Sentence-Based Natural Language
Plagiarism Detection

DANIEL R. WHITE and MIKE S. JOY
University of Warwick

With the increasing levels of access to higher education in the United Kingdom, larger class sizes
make it unrealistic for tutors to be expected to identify instances of peer-to-peer plagiarism by eye
and so automated solutions to the problem are required. This document details a novel algorithm
for comparison of suspect documents at a sentence level and has been implemented as a component
of plagiarism detection software for detecting similarities in both natural language documents and
comments within program source-code. The algorithm is capable of detecting sophisticated obfusca-
tion (such as paraphrasing, reordering, merging, and splitting sentences) as well as direct copying.
The implemented algorithm has also been used to successfully detect plagiarism on real assign-
ments at the university. The software has been evaluated by comparison with other plagiarism
detection tools.
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cation—Computer managed instruction; E.5 [Files]: Sorting/Searching; 1.5.4 [Pattern Recogni-
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1. INTRODUCTION

Plagiarism has become an increasing problem in higher education institutions
in recent years. The problem is especially prevalent in British institutions be-
cause of a governmental target of having 50% of the population study in some
form of higher education [Curtis 2003]. This has led to rapid increases in class
sizes at most British universities, which, in turn, has led to an increasing prob-
lem with detecting plagiarism among students. A further contributing factor
is that students are now much more comfortable with Information Technology
and the Internet, allowing them to find and copy sources with ease [Carroll and
Appleton 2001].

This is a subject that has received much attention both in the press and in
academic circles. Many useful tools have been developed to detect plagiarism
in both programming and essay-based assignments. The main aim of these
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programs is to guide the investigator toward submissions that are most likely
to have been plagiarized. Comparisons of such software tools are available from
other sources, including Chester [2001] and Culwin et al. [2001], as are de-
tailed studies of individual tools and their algorithms [Culwin and Lancaster
2001; Finkel et al. 2002; Hoad and Zobel 2003; Joy and Luck 1999; Monostori
et al. 2001, 2002; Prechelt et al. 2002; Ribler and Abrams 2000]. Carrol and
Appleton’s Good Practice Guide [2001] provides guidelines for non-information
technology approaches to reducing plagiarism. Decoo’s [2002] discussion of the
whole process of dealing with academic misconduct, from detection through to
punishment, has more of a focus on postgraduate and research misconduct than
is usual in the other sources.

In natural language, the sentence can be considered as one of the building
blocks for the communication of ideas. With this concept as a starting point,
we have designed an algorithm to compare documents at a sentence level, as
plagiarism will be likely to occur by reworking a source text on a sentence-by-
sentence basis. The algorithm described in this article is intended for a thorough
pair-wise comparison of a set of documents, whether they comprise a particu-
lar class’ essays, the comments from a set of programming assignments, or an
article along with sources that it is likely to have plagiarized. The results gen-
erated highlight places where two documents are very similar, in a manner
that makes it easy for a teacher/academic to determine whether an investi-
gation of alleged plagiarism is worth pursuing. In addition to the detection
algorithm, a filter was also designed to be applied to the results when viewed.
This filter applies a heuristic approach to deciding whether similarities are
useful based on the number of similarities to another sentence. The results and
the visualization method employed make the suspicious texts easy to compare
for the teacher, although the implementation of the proposed algorithm is not
especially fast when compared to a more mature system such as CopyCatch
[Woolls 2004].

The proposed algorithm has been integrated with Sherlock, a source-code
plagiarism detector developed at the University of Warwick [Joy and Luck
1999], that has been used to successfully detect programming plagiarisms
in the past. The new version of Sherlock has the capability to compare doc-
uments in plain text form as well as having a more sophisticated approach
to detecting plagiarism in the natural language (commented) sections of pro-
gramming assignments. A thorough testing of the implementation’s capabil-
ities has been conducted in order to determine the effects of the various pa-
rameters to the algorithm on the results produced. These new features of
the program have been tested on programming and essay assignments set
on courses in the Department of Computer Science at Warwick in the last
year and successful identification of possible plagiarisms has occurred as a
result.

A direct comparison of Sherlock with two other freely available natural lan-
guage plagiarism detectors was undertaken. This comparison shows that while
Sherlock is lacking in speed during the detection, it compares favorably in both
quality of results and the method of results visualization.
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2. A SENTENCE-BASED DETECTION ALGORITHM

When detecting collusion between peers, there are two main classes of algo-
rithm currently in use. The “fingerprint” approach [Finkel et al. 2002; Hoad
and Zobel 2003; Monostori et al. 2002] involves creating a small sample of
a document that can be indexed and then be used to search rapidly through
other documents that are likely to contain high levels of similarity. The other
approach is a thorough pairwise comparison of a group of documents, which
tends to produce more readable results at the cost of speed in the comparison
stage [Culwin and Lancaster 2001; Monostori et al. 2001; Ribler and Abrams
2000].

