
Chapter 2
Service Advertisement and Discovery

Shanshan Yang and Mike Joy

Abstract Service Advertisement and Discovery is a fundamental process in service
oriented computing, which also provides a precondition for other processes such
as service selection and composition (these will be covered in detail in later chap-
ters). This chapter provides an introductory overview of the concepts, standards and
current developments related to Service Advertisement and Discovery, summarised
from the perspectives of system architecture, data structures, system requirements
and Web Services. The incorporation of agent-based technology into Service Ad-
vertisement and Discovery is covered, and the chapter concludes with a discussion
of future research challenges in this area.

2.1 Introduction to Service Advertisement and Discovery

A service is “a software system designed to support interoperable machine-to-
machine interaction over a network” [73]. The purpose of a service is to “provide
some functionality on behalf of its owner—a person or organisation, such as a busi-
ness or an individual” [73]. The service provider is the entity that provides a particu-
lar service, and the service requester (or consumer) is the entity that wishes to make
use of a provider’s service. The goal of finding an appropriate service (the process
of performing discovery) requires the service requester and provider to “become
known to each other”, and it is necessary to ensure that service descriptions are
published somewhere (in a registry) before that information is available to others.
This task is performed by another entity—a service broker [49].

Shanshan Yang
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: Shanshan.Yang@dcs.warwick.ac.uk

Mike Joy
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
e-mail: M.S.Joy@warwick.ac.uk

N. Griffiths, K.-M. Chao (eds.), Agent-Based Service-Oriented Computing, 21
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-041-0 2, c© Springer-Verlag London Limited 2010

Shanshan.Yang@dcs.warwick.ac.uk
M.S.Joy@warwick.ac.uk

22 Shanshan Yang and Mike Joy

Requestor
Service

Provider
Service

Broker
Service

Ser
vi

ce
 c
om

po
si
tio

n Service A
dvertisem

ent

Service Discovery

Fig. 2.1 Service oriented architecture

Most authors consider that a basic service oriented architecture consists of three
different entities: services providers and requesters and a service broker (reg-
istry) [13,31,48,53,67], and the relationships between these entities are illustrated in
Figure 2.1. Dustdar and Treiber [31] identify the role of the service provider as one
of providing descriptions, and that of the broker as publishing them. The requester
contacts a broker in order to locate a suitable service to fulfil a given task, and
when an appropriate service has been identified, the broker will additionally pro-
vide information about how that service can be invoked. The broker uses a service
registry (repository) to store the necessary information about services, allowing both
user searches and the publication of service descriptions. Searching for and locat-
ing services, in order to identify matches between service requesters and providers,
is regarded as a key issue, and service brokers (or registries) play a major role in
this task. Thus the role of the service broker and its registry is central to the current
model of service oriented computing [28].

Discovery

Composition

Selection

Fig. 2.2 Service execution workflow

2 Service Advertisement and Discovery 23

Singh and Huhns’ [75] summary (Figure 2.2) of the services execution workflow
identifies the activity of service discovery as the first step, followed by the other pro-
cesses including service selection and composition. Some or all of these steps can
be performed offline or at runtime. Service discovery deals with finding services
that meet a specified description, whereas selection deals with “choosing appropri-
ate services from among those that are discovered for the given description” [80].
Service composition deals with combining small services into larger ones to meet a
specified goal [8, 10]. As Wu [93] remarks, “As an essential SOA activity, [service
discovery] paves the way for conducting further important SOA activities such as
service sharing, reusing and composing in a dynamically changing environment.”
In this chapter, we consider the first phase—service advertisement and discovery—
since in order to discover the services needed by the requester, it is necessary to
specify and publish the services effectively first, which means that service adver-
tisement provides a essential precondition for service discovery. We focus in par-
ticular on web services, that use web technologies to implement a service-oriented
architecture.

There are no generally accepted formal definitions of either Service Advertise-
ment or Discovery (or synonymous phrases), and different approaches to describing
them have been employed. For example, Yu et al. [95] define service publication as
“to make the service description available in the registry so that the service client can
find it” and service lookup as to “query the registry for a certain type of service and
then retrieve the service description.” The service description is identified as con-
taining both syntactic information (such as the data formats and protocols used by
the services) and semantic information (relating to the domain in which the services
are employed together with generic issues such as service functionality and quality
of service). Vitvar [87] describes discovery as “tasks for identifying and locating
services which can achieve a requester’s goal”, whereas Singh and Huhns [75] view
discovery as “the act of locating a machine-processable description of a web service
that may have been previously known and that meets certain functional criteria”.

