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Computer Science Educationalists have implemented educational taxonomies which enhance the 

pedagogy for introductory programming modules. The SOLO taxonomy has been applied to measure 

students’ cognitive abilities in programming by classifying students’ exam answers. However, SOLO 

provides a generic framework that can be applied in different disciplines, including Computer Science, 

and this can lead to ambiguity and inconsistent classification. In this paper, we investigate high-

achieving students’ coding abilities and whether they tend to manifest specific SOLO categories. We 

address the challenges of interpreting SOLO and the limitations of code-writing problems by analysing 

three specific programming problems (Array Creation, Linear Search and Recursion) and solutions to 

those problems presented by a group of nine students.  Results for the first programming problem show 

that six students’ responses fell into the highest possible category (Multistructural) and the remaining 

three were categorised in the second highest category (Unistructural). For the second problem, eight 

students’ responses fell into the Multistructural category, while only one response was categorised as 

Unistructural. For the third problem, two students provided Multistructural solutions and five students’ 

solutions were Unistructural, but two further students showed a lack of understanding program 

constructs in their solutions, which were then categorised as Prestructural.   

Keywords: programming, code-writing, SOLO 
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Educational taxonomies have been implemented in many educational domains to enhance pedagogy, 

assessments and teaching methods, all of which affect students’ learning, knowledge and skills. There 

have been many attempts to apply different taxonomies, and these have been valuable in providing 

insights into computer science education (CSE) to understand different educational factors. Well-

developed educational taxonomies, such as Bloom, revised Bloom and SOLO (Bloom, 1956; 

Krathwohl, 2002; Biggs, 2014), have been applied to measuring students’ outcomes as well as to 

classifying exam questions based on what they are supposed to measure. Although an educational 

taxonomy provides a generic framework that can be implemented in various disciplines, educators may 

not always come to a constant agreement on classifications (Fuller, 2007). In this study, SOLO has been 

chosen for classifying students’ learning outcomes as SOLO provides a hierarchy for measuring 

assessments and classifying students’ responses.  

This paper is structured as follows.  A brief background of educational taxonomies are introduced, 

followed by a discussion of taxonomies within the context of Computer Science and our justifications 

for applying an educational taxonomy are discussed. Research questions, methods, procedures and 

analyses are outlined in the methodology section, and finally, results are presented in the discussion 

section.   
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The structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs, 2014) aims to distinguish 

students’ cognitive levels, which are required during their learning process. The first level is 

Prestructural (P), where a student is provided with a new problem and irrelevant information. At this 

stage, the student has not understood the problem and tries to use simple information to solve it. The 

second level is Unistructural (U), as the student starts to focus on one single aspect that can be used to 

solve the problem. The third level is Multistructural (M), where the student starts to understand more 

than one factor that may help to solve the problem. The fourth level is Relational (R), which focuses on 

the qualitative development as the student starts to understand and identify relations between several 

aspects. The fifth level is Extended Abstract (EA), where the student manifests the ability to 
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answer the ‘explain in plain English’ questions in order to compare both students’ and experts’ 

responses on each SOLO level. Results showed that half of the students provided Multistructural 

answers, in which students were only able to explain the code line by line without indicating the purpose 

of the code. Meanwhile, seven out of eight experts provided answers that can be categorised at the 

Relational level. Later, Lister et al. (2010) applied SOLO to measure student performance in code 

writing, relying on Biggs (1999) verbs descriptions that are suitable for each level. In addition, Hattie 

and Purdie’s study (1998) provides examples of how SOLO can be applied to language translation. 

SOLO levels can be determined by how certain phrases are interpreted rather than by translating words 

in isolation without understanding either the relation between the words or the context. For example, 

word-by-word translation, which is Unistructural, might provide meaningful translation that does not 

reflect the purpose of the original phrase. In the context of code-writing questions, a student may 

provide a direct translation of a certain program specification which does not result in correct code, 

whereas applying some changes to produce translation which is close to a direct specification might 

result in valid code.  Based on Hattie and Purdie’s theoretical framework, SOLO categories for code 

writing were proposed as shown in Table 1.  

phase SOLO category Description 

Q
u

a
li

ta
ti

v
e
 Extended Abstract – 

Extending [EA] 

Uses constructs and concepts beyond those required in the exercise to 

provide an improved solution 

Relational – 

Encompassing [R] 

Provides a valid well structured program that removes all redundancy and 

has a clear logical structure. The specifications have been integrated to 

form a logical whole. 

Q
u

a
n

ti
ta

ti
v

e
 Multistructural – 

Refinement [M] 

Represents a translation that is close to a direct translation. The code may 

have been reordered to make a valid solution. 