A decision was taken to attempt an algorithm of the second class, as this was
more in keeping with the approach already used by Sherlock for source-code
plagiarism detection [Joy and Luck 1999]. Furthermore, a thorough comparison
algorithm is a prerequisite for a fingerprinting algorithm, as the better results
generated by the former are useful in comparing suspicious documents found
by fingerprinting [Finkel et al. 2002]. The algorithm was, therefore, designed
to meet the following objectives:

1. Results must be output in a form that can be easily visualized for interpre-
tation by a human marker.

2. Results must limit the amount of false information, where false information
is defined as similarities that are not useful in determining if plagiarism has
occurred.

3. The comparison must be thorough, in order to reduce the chance of missing
an instance of plagiarism.

A suspicious document can be broken up into its constituent sentences. Sen-
tences can be thought of as the components of which a natural language is
comprised, similar to statements in a programming language. Taking a higher
level view, such as paragraphs, was judged too coarse as the levels of similarity
between paragraphs would be much higher than between individual sentences.
Lower-level views, such as words or n-grams of characters [Ribler and Abrams
2000], were judged too fine a measure as they do not have the same scope for
identifying rewording of a source.

2.1 Preprocessing Documents

The preprocessing stage of the algorithm is to read in the documents that are
being compared and parse them into Document objects that contain a list of
Sentence objects, which, in turn, each contain a list of words that were found in
the original sentence in the source text.

The list of words contained in a Sentence object is then subject to three filters.
First, all words are converted to lower case to save time in later comparisons.
Second, a list of words that are considered too common to be useful are never
stored in the processed form of the document. This list is passed to the parser
as a parameter of the detection engine and will generally consist of words that
add no meaning to the sentence, such as “the,” “a,” or “that.” It is noted that
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—Sentence 1: “The brown dog was feeling very tired”
Sentence 2: “While the grey cat was full of energy, the brown dog was feeling very tired”

—(Common and repeated words removed)
SentenceObject 1: {brown, dog, was, feeling, very, tired}
SentenceObject 2: {while, grey,cat, was, full, energy, brown, dog, feeling, very, tired}

—The objects have 6 words in common, which is 100% of Sentence 1 but only 55% of
Sentence 2.
Average similarity is 77.5%.

Fig. 1. Similarity score example.

Hoad and Zobel [2003] refer to these words as closed-class words and suggest
that they are of little use in similarity searches. The third filter removes words
that are repeated in a sentence so that they only appear once in that sentence’s
list. This is done because of the nature of the metric used when comparing
sentences, which is explained below.

2.2 Comparing Documents

At this stage, alongside the original source-texts there is a set of objects con-
taining a specialized, processed form of the originals. These documents are
compared pairwise by comparing every sentence in the one document to every
sentence in the other. The comparison is done by computing a similarity score,
based on the word count metric detailed in Culwin and Lancaster [2001]. The
score is the average similarity between the sentences, computed as a function
of words in common and the lengths of the sentences being compared. The
example in Figure 1 shows how this works in practice.

A parameter, the Similarity Threshold, is passed to the detection engine.
Any similarity scores greater than or equal to the Similarity Threshold are
then stored as a link between the two sentence objects. The score used here is
not sufficient in itself to catch cases where sentences have been merged into
a longer sentence or split into shorter sentences during the act of plagiarism,
as the differing lengths affect the average similarity. For this reason, an extra
parameter is used to “catch” such cases. The Common Threshold is an arbitrary
number that says that, regardless of the score, any two sentences with a num-
ber of words greater than or equal to the Common Threshold in common will
cause a similarity to be stored. By default (due to testing results), the Similar-
ity Threshold is set to 80 while the Common Threshold is set to 8, although
experience suggests that setting the Common Threshold as low as 6 is useful
when comparing source-code comments or small groups of documents as the in-
creased amount of similarities does not detract from the quality of the results
in these situations. This comparison process is summarized in Algorithm 1.