Advertising service information is normally considered at the same time as ser-
vice discovery. Current research in service advertisement focuses on how web ser-
vices are described, or specified, or published from a technical view, such as what
standards people should adopt, or what architecture could be used effectively.

A number of researchers [12,55,58, 69] also suggest that agent technologies can
be fitted into service oriented architectures, to improve the effectiveness of the ser-
vice advertisement and discovery process. Agents can be members of multi-agent
environments acting not only as brokers, but also as service providers and con-
sumers. Details of agent based approaches will be covered after we have introduced
the fundamental technologies and current developments of service advertisement
and discovery.

24 Shanshan Yang and Mike Joy

2.2 Basic Technologies

It is commonly agreed that three basic standards are currently in use for web service
advertisement and discovery [17, 20, 31, 37, 48], each with its own specific role.

• SOAP: Communication—how services can be used
• WSDL: Description—how services can be published
• UDDI: Discovery—how services can be discovered

Fundamental to the efficacy of these standards is the use of a common commu-
nications language [75], and XML is used by each. The communications protocol
is defined by SOAP, and WSDL includes support for passing information about
functions supported by services, including their names, parameters and result types.
UDDI specifies the contents of the registry, enabling users to search for services
and find sufficient information for their deployment—an essential prerequisite if
web services are to be meaningful. These standards have been developed by organ-
isations including the World Wide Web Consortium (W3C) [73], OASIS [61] and
the Open Group [64] since 2000 with the latest versions published in 2007.

2.2.1 SOAP

In the context of web services, SOAP (Simple Object Access Protocol) is regarded
as the standard message protocol for exchanging XML data over the Internet.
SOAP is a stateless paradigm which enables complex interactions between services
through request/response exchanges and other unidirectional messages. However,
SOAP lacks support for the transmission of semantic data, such as routing and fire-
wall traversal [25].

A SOAP message is essentially an XML element with two XML child elements,
a head and a body. These contain descriptions of the message content and how to
process it, encoding rules (for application-specific data types), and the representa-
tions of remote procedure calls and responses [86]. This information is then wrapped
into an envelope, and is bound to a transport protocol for the purposes of the actual
information exchange [78]. The following is an example of a SOAP message for in-
voking a web service for getting a stock price, which is cited from the W3C School
website [88]:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap=

"http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle=

"http://www.w3.org/2001/12/soap-encoding">
<soap:Body xmlns:m=
"http://www.example.org/stock">

<m:GetStockPrice>
<m:StockName>IBM</m:StockName>

</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

2 Service Advertisement and Discovery 25

2.2.2 WSDL

WSDL (Web Service Description Language) formally provides a model for describ-
ing interfaces for web services [75, 86, 89]. A WSDL description specifies the loca-
tion of the service, the operations for invoking and consuming the web service, and
supports binding for defining message formats and protocol details. The following
is a typical structure of a WSDL document, which is cited from W3C School [88]:

<definitions>
<types>definition of types</types>
<message>definition of a message</message>
<portType>
<operation>definition of a operation</operation>

</portType>
<binding>definition of a binding</binding>
<service>
<port>definition of a port</port>

</service>
</definitions>

A typical WSDL document contains the following elements. The type element
specifies the complex data types for a message, which describe the data being com-
municated between the web service and the requester. A set of messages and their
directions (input or output) form the operations the service exposes. A set of op-
erations then forms a port type, for each of which the concrete protocol and data
format specifications are referred to as a binding. The association of a network ad-
dress with a binding defines a port, and a collection of ports defines a service. In a
single WSDL file multiple services can be described [92].

WSDL defines services as “collections of network endpoints or ports”. The ab-
stract definitions of messages and the endpoints/ports are then separated from their
concrete implementation, such as protocols and data formats, allowing for reuse of
those definitions [73].

