

!"#$%&'()&'"(*+'(+,)-+'$#'"(*%&./$"&%0*-1/$,23'&'"(*)4'5'&'$%*&+31.(+*&+$*6787*
&)91"1:;**

Ayman Qahmash

Department of Computer

Science

University of Warwick

A.Qahmash@warwick.ac.uk

Mike Joy

Department of Computer

Science

University of Warwick

M.S.Joy@warwick.ac.uk

Adam Boddison

National Association of

Special Educational Needs

Adamb@nasen.org.uk

<4%&3)-&*
Computer Science Educationalists have implemented educational taxonomies which enhance the

pedagogy for introductory programming modules. The SOLO taxonomy has been applied to measure

students’ cognitive abilities in programming by classifying students’ exam answers. However, SOLO

provides a generic framework that can be applied in different disciplines, including Computer Science,

and this can lead to ambiguity and inconsistent classification. In this paper, we investigate high-

achieving students’ coding abilities and whether they tend to manifest specific SOLO categories. We

address the challenges of interpreting SOLO and the limitations of code-writing problems by analysing

three specific programming problems (Array Creation, Linear Search and Recursion) and solutions to

those problems presented by a group of nine students. Results for the first programming problem show

that six students’ responses fell into the highest possible category (Multistructural) and the remaining

three were categorised in the second highest category (Unistructural). For the second problem, eight

students’ responses fell into the Multistructural category, while only one response was categorised as

Unistructural. For the third problem, two students provided Multistructural solutions and five students’

solutions were Unistructural, but two further students showed a lack of understanding program

constructs in their solutions, which were then categorised as Prestructural.

Keywords: programming, code-writing, SOLO

=>*!"&31/.-&'1"*

Educational taxonomies have been implemented in many educational domains to enhance pedagogy,

assessments and teaching methods, all of which affect students’ learning, knowledge and skills. There

have been many attempts to apply different taxonomies, and these have been valuable in providing

insights into computer science education (CSE) to understand different educational factors. Well-

developed educational taxonomies, such as Bloom, revised Bloom and SOLO (Bloom, 1956;

Krathwohl, 2002; Biggs, 2014), have been applied to measuring students’ outcomes as well as to

classifying exam questions based on what they are supposed to measure. Although an educational

taxonomy provides a generic framework that can be implemented in various disciplines, educators may

not always come to a constant agreement on classifications (Fuller, 2007). In this study, SOLO has been

chosen for classifying students’ learning outcomes as SOLO provides a hierarchy for measuring

assessments and classifying students’ responses.

This paper is structured as follows. A brief background of educational taxonomies are introduced,

followed by a discussion of taxonomies within the context of Computer Science and our justifications

for applying an educational taxonomy are discussed. Research questions, methods, procedures and

analyses are outlined in the methodology section, and finally, results are presented in the discussion

section.

?>*@)-A(31."/**

The structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs, 2014) aims to distinguish

students’ cognitive levels, which are required during their learning process. The first level is

Prestructural (P), where a student is provided with a new problem and irrelevant information. At this

stage, the student has not understood the problem and tries to use simple information to solve it. The

second level is Unistructural (U), as the student starts to focus on one single aspect that can be used to

solve the problem. The third level is Multistructural (M), where the student starts to understand more

than one factor that may help to solve the problem. The fourth level is Relational (R), which focuses on

the qualitative development as the student starts to understand and identify relations between several

aspects. The fifth level is Extended Abstract (EA), where the student manifests the ability to

PPIG 2017 www.ppig.org

119

answer the ‘explain in plain English’ questions in order to compare both students’ and experts’

responses on each SOLO level. Results showed that half of the students provided Multistructural

answers, in which students were only able to explain the code line by line without indicating the purpose

of the code. Meanwhile, seven out of eight experts provided answers that can be categorised at the

Relational level. Later, Lister et al. (2010) applied SOLO to measure student performance in code

writing, relying on Biggs (1999) verbs descriptions that are suitable for each level. In addition, Hattie

and Purdie’s study (1998) provides examples of how SOLO can be applied to language translation.