2.3 Filtering Results

After the comparison process has completed, the result is a data structure con-
taining many links between sentences in different documents. Because of the
nature of the task being carried out, it is likely that not all of these links will be
useful. Consider the case where a tutor is comparing essays submitted on the
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Algorithm 1. Pseudocode for the Comparison Algorithm

Document [] docs = readDocsFromDisk();
for each Document, i, in docs {
for each document,j, following i in docs{
compareSentences (docs[i], docs[jl);
}
}
compareSentences (Document docl, Document doc2){
for each sentence,i, in docil{
for each sentence,j, in doc2 {
int common = number of shared words;
int score = similarityScore(i,j,common); // see example
if (score > SIM_THRESHOLD ||
common > COM_THRESHOLD)
storeLink(sent1l, sent2, score);
}
}
}
}

same title. Many of the similarities between these documents will be caused
by students using the same sources, the majority of which would be correctly
quoted. In such a situation, the task of identifying the most likely plagiarized
documents can be simplified by filtering out the similarities that are most com-
mon, such as those references. The chosen method is to set a threshold for the
filter, such that any sentence with more than the threshold number of similar-
ities will then have all its similarities ignored. By default this value is 6.

2.4 Document Scores

A score is assigned to each document so that pairs of documents can be com-
pared to each other. Those with high scores are then the ones that it would
be most useful to examine. There are two possible ways of calculating the doc-
ument’s overall score in the software. The first is to assign the score as the
value of the similarities between it and its most similar document. The sec-
ond is to multiply the total similarity score by the percentage of the total that
came from its most similar document. The first alternative often causes the
highest scoring documents to “pair up” (i.e., the documents tend to form into
pairs with the same scores near the top of the list) and it is then easy to see
where likely plagiarism pairs occur. The second just ensures that documents
with a high instance of similarity to one document will have their score in-
creased by more than those that do not. Either way, the assumption made is
that collusion is more likely to have occurred between two students than be-
tween widespread groups. Anything matching that pattern is more likely to be
a deliberate plagiarism than one in which the similarities are spread across the
whole data set, which could be caused by common sources or bad paraphras-
ing and would not necessarily constitute plagiarism if the sources were cited
correctly.
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Fig. 2. Initial results screen.

2.5 Complexity of the Algorithm

The time for the algorithm to complete is O(n?), where n is the number of
documents being compared. In the case where one document is being compared
to a group of likely sources, it will reduce to O(n). Optimizations are possible to
reduce the constant factors of the time taken, such as using hash tables to store
lists of words and loading all the documents into memory before commencing
comparison, and work to further optimize the algorithm is ongoing.

3. VISUALIZATION OF RESULTS

An important feature of any plagiarism detection tool is the method of visual-
izing results. Culwin and Lancaster have devised an innovative image-based
method to visualize their “fragmentary intercept similarity score matrix,” for
their “Visualisation and Analysis of Similarity Tool,” (VAST)[2001]. Ribler and
Abrams [2000] proposed their Categorical Patterngram as a way of visualizing a
many-to-one comparison on a chart. The Culwin and Lancaster method allows a
comparison of a single pair of submissions, while the Ribler method allows
a many-to-one view but forfeits the detail shown by a one-on-one viewer. The
method devised for viewing the results in Sherlock had the aim of providing both
amany-to-one and a one-to-one results view, as well as behaving similarly to the
hypertext approach used elsewhere [Monostori et al. 2001; Prechelt et al. 2002].

The initial screen presented to users lists all documents along with their
scores and some statistics about the comparison results. From this screen the
user can decide which documents need examining. It is very rare that a user will
have time to examine all the possible pairs from here: in a set of 100 essays, for
example, there are 4950 pairs to examine. For this reason the user will probably
only examine the documents close to the top of the list.

Figure 2 shows the results from a set of student essays used during testing.
The black box drawn over the screen is in accordance with data-protection
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Fig. 3. One-on-one results visualization.

requirements. The screen shows the document’s final scores as well as some
statistics about the set as a whole. As can be seen from Figure 2, the vast
majority of the similarities found by the detection algorithm are ignored in a
large set—93.64% in this case. This is normal for a large data set and ensures
that only those similarities most likely to be useful have been kept, as was
intended in the specification of the system. The other pattern shown by the
top of the list having much higher scores than the rest is also repeated in
most student assignments, suggesting that intracorpal plagiarism is not as
widespread as we might have feared from the press coverage, although the
scores produced do not offer any indication of the level of plagiarism of external
sources.

A many-to-one results viewer is made visible when the user selects a docu-
ment from this table. The viewer displays the selected document on the left-
hand side and highlights suspicious sentences in red. By clicking on these sen-
tences, the user can choose the link they wish to follow from that sentence. The
chosen document will be displayed on the right-hand side of the screen and the
display is then scrolled to make the similar sentence visible. In this manner,
the user can view all the documents that have similarities to the one document
they are examining.