2.2.3 UDDI

UDDI (Universal Description, Discovery and Integration) is a registry of web ser-
vice descriptions, allowing users (such as businesses) to publish descriptions of
themselves and their services (together with technical information about service
interfaces), and clients (such as customers) to identify appropriate service descrip-
tions and create bindings to them (using SOAP) [89, 96]. Wang [89] summarises a
UDDI registry as being “similar to a CORBA trader and can be considered as a DNS
service for business applications”. It serves as a generic data model for providing
detailed web service specifications including business entities, technical access in-
formation, natural language descriptions, keyword-based classification scheme and
relevant technical specifications [25].

The initial idea of maintaining a central registry for publicly available web ser-
vices by large vendors, such as IBM or Microsoft, has been abandoned because a

26 Shanshan Yang and Mike Joy

single repository can not meet all the needs for different specific SOA systems [96].
Version 3 of the UDDI specification is over 400 pages long and contains over 300
function calls. This complexity (for end users) has led to the closure of the public
UDDI Business registry and has hindered its widespread adoption, and has led to
speculation that future registries will be private [93]. As Chappell [21] remarks: “the
public registry UDDI is too complex for end users since UDDI specification is more
driven by its primary members than feedback from the real world end users”. How-
ever, Baresi and Miraz [6] also suggest that the central registry will continue to be
important since not all companies will have the facilities for servicing requests lo-
cally, and Wu [93] considers that “most private registries would focus on a specific,
closed domain”.

Both private and public registries follow the two principals of UDDI specifica-
tions relating to the composition, structure and operation of a registry—the infor-
mation provided about each service (including its encoding) and an API specifying
how to update the registry and how to make queries. The information encoded by
UDDI is of three possible types—white pages (names, contact information), yellow
pages (categories of information based on service types) and green pages (technical
data) [25, 92].

A recent development is UDDIe, an extension to UDDIe which incorporates ser-
vice leasing and replication. UDDIe includes the ability to search for services based
on blue pages (user defined properties associated with a service). Support for ser-
vice leases, by which a service is restricted to storage in the registry for a limited
period of time, enhances the dynamic capabilities of the registry [74].

2.3 Web Service Registry Architectures

This section covers how a web service registry supports and implements service
advertisement and discovery. Currently, a number of architectures for web service
advertisement and discovery have been developed, influenced by the architectures
of different service oriented systems, which can be viewed from both structural and
functional perspectives. However, the technology is still emerging, and components
still being developed include quality of service descriptions and interaction models.

The main structure difference between different architectures is about how the
registries are distributed, and three types of architectures have been proposed,
namely centralised, decentralised and hybrid.

2.3.1 Centralised Registries

In a centralised registry (such as UDDI), all web service registry entries are con-
tained within a single “well known” central entity used by each web service
provider, similar to a traditional client-server approach [22, 31, 39].

2 Service Advertisement and Discovery 27

However, there are limitations on this type of architecture. First of all, a cen-
tralised registry is not scalable—it can only support small scale systems. Simple
easy-to-use technologies such as UPnP, SLP and Jini [39] and the DS-1, Hawkeye
and RGMA approaches for grid systems [47] have been reported as examples of
small-scale centralised approaches which do not scale well. The second limitation
is that it is unsuitable for dynamic environments, and Chamri-Doundane et al. [39]
point out that frequent changes affect the system behaviour and its efficiency. The
third is that a centralised registry does not handle fault-tolerance well, there being
the possibility of a single point of failure [77].

Despite these limitations, several centralised approaches exist, and are effec-
tively applied in situations where scalability, dynamism and fault tolerance are not
paramount. Below, we introduce a selection of example centralised systems.

The ebXML (electronic business XML) standard defines a framework within
which businesses can co-operate. It is similar to UDDI, but is broader in scope, be-
ing able to store arbitrary data and specifying interrelated components for business
activities. Two interfaces are specified, LifeCycleManager (which handles the sub-
mission of new objects to the registry, the classification of existing objects and the
removal of obsolete objects) and QueryManager (which handles the processing of
client requests to locate web services using either SQL queries or filters) [33].

SLP (Service Location Protocol) is used by devices (such as printers) on a (lo-
cal) network to announce services. The centralised service repository is known as a
directory agent (DA), and service agents (SAs) and user agents (UAs) use the DA
to register and locate services respectively [42, 70].