Unistructural – Direct 

Translation [U] 

Represents a direct translation of the specifications. The code will be in the 

sequence of the specifications. 

Prestructural [P] 
Substantially lacks knowledge of programming constructs or is unrelated to 

the question. 

Table 1: SOLO categories for code-writing tasks (Lister et al., 2010). 

Initial analyses of 30 students’ code-writing answers were conducted to develop the proposed 

taxonomy. Students were asked to write code involving three conditional statements in which providing 

a direct translation for sequenced conditional statements was considered Unistructural. However, when 

students considered removing redundancy, solutions tended to increase on the SOLO scale, becoming 

Relational. The students’ responses fell into only Unistructural and Multistructural. However, a second 

analysis of a different code-writing question was conducted for 59 students. The question related to 

theatre ticket sales, and was more complicated than the previous question. In this case, two students’ 

responses were categorised as Relational. Although the proposed SOLO taxonomy provides a 

theoretical basis for analysing students’ approaches to answering code-writing questions, it is evident 

in the study results that levels of questions may limit students’ responses to certain SOLO categories. 

If a student is asked to write a program to assign a value to a variable and print out the value, it is clear 

that the student’s response will be Unistructural — there will be no chance to provide a response at any 

upper level. Thus, it has been recommended that further replications of this study applied to different 

code-writing questions be conducted (Lister et al., 2010).  

Whalley et al. (2011) proposed a refined SOLO taxonomy which overcomes previous research 

limitations in which mapping a very contextual code-writing question to the previous SOLO taxonomy 

resulted in difficulties in maintaining consistent mappings (Lister et al., 2010). In this study, a grounded 

theory approach had been adopted to analyse nearly 750 students’ responses to three code-writing 

questions (Discount problem, Average calculation, and Printing a box of asterisks) in order to conduct 

a SOLO mapping. The mapping process started with developing empirical categories consisting of 

silent programming elements (SPEs) to extract program constructs, syntactical elements and code 

features by conducting constant coding of students’ codes. Coding process allow expert computer 

science educators to identify silent programming elements which could emerge from students’ code. 

Producing SPEs could be advantageous and is practical for different code-writing questions.  The next 

stage was to extract broad features that reflect a general code quality which can appear in most code, 

such as code redundancy and efficiency. The extracted features can indicate the level of code abstraction 
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based on subjective evaluations. Finally, based on the SOLO taxonomy proposed by Lister et al. (2010), 

three researchers categorised students’ responses to investigate whether using SPEs makes the mapping 

process efficient.   

The study produced a refined taxonomy  because an issue regarding the definition of the Multistructural 

level had been raised during the analysis stage. A previous definition of Multistructural indicated that a 

‘response represented a translation that is close to a direct translation. The code may have been 

reordered to make a “valid” solution’ (Lister et al., 2010). However, during the analysis of the Average 

calculation problem, some responses managed to provide a direct translation that was a correct solution, 

but which could be less integrated. While the response is categorised as Multistructural, it tends to be 

over-categorised and should be Unistructural. Therefore, Multistructural was redefined as ‘a translation 

that is close to a direct translation. The code may have been reordered to make a more integrated and/or 

valid solution.’ 

It is clear that Whalley et al. provide a rigorous methodology, conducting a grounded theory approach 

to analyse a large set of data which requires a constant coding process to produce SPEs that can be 

reproduced for different code-writing questions. The mapping process requires expert computer science 

educators who are capable of identifying multiple alternative solutions or SPEs in which common 

features can be extracted. Students’ responses might be classified as Unistructural, which should 

indicate at least a single concept or SPE, whereas a Multistructural response should indicate a student’s 

understanding of multiple concepts or SPEs, which may or may not provide an integrated solution. 

However, a Relational response should indicate that all concepts and SPEs have been integrated, 

manifesting a comprehension of the relationships between all elements and features. Computer science 

educators should understand that classifying students’ responses is based on the level of translated 

specifications that are required to satisfy code implementations. In other words, the level of required 

specifications in a certain question affects students’ response classifications but not necessarily that the 

classification could measure student knowledge.       

It has been claimed that the mapping process used in previous research (Whalley et al.,2011; 

Jimoyiannis, 2013) has not been consistent in defining programming constructs at the Unistructural 

level. Therefore, developing the building blocks may overcome the previous research limitations in 

order to identify programming constructs for the Unistructural level only. The building blocks should 

be derived from the current course curriculum while considering the knowledge that has been acquired 

by students. Iterative and vector questions were analysed while applying the proposed building blocks 

and results showed that 44% of students’ performances achieved a Relational level and 3% were at a 

Unistructural level.       