A one-on-one viewer is also provided that only shows the similarities between
the chosen pair. This is most useful in deciding if collusion has occurred between
two students. It also allows the user to output HTML frames that can be used
on computers that do not have Sherlock available or printed to form evidence,
for example, in a formal hearing to investigate alleged plagiarism.
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4. TESTING THE PARAMETERS

As has been described previously, there are various parameters to the detection
engine that can be set by the user. These include the list of common words, the
Similarity Threshold, the Common Threshold, and the maximum links setting
for the filter. It was desirable to carry out testing in order to determine some set
of “optimum” values for these parameters in the majority of cases. In carrying
out the tests an opportunity was also available to assess the effects of the
variations in settings in order to see which parameter was most “dominant.”

In order to achieve this goal, a definition of what is considered the optimal
result is required. A coderivative is defined to be a pair of documents that can be
shown to have a common source or sources and a similarity measure is defined
to be a way of measuring the possibility that a pair of documents is coderivative
[Hoad and Zobel 2003]. Hoad and Zobel [2003] state that any similarity measure
is ideal if, “When searching for co-derivatives, no document should be ranked
more highly than the one that is identical to the query,” where the query is
defined to be the document being compared to the source.

By the above definition, the similarity measure described so far is not ideal,
since an exact copy of the original may not return a higher score than a docu-
ment where the original has been copied and pasted in its entirety more than
once. However, this would be a counterproductive measure for a plagiarist to
take since it would not only increase the similarity between their document
and the original but the repetition does not make sense in terms of good style.
Therefore, for the purposes of these tests the definition of an ideal similarity
measure [Witten et al. 1999] is redefined to be one that returns the documents
most likely to be coderivative as having the highest scores. In the case where
two similarity measures are both ideal, the better measure will be judged by
the accuracy of the returned similarities.

Accuracy is not assigned a numerical value since whether a pair of sentences
are plagiarized is, in large part, a matter of subjective opinion. It is not the
purpose of the software to state categorically whether plagiarism has occurred
but merely to provide an indication of which documents are most likely to be
plagiarized. Accuracy will, therefore, be determined by comparing the results
to the default settings used during development and declaring whether they
show the suspected plagiarism more or less clearly.

4.1 Issues with the Analysis of the Natural Language Plagiarism Detection

There can be no definitive way of saying that all possible plagiarism has been
detected within a large data set. In defense of the detection engine, there have
been no noticeable incidents of Sherlock missing a document plagiarized from
a student within the same set, although this cannot be taken as proof that
it will never miss or has never missed an instance of plagiarism. Also, the
term accuracy, as defined above, is a subjective judgment reliant on the tester’s
concept of what constitutes definite plagiarism. However, it is unlikely that a
computer program would ever be completely trusted to automate the task of
plagiarism detection, verification, and punishment, since a human judgment
will always be needed for a serious charge.
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In matters such as this, plagiarism detection is not amenable to definitive
analysis and it is, therefore, necessary that human judgment will play a role in
choosing which settings produce the best results.

4.2 The Tests

4.2.1 Default Settings. These are the settings originally used during de-
velopment of sentence-based plagiarism detection for Sherlock. (Explanations
of the purposes of each individual parameter are given earlier in this paper).

Similarity Threshold 80

Common Threshold 6
Common Words the, an, and, a
Maximum Links 6

These seemed, by observation, to be the weakest set of parameters that re-
turned accurate results. It was the purpose of the following tests to determine
whether different parameters returned more accurate results and to, there-
fore, decide which parameters to set as the defaults. All subsequent tests will
change one of the default settings and analyze how the results differ from those
produced by these settings.

4.2.2 Data Sets. Tests were conducted using two sets of anonymized es-
says. The first had a set title while the second afforded students a choice be-
tween two titles. For the purposes of testing Sherlock, these assignments were
ideal as having the whole class write on the same title makes the opportunity
for collusion much greater.

From this point on, the data sets will be referred to as follows:

e The first set of essays, will be referred to as set A and consisted of 125
documents.

¢ The second set of essays had two possible titles. Those submitted on the first
title will be referred to as set B1, which contained 95 documents. The other
will be referred to as set B2 and contained 36 documents.

Students were asked to submit the work online [Joy and Luck 1998] along with a
paper copy. The requirement to submit electronically was not enforced because
it was the first time this had been required for a nonprogramming assignment
and was therefore being used as a dummy run.