Sun Microsystems’ Jini (now being developed by Apache as Apache River) is a
networked technology which allows Java software to be accessed using a centralised
service architecture. In addition to service information, lookup services store prox-
ies which enable code to be executed either locally or remotely, thus supporting
dynamic use of drivers at runtime [4].

The Salutation Consortium has created an open standard which is both a ser-
vice discovery and a session management protocol. The architecture is principally
targeted at device connectivity on local networks, and relies on devices communi-
cating with a centralised repository (the Salutation Manager) in a fully distributed
manner and using a message-passing paradigm. In a low-bandwidth wireless net-
work without fixed IP addresses, the large volume of control traffic generated is
problematic. The Consortium was disbanded in 2005 [71].

R-GMA (Relational Grid Monitoring Architecture) is based on a relational data
model, and uses a relational database to implement the centralised GMA reg-
istry [47].

2.3.2 Decentralised Registries

As opposed to centralised systems, the localisation of services in a decentralised
registry is completely distributed and diffused. This type of registry architecture

28 Shanshan Yang and Mike Joy

has been applied to different types of modern environments, including peer-to-peer
networks, mobile-ad-hoc-networks and Grids [39].

2.3.2.1 Peer-to-Peer Networks

In a Peer-to-Peer (P2P) network, each node is (in some sense) equivalent to every
other node. Applications rely on ad-hoc connections between nodes (peers) with-
out a centralised server, and the advantage lies in scalability, robustness, and ease
of deployment and maintenance. An example set of protocols that supports a P2P
architecture is Sun Microsystem’s JXTA, which includes features such as service
advertisement and messaging in addition to basic peer management [55]. Each ser-
vice provider has a local registry and performs the roles both of service provider and
of registry, but only for the period of time that the provider is connected to the P2P
network, thus limiting the lifespan of each registry entry and enabling a dynamic
registry structure with resource localisation and sharing [31, 39, 66].

A number of P2P approaches to web services exist. Schmidt and Parashar’s ar-
chitecture [72] uses distributed hash tables and an indexing system based on the
CHORD data lookup protocol. Web services are indexed using descriptive key-
words, and a dimension reducing indexing scheme is used. Dustdar and Treiber’s [32]
VISR (View based Integration of Web Service Registries) is a peer to peer archi-
tecture which combines multiple web service registries with transient web service
providers in a seamless integrated system. “Views” serve as an abstraction layer
which uses web service profiles as a global data model, and are supported by a sim-
ple grammar (View Description Language). The web service profiles allow extra
information to supplement the registry entries without affecting the original entries
themselves [32].

2.3.2.2 Mobile Ad-Hoc Networks

In a Mobile Ad-Hoc Network (MANET), cooperating autonomous mobile devices
acting as router nodes form a dynamic network infrastructure. Wireless technolo-
gies are usually employed, and the use of standard protocols and interfaces ensures
that the devices communicate effectively so that advertising and discovery is possi-
ble [35, 54, 59].

Tyan and Mahmoud [83] propose grouping mobile nodes into clusters, with one
device in each cluster acting as a gateway for routing purposes, using a location-
aware network layer routing protocol. The gateways also improve service discov-
ery performance by acting as directories, and a context-aware agent-based service
selection mechanism is included. This solution addresses issues of scalability and
context-awareness since complex graph algorithms are no longer needed to maintain
the clusters and support management of the network topology.

Carlos et al. [19] have developed a component-based service discovery frame-
work, which can be used in both fixed and ad hoc networks, and supports adaptive

2 Service Advertisement and Discovery 29

service discovery middleware. This approach enhances framework configurability
and minimises resource usage.

Talwar et al. [82] have developed a novel resource and service discovery mech-
anism for MANETs using RIMAs (Routing Intelligent Mobile Agents), which col-
lect and index information on service availabilities as well as network resource and
routing data. Each RIMA is associated with a node in the network, and each mobile
node is close to one or more RIMA nodes. Discovery agents are used by service
requesters to identify resources by using the indices contained in the RIMA nodes.
The mechanism has been tested by simulating MANETs with up to 800 nodes.