SOLO levels can be determined by how certain phrases are interpreted rather than by translating words

in isolation without understanding either the relation between the words or the context. For example,

word-by-word translation, which is Unistructural, might provide meaningful translation that does not

reflect the purpose of the original phrase. In the context of code-writing questions, a student may

provide a direct translation of a certain program specification which does not result in correct code,

whereas applying some changes to produce translation which is close to a direct specification might

result in valid code. Based on Hattie and Purdie’s theoretical framework, SOLO categories for code

writing were proposed as shown in Table 1.

phase SOLO category Description

Q
u

a
li

ta
ti

v
e
 Extended Abstract –

Extending [EA]

Uses constructs and concepts beyond those required in the exercise to

provide an improved solution

Relational –

Encompassing [R]

Provides a valid well structured program that removes all redundancy and

has a clear logical structure. The specifications have been integrated to

form a logical whole.

Q
u

a
n

ti
ta

ti
v

e
 Multistructural –

Refinement [M]

Represents a translation that is close to a direct translation. The code may

have been reordered to make a valid solution.

Unistructural – Direct

Translation [U]

Represents a direct translation of the specifications. The code will be in the

sequence of the specifications.

Prestructural [P]
Substantially lacks knowledge of programming constructs or is unrelated to

the question.

Table 1: SOLO categories for code-writing tasks (Lister et al., 2010).

Initial analyses of 30 students’ code-writing answers were conducted to develop the proposed

taxonomy. Students were asked to write code involving three conditional statements in which providing

a direct translation for sequenced conditional statements was considered Unistructural. However, when

students considered removing redundancy, solutions tended to increase on the SOLO scale, becoming

Relational. The students’ responses fell into only Unistructural and Multistructural. However, a second

analysis of a different code-writing question was conducted for 59 students. The question related to

theatre ticket sales, and was more complicated than the previous question. In this case, two students’

responses were categorised as Relational. Although the proposed SOLO taxonomy provides a

theoretical basis for analysing students’ approaches to answering code-writing questions, it is evident

in the study results that levels of questions may limit students’ responses to certain SOLO categories.

If a student is asked to write a program to assign a value to a variable and print out the value, it is clear

that the student’s response will be Unistructural — there will be no chance to provide a response at any

upper level. Thus, it has been recommended that further replications of this study applied to different

code-writing questions be conducted (Lister et al., 2010).

Whalley et al. (2011) proposed a refined SOLO taxonomy which overcomes previous research

limitations in which mapping a very contextual code-writing question to the previous SOLO taxonomy

resulted in difficulties in maintaining consistent mappings (Lister et al., 2010). In this study, a grounded

theory approach had been adopted to analyse nearly 750 students’ responses to three code-writing

questions (Discount problem, Average calculation, and Printing a box of asterisks) in order to conduct

a SOLO mapping. The mapping process started with developing empirical categories consisting of

silent programming elements (SPEs) to extract program constructs, syntactical elements and code

features by conducting constant coding of students’ codes. Coding process allow expert computer

science educators to identify silent programming elements which could emerge from students’ code.

Producing SPEs could be advantageous and is practical for different code-writing questions. The next

stage was to extract broad features that reflect a general code quality which can appear in most code,

such as code redundancy and efficiency. The extracted features can indicate the level of code abstraction

PPIG 2017 www.ppig.org

121

based on subjective evaluations. Finally, based on the SOLO taxonomy proposed by Lister et al. (2010),

three researchers categorised students’ responses to investigate whether using SPEs makes the mapping

process efficient.

The study produced a refined taxonomy because an issue regarding the definition of the Multistructural

level had been raised during the analysis stage. A previous definition of Multistructural indicated that a

‘response represented a translation that is close to a direct translation. The code may have been

reordered to make a “valid” solution’ (Lister et al., 2010). However, during the analysis of the Average

calculation problem, some responses managed to provide a direct translation that was a correct solution,

but which could be less integrated. While the response is categorised as Multistructural, it tends to be

over-categorised and should be Unistructural. Therefore, Multistructural was redefined as ‘a translation

that is close to a direct translation. The code may have been reordered to make a more integrated and/or

valid solution.’

It is clear that Whalley et al. provide a rigorous methodology, conducting a grounded theory approach

to analyse a large set of data which requires a constant coding process to produce SPEs that can be

reproduced for different code-writing questions. The mapping process requires expert computer science

educators who are capable of identifying multiple alternative solutions or SPEs in which common

features can be extracted. Students’ responses might be classified as Unistructural, which should

indicate at least a single concept or SPE, whereas a Multistructural response should indicate a student’s

understanding of multiple concepts or SPEs, which may or may not provide an integrated solution.