Set A contains a plagiarism triple, with a very strong similarity between one
pair of the three. A couple of apparently false reports occurred in this set when
one pair included the same document as an appendix while another had very
similar bibliographies (which could also have been pursued as an indicator of
possible plagiarism). Set B1 contained four very similar pairs, with one of the
pairs having a third member partially similar to the other two. Again, there
is also a good match between students with similar bibliographies. Set B2 has
one definite pair and another small instance is also visible, where students
may have copied each other or may have plagiarized the same source. These
plagiarisms were all identified using the default settings. It was also noted
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Fig. 4. How the filter affects similarity score distributions (default settings).

that the similarity sets generated for the two large data sets (A and B1) were
unreasonably large. The theory to explain this was that the default settings
were causing too many unhelpful similarities to be stored in such large sets.

For the most part, the tests were run on set B2 for the sake of speed, as a
complete run could take place in a couple of minutes, while the larger sets were
taking around 25 minutes per run. When a new setting appeared sufficiently
beneficial it was applied to the other sets to ensure that the changes were not
an artifact of the data in B2. In cases where individual files are referenced from
the text, they have each been given a unique ID for the set to hide the identity
of the students involved.

4.2.3 Varying the Strictness of the Filter. The default setting for the filter
is the least important of the four settings, as it can easily be changed by the user
after the detection engine has finished comparisons. It is usual in a medium
to large data set for the vast majority of similarities to be ignored by the filter.
This is normally acceptable because we are interested in the places where the
similarities are limited to a few documents rather than the case where many
have similarities to a given sentence because of lecture notes or recommended
texts.

Figure 4 shows how the filter affected the useful score distributions for set
B2. As would be expected, the filter has a large effect on the similarities that are
considered useful. However, because of the large amount of similarities being
ignored, the score distribution for the ignored scores stays roughly the same
regardless of setting.

Figure 5 shows how the same settings affected the relative values of docu-
ment scores. The top document had a value of 100%, in each case, with all others
given a value as a proportion of their score compared to the top score. The file
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IDs are placed in sorted order for their position using the default settings.
The one definite instance of plagiarism is very well separated from the rest of
the documents in terms of score, while the smaller instance of plagiarism in the
pair of 3 and 7 also remains in the same position regardless of the setting. The
documents after these two show no obvious signs of plagiarism so we can say
that the accuracy of the filter improves as it becomes stricter. However, stricter
filter settings also resulted in more similarities being ignored and so the results
did not show all the obvious plagiarism.

For this reason, it was decided to keep the default filter setting as it was
originally.

4.2.4 Varying the Similarity Threshold. This setting will store any sen-
tences with a high similarity that do not have enough words in common to
be stored by the common threshold check; this ensures that similar short sen-
tences will be stored. Figure 6 shows how varying the Similarity Threshold
affected the useful score distributions in data set B2. This setting has a far
more drastic effect than the filter settings. On a very low Similarity Threshold,
many more similarities are stored between sentences that would not appear
similar to the eye and this results in a much less accurate set of similarities
being considered useful by the filter. From the diagram, it would appear that
the previous default of 80 is best as it produces a distribution where over 50%
of the useful similarities have a score above 80, and at least 25% have a score
of 100, indicating virtually identical sentences in terms of their content.

When the Similarity Threshold is set to 95, the results do not follow the
pattern, one would expect as the distribution becomes more spread. This is
because there are many sentences with scores between 80 and 95 that do not
get stored by the Common Threshold, so setting the Similarity Threshold any
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higher is actually counterproductive as it results in fewer accurate similarities
being passed to the filter.

Upon investigation of the results produced, the Similarity Threshold had
very little effect on the order of the documents, but lower settings produced far
less accurate results in that marked similarities were not very similar at all.
For this reason, the Similarity Threshold was kept at its previous default value.

4.2.5 Varying the Common Threshold. The effects caused by varying the
Common Threshold were much more drastic than those caused by varying the
Similarity Threshold and this confirms the notion that the Common Threshold
is the more dominant metric. Figure 7 shows this very well. Setting the Common
Threshold lower than the original default served no real purpose at all: so many
similarities were stored that only 117 out of 650,000 were considered useful
by the filter! However, while the results themselves were of little use, it is
interesting to note that the obviously plagiarized pair was still at the top of the
list. Toward the stricter end of the settings, increasing numbers of scores are
kept as a percentage of the total as well as increasing the overall useful score.

Looking at the results, the setting of 8 produced more accurate results than
the lower settings. The results produced using this setting actually had another
couple of pairs that had probably copied from the same source without a citation.
Extra plagiarism was also found in set B1, but the difference was less noticeable
in set A, which seems to have a lower amount of plagiarism.

From these findings it is clear that when using an increased Common Thresh-
old the results produced became more accurate.