2.3.2.3 Grid Computing

Issarny et al. [50] characterise Grid computing as addressing “the creation of dis-
tributed communities that share resources such as storage space, sensors, software
application and data, by means of a persistent, standards-based service infrastruc-
ture”. Currently used principally by the scientific community as a high-performance
computing infrastructure, a Grid can support more general large-scale applications
requiring substantial data processing and computation. Grid computing often re-
quires secure resource sharing amongst multiple institutions, and this model does
not fit in well with the current Internet infrastructure [55].

Globus Toolkit (GT) is an open source set of libraries and programs that has been
developed over the last few years by the Globus Alliance consortium to support the
building of distributed system services and applications. It addresses the fundamen-
tal issues such as resource discovery, resource access, resource management, data
movement and security [36]. The architecture contains three sets of components:
a set of implementation services, a set of service containers, and a set of client li-
braries [40].

GISs (Grid Information Services) form a key component in many Grid architec-
tures, and S-Club is a mechanism which supports efficient service discovery on a
GIS mesh network. Using the existing CROWN (China Research and Development
environment Over Wide-area Network) GIS network, S-Club forms an overlay in
which services are clustered as “clubs”, each club providing services of a given
type. A given service may belong to multiple clubs, and a service requester will ini-
tially use the S-Club overlay to identify providers by searching appropriate clubs.
The overlay is constructed dynamically, and a minimum-spanning tree topology is
used in order to ensure that messages are transmitted efficiently. Experimental re-
sults show that the S-Club approach improves response times for searches as well
as reducing traffic overhead [47].

Bell et al. [9] propose an extension of the Grid framework to include semantic
services in a real-world commercial context—a “Business Grid”. An upper service
ontology is used to provide the semantic context, and web services taken from in-
vestment banks have been used to validate the approach.

Yu et al. [95] propose the Grid Market Directory (GMD), a registry which man-
ages the provision of services efficiently using a pricing mechanism. It is designed

30 Shanshan Yang and Mike Joy

to be applied to market-oriented Grids to “support an infrastructure that enables the
creation of a marketplace for meeting of providers and consumers”. GMD contains
two components: the portal manager and the query web service. The portal manager
covers the tasks of “provider registration, service publication and management, and
service browsing”, and the query web service allows clients such as resource bro-
kers to query the GMD and obtain resource information to identify those that satisfy
the user’s QoS requirements [95].

2.3.3 Hybrid Registries

In addition to pure centralised and decentralised architectures, some hybrid (fed-
erated) systems have been proposed, in which registry information is distributed
amongst multiple entities in a peer-to-peer manner, but access to the registry in-
formation is through dedicated “super peer” nodes (peer registries). Such systems
appear to users as centralised, since the use of peers is transparent and the user is
unaware of the distributed implementation. This approach allows for registries to
specialise in particular types of web service, although this benefit must be weighed
against the increased communication overhead [31, 94].

Gateway Gateway Gateway

Gateway

Distributed
Domain

Gateway

Domain
Centralized

Gateway

Open
Domain

P2P Discovery Domain

Fig. 2.3 Ghamri-Doudane’s service discovery architecture

Ghamri-Doudane et al. [39] present a purely unstructured service discovery ar-
chitecture containing components which include centralised, distributed and P2P
discovery domains. The intention is to integrate all existing service discovery
protocols but with a specific service gateway for each technology, as shown in
Figure 2.3 [39].

Verma et al. [86] present a scalable, high performance environment for web ser-
vice publication and discovery among multiple registries. Using an ontology-based
approach, registries are organised into domains, so that web services can be classi-
fied using those domains. A semantic approach to the publication and discovery of
web services is used, and it is claimed that this is appropriate for systems containing

2 Service Advertisement and Discovery 31

large numbers of registries. METEOR-S is an architecture which supports this en-
vironment and an implementation has been tested [86].

Papazoglou and Heuvel [67] (Figure 2.4) introduce the concept of service-
syndications, where related businesses form groups based on common interests, and
each group has its own UDDI peer registry.

RegistrySuper

Service Service Service Service Service Service

Registry

Syndication

Registry Registry

Syndication Syndication

Fig. 2.4 Papazoglou and Heuvel’s service discovery architecture

Caron’s unstructured peer-to-peer network architecture extends traditional Network-
Enabled Server (NES) by enabling tree-based service discovery which takes account
of the underlying network topology. The benefits claimed for this approach include
improved fault-tolerance and efficiency on wide-area networks [19].