However, a Relational response should indicate that all concepts and SPEs have been integrated,

manifesting a comprehension of the relationships between all elements and features. Computer science

educators should understand that classifying students’ responses is based on the level of translated

specifications that are required to satisfy code implementations. In other words, the level of required

specifications in a certain question affects students’ response classifications but not necessarily that the

classification could measure student knowledge.

It has been claimed that the mapping process used in previous research (Whalley et al.,2011;

Jimoyiannis, 2013) has not been consistent in defining programming constructs at the Unistructural

level. Therefore, developing the building blocks may overcome the previous research limitations in

order to identify programming constructs for the Unistructural level only. The building blocks should

be derived from the current course curriculum while considering the knowledge that has been acquired

by students. Iterative and vector questions were analysed while applying the proposed building blocks

and results showed that 44% of students’ performances achieved a Relational level and 3% were at a

Unistructural level.

B> C$&+1/151(;

Content analysis provides a systematic approach to understand and analyse documents, transcriptions,

audios and videos. Bryman (2015) defines content analysis as an approach to quantify content based on

predetermined categories in which analysis procedures should be systematic and replicable. Another

feature of content analysis is that can be integrated with other approaches (Bryman, 2015) such as, in

our case, the SOLO taxonomy.

5"#$6/7/8029$:-/7.)'*7

• How to assess students’ cognitive abilities for code-writing problems?

• Do high-achieving students tend to manifest specific SOLO categories for code-writing

problems?

Data consisting of nine students’ exam scripts from a level 1 programming course were selected based

on the students’ performance in programming and mathematics. Students proved to achieve high

performance based on their grades, therefore, we were interested to analyse their responses based on

the SOLO taxonomy. The programming course covers programming fundamentals, Object Oriented

Programming, design, constructions, and testing, using the Java programming language. Three code-

writing questions were selected, each of which included different programming constructs. We adapted

Whalley et al.’s (2011) analysis approach, as shown in Fig. 2, to develop the SPE for each question, to

which students’ responses were coded by three independent researchers. The SPE could be identified

based on syntactical elements. Then, each researcher extracted general constructs, elements and

PPIG 2017 www.ppig.org

122

Construct Feature
Solutions by Student’s number

49 14 79 91 98 78 55 36 42

Method declaration

Typical x x x x x

Void method x x x

Missing

argument
 x

Variable

assignment
Efficient

x x

edges
Valid x

invalid x

Difference

calculation
efficient

 x x

recursive

invocation

Valid argument x x x x x x

Invalid

argument
 x

Return statement Non-redundant x x x x x x x x

SOLO mapping (1
st
 researcher) P P U U U U U R R

SOLO mapping (2
nd

 researcher) P P M M M P U R R

SOLO mapping (3
rd

 researcher) U U U U U U U M R

Final and agreed SOLO mapping P P U U U U U R R

Table 10: SOLO mapping for Recursive problem.

D>*E'%-.%%'1"**
Despite the effort applied to developing a SOLO taxonomy for code-writing questions, mapping

students’ responses based on a specific SOLO taxonomy has a degree of ambiguity and inconsistency.

SPEs had therefore been introduced by Whalley et al. (2011) to minimise the mapping ambiguity and

inconsistency. In addition, limitations of code-writing questions affect the mapping of students’

responses as certain types of question do not allow for high order thinking to be manifested in the

students’ code. For example, if the question tends to measure student knowledge on how to declare a

variable and assign a value to the variable, the student makes direct translations of what is required.

Clearly, the student’s code can not be categorised EA as the question is limited to specific requirements.

We find that identifying program constructs and extracting the quality features allow more constant

mapping provided by all researchers, and we held a consolidation meeting to refine extracting program

constructs and features for question three. In addition, we evaluated the importance and the weight of

certain constructs that might have affected the mapping process. For example, there was a concern

raised by one researcher questioning method declaration using the modifier static, and thus the mapping

had to be slightly changed. For instance, in Table 11, student 36 manifested three main constructs

(edges, difference calculation and recursion invocation) and had a slight error while checking the edges,

and the student’s response categorised Relational the same as responses that manifested all three

constructs. The student’s response that was categorised Relational should manifest all main constructs

and features showing understanding of the relationship between them (Whalley, 2011).

