mendes. A study on student’s characteristics and
programming learning. In Proceedings of World Conference on

Data Structure Discrete Math N Correlation

CS126 CS127 1433 .54**

CS126 CS130 643 .55**
** Correlation is significant at the 0.01.

Intro Programming Calculus N Correlation

CS118 CS131 642 .36**
** Correlation is significant at the 0.01.

Data Structure Calculus N Correlation

CS126 CS131 624 .43**
** Correlation is significant at the 0.01.

Educational Multimedia, Hypermedia and Telecommunications 2008,
pages 2895–2904. AACE, June 2008.

[4] J. Harris. Testing programming aptitude in introductory programming
courses. J. Comput. Sci. Coll., 30(2):149–156, December 2014.

[5] P. B. Henderson and A. M. Stavely. Programming and mathematical
thinking. ACM Inroads, 5(1):35–36, March 2014.

[6] A. Pacheco, A. Gomes, J. Henriques, A. M. de Almeida, and A. J.
Mendes. Mathematics and programming: some studies. In Proceedings
of the 9th International Conference on Computer Systems and
Technologies and Workshop for PhD Students in Computing, pages
77:V.15–77:1. ACM, June 2008.

[7] B. T. Pioro. Introductory computer programming: Gender, major,
discrete mathematics, and calculus. J. Comput. Sci. Coll., 21(5):123–
129, May 2006.

[8] J. F. Power, T. Whelan, and S. Bergin. Teaching discrete structures: A
systematic review of the literature. In Proceedings of the 42Nd ACM
Technical Symposium on Computer Science Education, pages 275–280.
ACM, March 2011.

[9] A. Ralston. Do we need any mathematics in computer science curricula?
SIGCSE Bull., 37(2):6–9, June 2005.

[10] N. M. Razali and Y. B. Wah. Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of
Statistical Modeling and Analytics, 2(1):21–33, 2011.

[11] Simon, S. Fincher, A. Robins, B. Baker, I. Box, Q. Cutts, M. de Raadt,
P. Haden, J. Hamer, M. Hamilton, R. Lister, M. Petre, K. Sutton, D.
Tolhurst, and J. Tutty. Predictors of success in a first programming
course. In Proceedings of the 8th Australasian Conference on
Computing Education, pages 189–196. Australian Computer Society,
Inc., October 2006.

[12] M. Tukiainen and E. Mönkkönen. Programming aptitude testing as a
prediction of learning to program. In Proceedings of the 14th Workshop
of the Psychology of Programming Interest Group, pages 45–57.
Australian Computer Society, Inc., June 2002.

[13] C. Watson and F. W. Li. Failure rates in introductory programming
revisited. In Proceedings of the 2014 Conference on Innovation and
Technology in Computer Science Education, pages 39–44. ACM, June
2014.

[14] B. C. Wilson and S. Shrock. Contributing to success in an introductory
computer science course: A study of twelve factors. SIGCSE Bull.,
33(1):184–188, February 2001.