2.4 Data Structures

Data on web services can include complex information, such as collaboration pro-
tocols and structured ontological information, in addition to more basic data such as
the service name and information about the service provider.

Perhaps the most commonly used data model is UDDI, which is hierarchically
structured and contains five data types defined using an XML schema [74]. The
tModel data type is used to represent information about a given service, including
a technical description of what the service does and how it does it, whilst the other
data types contain information about the service providers, the range of services of-
fered by each, and descriptions of the services on offer. Each entity in the model is
allocated a unique identifier (UUID), and classified according to a published taxon-
omy [89]. In versions 1 and 2 of UDDI, the following classification schemes were
used [95]:

• the North American Industry Classification System (NAICS),
• the Universal Standard Products and services Code System (UNSPSC), and
• the ISO Geographic taxonomy (ISO 3166).

32 Shanshan Yang and Mike Joy

The use of a taxonomy is seen as important in that it offers a structured frame-
work which facilitates searching for services. The UDDI model is composed of four
identity types, as the following diagram (Figure 2.5) illustrates [25]:

businessEntity: Describes a business or other

organization that typically

Describes a collection of related
Web services offered by an
organization described by a
businessEntity

businessService:

bindingTemplate: Describes the technical information
necessary to use a particular

category system.

a reusable concept, such as a Web service

provides Web services

web service.

tModel: Describes a ’technical model’ representing

type, a protocol used by web services, or a

Fig. 2.5 UDDI data model

The ebXML data model is broader in scope than UDDI, and in addition to ser-
vices it supports further data related to e-business. Data in an ebXML registry takes
the form of metadata about objects in the registry (including, but not restricted to,
web services) [33].

The Web Service Discovery Architecture (WSDA) is a modular architecture
which defines services, interfaces, operations and protocol bindings, based on indus-
try standards. WSDA has the advantage of flexibility, since the modular components
can be customised easily and adapted to support a range of behaviours [46].

The Web Services Inspection Language (WSIL) is a distributed approach to the
provision of data for service discovery, in contrast to the centralised model adopted
by UDDI. Each web service produces a WSIL XML file containing the necessary
data (which is similar to the data stored within UDDI), and that file is made accessi-
ble by (for example) publishing it using simple naming conventions on an advertised
web site [91].

2 Service Advertisement and Discovery 33

2.5 System Requirements

In this section, registry architectures are viewed from the angle of their common
functions and requirements from the users’ perspective. Interoperability and match-
making are the only two core requirements for service advertisement and discovery
systems, and the others are optional. As Doulkerdis [29] remarks: “Existing ser-
vice discovery mechanisms usually focus on exact or semantic matching of static
attributes”. Although each system is able to meet more that one requirement, no
single system meets them all. In the remainder of the section, the requirements are
defined, and systems that meet each requirement are discussed.

Interoperability means “the ability to exchange and use information between dif-
ferent heterogeneous web service registry environments” [31]. O’Brien et al. [62]
mention that “increased interoperability is the most prominent benefit of SOA”, and
Yu et al. [95] reinforce this opinion, arguing that, “[i]nteroperability is the core func-
tionality that web services endeavour to achieve”.

Matchmaking is “a mechanism by which service requesters can find potential
web services (providers) that have capabilities for meeting their specific require-
ments” [93], and is explicitly supported by models such as Garg’s System Template
approach [38] which seeks to match instances of related services into groups.

Scalability “defines how well a web service registry responds to increasing
load” [31]. An example of an architecture for which scalability has been a major
motivation is AtomServ [93], which uses standard web feed technologies (Atom
and RSS) accessible through ubiquitous application interfaces such as browsers.
The use of UPnP is another means of supporting scalability, such as has been used
in CSSD [7].

Fault tolerance is “the ability of a web service registry to continue normal op-
eration despite the presence of hardware or software faults” [31]. Service Address
Routing (SAR), which supports a “location-independent” distribution of services
across a network, is an example of a fault-tolerant mechanism which has been
applied successfully both to tightly-coupled networks and to a loosely-coupled
Grid [72].