Another challenge was the choice of the questions as we had been limited to only three code-writing

questions that had been included in the exam script. Limitations of questions prevented students’ ability

to be manifested and categorised in a higher category. The three questions had been categorised

Multistructural, Multistructural and Relational respectively, thus those categories represented the

highest categories for each question. In addition, we agreed to consider SOLO categories for each

question when mapping students’ responses, so if a student’s response had been categorised higher than

the question level, the category should be degraded. We agreed to categorise the questions based on the

level of translations and concepts needed to be measured. Therefore, mapping students’ responses for

code-writing questions should be accorded to the level of translations of required specifications in the

code-writing questions (Whalley, 2011).

Our aim was to investigate high-performing students’ responses according to the SOLO taxonomy.

Despite the limitations and challenges addressed earlier, results show that high-performing student

manifest the ability to understand code-writing problems and provide solutions that might be

categorized at the highest possible SOLO category. In question one (Array Creation), six students’

responses fell into the highest possible category whereas the rest of students’ responses were categorised

in the second highest category (Fig. 3). In question two (Linear Search), eight students’ responses

resided in the Multistructural category, which is the highest category for question two, while one

PPIG 2017 www.ppig.org

126

References

Anderson, L. W., Krathwohl, D. R., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., & Wittrock,

M. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s

taxonomy. New York. Longman Publishing.

Biggs, J. B. (1999). Teaching for quality learning at university. Buckingham: Open University Press.

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure

of the Observed Learning Outcome). Academic Press.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of

educational objectives, handbook I: The cognitive domain.

Bryman, A. (2015). Social research methods. Oxford university press.

Dolog, P., Thomsen, L. L., & Thomsen, B. (2016). Assessing Problem-Based Learning in a Software

Engineering Curriculum Using Bloom’s Taxonomy and the IEEE Software Engineering Body

of Knowledge. ACM Transactions on Computing Education (TOCE), 16(3), 9.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova, J., & Thompson,

E. (2007). Developing a computer science-specific learning taxonomy. In ACM SIGCSE

Bulletin (Vol. 39, No. 4, pp. 152-170). ACM.

Ginat, D., & Menashe, E. (2015). SOLO Taxonomy for Assessing Novices' Algorithmic Design.

In Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp.

452-457). ACM.

Hattie, J.A. and Purdie, N. 1998. The power of the solo model to address fundamental measurement

issues. In Teaching and Learning in Higher Education, Edited

by: Dart, B. and Boultonlewis, G. Victoria, Australia: ACER.

Jimoyiannis, A. (2013). Using SOLO taxonomy to explore students’ mental models of the programming

variable and the assignment statement. Themes in Science and Technology Education, 4(2), 53-

74.

Johnson, C. G., & Fuller, U. (2006). Is Bloom's taxonomy appropriate for computer science?.

In Proceedings of the 6th Baltic Sea conference on Computing education research: Koli Calling

2006 (pp. 120-123). ACM.

Johnson, G., Gaspar, A., Boyer, N., Bennett, C., & Armitage, W. (2012). Applying the revised Bloom's

taxonomy of the cognitive domain to linux system administration assessments. Journal of

Computing Sciences in Colleges, 28(2), 238-247.

Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory into practice, 41(4),

212-218.

Lister, R., Clear, T., Bouvier, D. J., Carter, P., Eckerdal, A., Jacková, J., ... & Thompson, E. (2010).

Naturally occurring data as research instrument: analyzing examination responses to study the

novice programmer. ACM SIGCSE Bulletin, 41(4), 156-173.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the

trees: novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122.

Wirth, M. (2014). The Canny Skipper-A Puzzle For Demonstrating Data Structures And Recursion.

In Proceedings of the Western Canadian Conference on Computing Education (p. 16). ACM.

Whalley, J., Clear, T., Robbins, P., & Thompson, E. (2011). Salient elements in novice solutions to

code writing problems. In Proceedings of the Thirteenth Australasian Computing Education

Conference-Volume 114 (pp. 37-46). Australian Computer Society, Inc..

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K., & Prasad, C. (2006). An

Australasian study of reading and comprehension skills in novice programmers, using the

bloom and SOLO taxonomies. In Proceedings of the 8th Australasian Conference on

Computing Education-Volume 52 (pp. 243-252). Australian Computer Society, Inc..

PPIG 2017 www.ppig.org

128