4.2.6 Varying the Common Words List. These are the words that are fil-
tered out by the parser during preprocessing of the documents. These words
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Fig. 7. The effects of varying the Common Threshold.

are judged too common to be useful in distinguishing between sentences. Orig-
inally, the intention had been that nouns common to an assignment could be
added to this list, but upon trying this it was found to have too drastic an ef-
fect, resulting in far less accurate results. The different lists used to test the
detection engine are shown below in the tabulation:

No common words

Default list the, an, and, a
Words with no meaning the, an, and, a, so, as, of, or, to
Many common words the, an, and, a, so, as, of, or, to, its, this, that,

in, this, hers, these, we, they, do, so, be, if, for,
any, on, is, was, out, are

The long list and the empty list were included as a check that the com-
mon words list was having a worthwhile effect on the results. By having no
words filtered we would expect many more similarities while filtering too many
would greatly reduce the accuracy of the results. The other non-default list was
included because after the original hunch that excluding common words was
corroborated by Hoad and Zobel’s [2003] observation that “[closed-class words]
indicate the structure of the sentence and the relationships between the con-
cepts presented, but do not have any meaning of their own.” This suggested that
filtering more of the closed-class words may result in more accurate results.

Figure 8 shows a very similar shape to the graph for the Common Threshold
and many of the same reasons apply here as well. The “no words” list also pro-
duces too many similarities and results in a very lengthy filtration phase that
returns virtually no useful results. The longest list of common words produces
fewer similarities but unlike the case with the Common Threshold, increasing
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the strictness meant the results were not meaningful, as they contained many
similarities that do not make any sense when reading them. The results pro-
duced by the “words with no meaning” list were best since they retained the
accuracy of the default list while having the advantage of not producing so
many similarities, which saves time during detection and filtration.

4.2.7 New Default Settings. From the tests carried out it was clear that
there were changes that could be made to the default settings in Sherlock that
would increase detection speed, filtration speed, and the accuracy of results.
These changes also serve to make Sherlock scalable to larger data sets such as
A and B1. The new settings are:

Similarity Threshold 80

Common Threshold 8
Common Words the, an, and, a , as, or, of, to
Maximum Links 6

These are significantly stricter than the original default settings. They
achieve the desired results of more manageable similarity amounts for large
data sets as well as improving accuracy and execution speeds. The Common
Threshold and Common Words list have the most impact on the amount of
similarities produced by the detection engine and increasing their strictness
improved the quality of filtered results.

Subsequent use of these settings has been successful. However, there can
be no such thing as an “all-purpose” group of settings for every possible size
of data set. These settings are tuned to work for reasonably large classes on
assignments of around 3000 words in length; smaller class sizes or analyzing
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source-code comments will require different settings to achieve the same level
of accuracy.

5. COMPARISON TO OTHER TOOLS

As part of the overall evaluation of Sherlock’s new features, a comparison was
undertaken with two other plagiarism detection tools that were also specifically
designed to detect intracorpal plagiarism [Culwin and Lancaster 2001]. The
two tools were CopyCatch Gold ES [Woolls 2004], and PRAISE (Plotted Ring of
Analysed Information for Similarity Exploration) with VAST (Visualisation and
Analysis of Similarity Tool) [Culwin and Lancaster 2004]. CopyCatch Gold ES
is commercial software designed to work with electronic submission systems,
such as BOSS [Joy and Luck 1998], that allow a tutor to download all the
submissions for an assessment into one directory. The software is available
free to higher education institutions in the UK. Its website claims it is in use
by upward of 42 institutions, most of which are in the UK. PRAISE and VAST
were developed at London South Bank University and are available from the
website [Culwin and Lancaster 2004]. They are not production quality tools but
research has been published on them [Culwin and Lancaster 2001].

CopyCatch is unique in this area as its algorithm was not designed by a
computer scientist but rather by someone approaching the field from a lin-
guist’s point of view. The software searches for phrases, which are composed
of a “function” word followed by either all the “content” words until the end
of the sentence or another function word [Woolls 2003]. The exact algorithm
used by CopyCatch is unknown due to the proprietary nature of the software
and so it is therefore only possible to compare the results produced to other
software rather than draw conclusions about how the algorithm may have pro-
duced better or worse results. From using the software it would appear that
the class of function words is a superset of the closed-class words that Sherlock
uses.

PRAISE is a tool for analyzing a set of submissions. It draws its results as a
graph with submissions as nodes and similarities as weighted edges in a similar
manner to the method Sherlock uses for its source-code results. Analyzing an
edge will launch VAST, which generates an image representing the fragmentary
intercept similarity score matrix and allows the user to highlight an area of the
image. This highlighted area is represented in the original texts as different
colored text. The algorithm used by PRAISE is to assign scores based on how
many chains of a given length of words, sentences, or characters occur when
comparing the texts. VAST’s image generation works by breaking a document
into fragments. Each pixel in the image is then colored on a grey-scale depending
on the number of words two fragments have in common.