Reliability means “the degree to which a web service registry is capable of main-
taining the service at a given service quality” [31]. This has been addressed, for
example, by an extension to Web Service Repository Builder (WSRB) architecture
in which a Web service Relevancy ranking Function (WsRF) is used, to modify the
service discovery process. WsRF uses QoS metrics, such as reputation and compli-
ance, together with relevancy rankings based on clients’ preferences, and the tech-
nique has been validated experimentally [1].

Security means “where necessary, communications are both encrypted and au-
thenticated” [26]. As part of the Ninja project, the Secure Service Discovery Service
(SSDS) supports a high level of security. SSDS provides clients with directory-style
access to services, with encrypted communication facilitated by per-session keys.
Individual components are allocated certificates which can be signed by clients and
by service providers, and the model then allows a client to identify services they
trust based on the levels of trust the client has in the signatories to the services’

34 Shanshan Yang and Mike Joy

certificates. Furthermore, SSDS supports signed messages (capabilities) which iden-
tify that a user has access to a set of services, thus restricting clients to those services
which the system has identified as appropriate and allowed [24, 44, 76].

Context awareness is the ability “to seamlessly adapt behaviour according to the
context within which the systems executes”. This involves sensing the environment
and adapting the behaviour of an application according to both the users’ profiles
and the available resources [50, 79].

CSSD is an example of a system which uses context (dynamically changing in-
formation about the services provided and the user, and the user’s environment as
provided by an external system) to inform the service discovery algorithm [7]. An-
other initiative has been the development of MobiShare—a cellular mobile resource
architecture—to include Context-Aware Service Directories (CASDs) within the ar-
chitecture’s Cell Administration Servers (CASs) [30].

Mobility refers to the support offered by an architecture for mobile (wireless) de-
vices. For example, the Siena architecture is implemented as an overlay on a GPRS
mobile network, uses a distributed publish/subscribe paradigm, and supports a vari-
ety of Internet applications and services [18, 23, 29].

It is perhaps useful at this point to note that all systems surveyed here address
the issues on interoperability and of matchmaking, most of those systems are also
scalable, and roughly half consider fault-tolerance to be an important feature. The
other issues are only addressed by few of the systems.

2.6 Advertisement and Discovery Services

A variety of common technologies are currently used by discovery services [85],
although Hoffert et al. [45] note that “while discovery services are fairly mature
and broadly applicable to today’s systems much R&D remains to support emerging
systems of ultra-large scale effectively, such as the Global Information Grid”. This
section discusses those technologies which can be considered mature.

The Common Object Request Broker Architecture (CORBA) is a technology
which allows objects, possibly created using different languages and implemented
on different platforms, to communicate across a network. The CORBA Naming
Service is a database containing bindings of names and associated objects, which
allows distributed objects to be located by name and accessed by clients—a “white
pages” technology. The CORBA Trading Service, in contrast, allows objects to be
located based on a requirements description rather than by name—a “yellow pages”
technology [63].

The Data Distribution Service (DDS) for Real-Time Systems has recently been
approved as an OMG standard. In contrast to the client/server approach, DDS adopts
a data-centric publish/subscribe (DCPS) model, grouping data into “topics” (sets
of related data-objects with a common data type), and allows the user to specify
Quality of Service parameters [27].

2 Service Advertisement and Discovery 35

The Jini Lookup Service (JLS) uses Java RMI (Remote Method Invocation) to
allow Java clients to discover services (Java objects or proxies) by specifying an
interface. This approach benefits from optimisation (such as bytecode and object
caching) available through RMI, but Hoffert et al. [45] note that “it can also have
undesirable side effects, such as increased latency and jitter when first transferring
the object”. Although Jini may superficially appear to be a Java version of CORBA,
the differences in approach and implementation are substantial [4, 51].

Low-level protocols are used by networks in support of service discovery. For
example, Simple Service Discovery Protocol (SSDP) is used by UPnP to allow
services (such as external devices and resources) to be identified by clients which
use those services. The Bluetooth Service Discovery Protocol (SDP) uses the Log-
ical Link Control and Adaptation Protocol (L2CAP) layer to initialise connections
for devices via the Logical Link Control and Adaptation Protocol (L2CAP) layer
within the short-range wireless network used by Bluetooth. Service Location Pro-
tocol (SLP) is a packet-oriented protocol which allows devices to locate services
across a LAN, without prior configuration, and is scalable to large networks. Three
agents are employed—a user agent which seeks appropriate services, a service agent
which provides information about available services, and an optional directory agent
which enhances the performance of the service agents by providing a central repos-
itory which stores the locations of the services [45].