B> C$&+1/151(;

Content analysis provides a systematic approach to understand and analyse documents, transcriptions,

audios and videos. Bryman (2015) defines content analysis as an approach to quantify content based on

predetermined categories in which analysis procedures should be systematic and replicable. Another

feature of content analysis is that can be integrated with other approaches (Bryman, 2015) such as, in

our case, the SOLO taxonomy.

5"#$6/7/8029$:-/7.)'*7

• How to assess students’ cognitive abilities for code-writing problems?

• Do high-achieving students tend to manifest specific SOLO categories for code-writing

problems?

Data consisting of nine students’ exam scripts from a level 1 programming course were selected based 

on the students’ performance in programming and mathematics. Students proved to achieve high 

performance based on their grades, therefore, we were interested to analyse their responses based on 

the SOLO taxonomy.  The programming course covers programming fundamentals, Object Oriented 

Programming, design, constructions, and testing, using the Java programming language. Three code-

writing questions were selected, each of which included different programming constructs. We adapted 

Whalley et al.’s (2011) analysis approach, as shown in Fig. 2, to develop the SPE for each question, to 

which students’ responses were coded by three independent researchers. The SPE could be identified 

based on syntactical elements. Then, each researcher extracted general constructs, elements and 
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Construct Feature 
Solutions by Student’s number  

49 14 79 91 98 78 55 36 42 

Method declaration 

Typical   x  x x  x x 

Void method x   x   x   

Missing 

argument 
 x    

 
   

Variable 

assignment 
Efficient      

 
x  x 

edges 
Valid          x 

invalid        x  

Difference 

calculation  
efficient      

 
 x x 

recursive 

invocation 

Valid argument    x x x x x x 

Invalid 

argument 
  x   

 
   

Return statement Non-redundant  x x x x x x x x 

SOLO mapping (1
st
 researcher) P P U U U U U R R 

SOLO mapping (2
nd

 researcher) P P M M M P U R R 

SOLO mapping (3
rd

 researcher) U U U U U U U M R 

Final and agreed SOLO mapping P P U U U U U R R 

Table 10: SOLO mapping for Recursive problem. 

D>*E'%-.%%'1"**
Despite the effort applied to developing a SOLO taxonomy for code-writing questions, mapping 

students’ responses based on a specific SOLO taxonomy has a degree of ambiguity and inconsistency. 

SPEs had therefore been introduced by Whalley et al. (2011) to minimise the mapping ambiguity and 

inconsistency. In addition, limitations of code-writing questions affect the mapping of students’ 

responses as certain types of question do not allow for high order thinking to be manifested in the 

students’ code. For example, if the question tends to measure student knowledge on how to declare a 

variable and assign a value to the variable, the student makes direct translations of what is required. 

Clearly, the student’s code can not be categorised EA as the question is limited to specific requirements.  

We find that identifying program constructs and extracting the quality features allow more constant 

mapping provided by all researchers, and we held a consolidation meeting to refine extracting program 

constructs and features for question three. In addition, we evaluated the importance and the weight of 

certain constructs that might have affected the mapping process. For example, there was a concern 

raised by one researcher questioning method declaration using the modifier static, and thus the mapping 

had to be slightly changed. For instance, in Table 11, student 36 manifested three main constructs 

(edges, difference calculation and recursion invocation) and had a slight error while checking the edges, 

and the student’s response categorised Relational the same as responses that manifested all three 

constructs. The student’s response that was categorised Relational should manifest all main constructs 

and features showing understanding of the relationship between them (Whalley, 2011).  

Another challenge was the choice of the questions as we had been limited to only three code-writing 

questions that had been included in the exam script. Limitations of questions prevented students’ ability 

to be manifested and categorised in a higher category. The three questions had been categorised 

Multistructural, Multistructural and Relational respectively, thus those categories represented the 

highest categories for each question. In addition, we agreed to consider SOLO categories for each 

question when mapping students’ responses, so if a student’s response had been categorised higher than 

the question level, the category should be degraded. We agreed to categorise the questions based on the 

level of translations and concepts needed to be measured. Therefore, mapping students’ responses for 

code-writing questions should be accorded to the level of translations of required specifications in the 

code-writing questions (Whalley, 2011).  

Our aim was to investigate high-performing students’ responses according to the SOLO taxonomy. 

Despite the limitations and challenges addressed earlier, results show that high-performing student 

manifest the ability to understand code-writing problems and provide solutions that might be 

categorized at the highest possible SOLO category. In question one (Array Creation), six students’ 

responses fell into the highest possible category whereas the rest of students’ responses were categorised 

in the second highest category (Fig. 3). In question two (Linear Search), eight students’ responses 

resided in the Multistructural category, which is the highest category for question two, while one 
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