5.1 Quality of Results

The tools were then compared for the quality of their results and how well
the results generated matched each other. For this test, detection was run on
data set B1 as this set contained at least four plagiarism pairs according to
the results from Sherlock. Here are details of the four pairs found by doing an
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analysis of the results in Sherlock, in the order they were presented:

e Pair 1: Widespread verbatim copying, same grammatical errors, minimal
rephrasing in other sections, no reordering of ideas.

e Pair 2: Some verbatim copying, same grammatical errors, some rephrasing,
some reordering of ideas.

e Pair 3: Plenty of rephrasing and reordering, same grammatical errors. A
third party also involved but to a lesser extent.

e Pair 4: One passage where both have virtually the same wording. Could be
plagiarizing the same source.

In the first three pairs the certainty of collusion is because the pairs share
the same errors, which, when coupled with the extensive similarities found
throughout these pairs, makes the case for plagiarism very strong. The fourth
pair have few similarities other than a long passage where they are virtually
identical, suggesting that they have not colluded but have plagiarized the same
source.

Next, detection was run using PRAISE and VAST. Pair 2 was given top rank-
ing by PRAISE, while Pair 1 was placed second. Pair 3 was ranked third and
the other document that was similar to this pair could also be found after a
little investigation. The fourth pair was not ranked highly and proved difficult
to find. In addition, one more pair worthy of investigation was identified:

e Pair 5: Some verbatim copying, possibly from the same sources. Some
paraphrasing.

This pair was recognized by Sherlock but because of the low occurrence of simi-
larities was not given a very high score. Even though the PRAISE results were
quite similar to those generated by Sherlock, it was quite hard to find exactly
which areas of the document were similar due to the nature of the images gen-
erated by VAST. This is because the image only points to general areas of the
documents that are worth investigating rather than giving exact sentences.

Finally, detection was run using CopyCatch. Pair 1 was placed 14th on the
similarity list generated by CopyCatch, while Pair 2 was given top ranking.
Pair 3 was ranked 15th, while Pair 4 did not feature highly in the list, as was
Pair 5.

The similarity score generated by CopyCatch seemed inconsistent in some
places. An example of this occurred with many highly ranked pairs, where
the amount of similarity between documents was very low but appeared to be
considered worthy of investigation. An example of this was the pair ranked 6th
by CopyCatch, which only had three sentences marked as being similar. Two
other pairs found by CopyCatch were considered worthy of investigation:

e Pair 6: Very similar introductions, one essay cited a guest lecture given at
the university while the other appeared to be using the same material
without citation.

e Pair 7: Nearly identical conclusions.
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Both these pairs were found by Sherlock and PRAISE but did not feature promi-
nently and would probably have gone un-investigated. The pairs from four
through to seven were all lesser instances of plagiarism than the top three
and were probably more attributable to either a bad understanding of how and
when to cite sources or laziness. The top three pairs were all considered to be
definite instances of plagiarism worthy of investigation as they showed defi-
nite collusion and a disregard for the university’s rules on collusion in assessed
work.

5.2 Visualization of Results

As has already been mentioned, in the VAST results visualization was consid-
ered to be vague when the exact locations of suspicious were required. With
some high-scoring pairs, it was also hard to see any areas of overlap between
the documents as the whole image was composed of very slightly varying shades
of grey.

The visualization results in CopyCatch is quite similar to the method used
by Sherlock. Pairs were presented in order of calculated similarity and then
individual pairs could be examined with suspicious text highlighted. The major
problem with this was the lack of any way to quickly link between similar
sentences by clicking on them. The similar sentence had to be found by scrolling
the opposite pane to the given paragraph and sentence. Both CopyCatch and
Sherlock support exporting results to a HTML format for external viewing.

Sherlock presented a user-friendly visualization; the hypertext metaphor is
now well understood by all reasonably computer-literate people. User feedback
during the development of the software indicated that the interface allowed
rapid navigation around documents and examining similarities by clicking on
sentences encouraged users to investigate while the familiar metaphor meant
the learning curve was very shallow. In addition, having a sentence highlighted
as the user moved the mouse across it meant it was clear which sections of the
text were considered to be similar.

5.3 Speed of Detection

When comparing the different tools for detection speed, they were all run on the
same machine (650 MHz Athlon, 384 MB RAM, Java 1.4, Windows XP), using
the same data set with the same background programs loaded. The essays from
set B1 were used, which consisted of 95 essays with a recommended length of
3000 words.

Sherlock Detection (sec) 1407
PRAISE Detection (sec) 408
CopyCatch Detection (sec) 25

From these results it is certainly obvious that the commercial program has
a definite speed advantage. When considering the time for PRAISE it is also
worth noting that the act of generating an image to view the similarities in
VAST also takes an additional 87 sec for each pair viewed, while viewing results
in CopyCatch is instantaneous and Sherlock takes 12 sec to load its results

ACM Journal on Educational Resources in Computing, Vol. 4, No. 4, December 2004.



18 D. R. White and M. S. Joy

and then all similarities can be viewed instantaneously. All three tools were
written in Java so there was no possibility that one gained speed through native
compilation.

6. EXPERIENCES USING SHERLOCK

While the Sherlock implementation of our algorithm should still be considered
nothing more than a proof of concept, the tool has been successfully used on
courses within the department. Instances of suspected collusion between stu-
dents were identified, leading to investigations by academics. While we cannot
discuss specific cases due to confidentiality issues, it suffices to say that the tool
has proved useful.

With a prototype tool such as this, there are still many limitations on its
use that would not exist in a more polished version: Sherlock currently has no
ability to process documents that are not given in a plain text file. This also
precludes the use of HTML documents. However, given the open-source nature
of the software and the availability of open-source file conversion libraries, it
would be possible to add such features to the software.

It is our experience that a clear submission policy is required for students
to adhere to. On many courses within the department, students are asked to
submit an electronic copy of their work via our BOSS Online Submission System
[Joy and Luck 1998], but a specific format is not required of them. This leads
to a variety of document formats, ranging from Microsoft Word to Adobe PDF
to LaTeX, which further complicates the processing task. Having to convert all
essays to plain text files is currently a very time consuming task and prevents
the widespread use of the software within the department.

Sherlock is available as part of the BOSS Online Submission System (BOSS),
an online system for the submission and marking of student work. Both BOSS
and Sherlock are licensed under the GPL and so are freely available along with
their source code from http:/sherlock.org.uk/.

Many universities in the UK now provide access to the Joint Information
Systems Committee (JISC) plagiarism detection service as a means of checking
for direct plagiarism from websites and digital libraries [iParadigms 2005]. This
is a fast and easy way to check large bodies of work for plagiarism. Sherlock’s
advantage over such a service is that it is better able to detect instances of
paraphrasing or rewording. The standalone nature of Sherlock also lessens the
issues with data protection laws as there is no need to transmit a student’s
work to a remote server for plagiarism detection. This advantage also applies
to the other software Sherlock was compared to.

7. CONCLUSIONS

We have designed an algorithm for identifying similarities in collections of
documents and have implemented and tested the algorithm on several large
data sets. Comparing documents at a sentence-based level is a novel approach
to the problem and we believe it offers new possibilities for plagiarism detection.
The sentence-based approach allows for a more useful comparison than simply
looking for chains of words.
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While the chosen method for filtering the results may appear oversimplistic,
the results obtained are very useful. Future work could take place in improving
the filter by making it more sophisticated, perhaps by only keeping a propor-
tion of sentences such that they contain lower numbers of similarities. Another
method would be to make the preprocessor more intelligent by eliminating sen-
tences that occur within quotations or have a citation at the end. However, there
are many issues with deciding where the citation applies to or even whether the
citation is sufficient to prevent a charge of plagiarism. Such issues are discussed
extensively in Chapter 4 of [Decoo 2002].

Comparison with other natural language plagiarism detection tools indicates
that the algorithm is accurate for detecting clusters of similar documents and
generated similar results, although it was considerably slower, which may be
due to the fact that the software is still at the prototype stage and the code has
not yet been optimized.

Finally, use of the software by academics has indicated that Sherlock’s
visualization results is a good model to use as it makes users feel comfortable
thanks to the familiar hypertext metaphor.

7.1 Future Work

An immediate improvement is to further optimize the software so that detection
speeds approach those of commercially available software, such as CopyCatch.
A further improvement would be an archive of submitted files that it could then
check against new submissions. This would allow it to catch plagiarism across
different years or from different courses. While the current implementation
would be far too slow for such a proposal, this could be countered by using
the fingerprinting techniques outlined in Hoad and Zobel [2003] and Finkel
et al. [2002] as a way of determining which documents merit comparison using
the thorough sentence-based approach. Further testing of the parameters for
different types of data sets, such as comments from source code and smaller
comparison sets, would also be desirable.
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