JXTA is a collection of open-source XML-based protocols which supports a peer-
to-peer communication between networked devices and services via a network over-
lay. Low-bandwidth devices (edge peers), which may only be connected temporar-
ily, are treated differently to super peers, which co-ordinate other peers and facilitate
communication through firewalls and between subnets [52].

UDDI supports service discovery by registering service descriptions in the UDDI
Business Registry (UBR), which users can query to find either a given provider or
the category of service [84].

Peer-to-peer (P2P) architectures—perhaps most commonly used for file-sharing
and MP3 downloads rather than for more general resources—can also support dis-
tributed service provision. Gnutella (and its fork Gnutella2) is a P2P resource shar-
ing network which—like products such as Bittorrent—is typically used to exchange
files, and uses a network overlay scheme together with a number of optimisation
techniques. These include QRP (Query Routing Protocol), which uses a hash ta-
ble to prevent queries being forwarded to inappropriate network nodes, and DQ
(Dynamic Querying) which caps the number of results returned by a search and so
reduces network traffic [41]. Napster is an architecture which, unlike Gnutella, uses
a centralised registry in addition to using network nodes as resource servers, so that
the registry can direct traffic to an appropriate server [57].

36 Shanshan Yang and Mike Joy

2.7 Agents in Service Advertisement and Discovery

The technologies and approaches discussed in this chapter present service adver-
tisement and discovery as typically decentralised and asynchronous activities. The
software components which implement and support them have attributes—such as
autonomy and adaptivity—which are characteristics of an agent-based approach,
suggesting that the incorporation of agent technologies into service oriented archi-
tectures may improve the effectiveness of the process [15,65]. Singh [75] notes that:

“Typical agent architectures have many of the same features as service oriented architec-
tures. Agent architectures provide service directories, where agents advertise their distinct
functionalities and where other agents search to locate the agents in order to request those
functionalities.”

Luck [55] also remarks:

“It is natural to view large systems in terms of the services they offer, and consequently
in terms of the entities or agents providing or consuming services. In this view agents act
on behalf of service owners, managing across to services, and ensuring that contracts are
fulfilled. They also act on behalf of service consumers, locating services, agreeing contracts,
and receiving and presenting results.”

2.7.1 Agents in Service Oriented Computing

In service oriented systems, an agent can assume a role such as that of service
provider, consumer (user) or broker. The tasks a broker agent would be responsi-
ble for might include:

• identifying and locating appropriate service agents;
• implementing directory services;
• managing namespace services;
• storing, forwarding and delivering messages;
• managing communication between the other agents, databases and application

programs.

Singh and Huhns [75] advocate a generic agent-based service-oriented system
architecture containing agent types, as illustrated in Figure 2.6. Of these, directory
and broker agents and resource agents perform the tasks of service advertisement
and discovery. They claim that “[b]rokers simplify the configuration of multi-agent
systems”, and note that a broker’s knowledge about other agents within a system
allows it to identify and negotiate with potential agents which may be able to of-
fer a desired service. Resource agents provide access to information based services,
and user agents can behave as “an intermediary between users and information sys-
tems” [12, 58, 69, 75].

2 Service Advertisement and Discovery 37

Structured Data

Unstructured

Data

Directory and Broker

Agents

Database Resource

Agents

User Agents

Ontology Agent

Manager Agents

Execution or Data

Internet Data Agents

Application Programs

Service Advertisement

and Discovery

Fig. 2.6 Singh and Huhns’ agent based service oriented architecture

2.7.2 Development of Agents in Service Advertisement
and Discovery

The model offered by Singh and Huhns above is generic, and serves as a useful
starting point for exploring other approaches.

Service
Discovery
Agent

Matchmaking
 Agent

 Service Service

Agent
Execution

Personal
Agent

Service

Agent
Composition

Directory
Service

Applications

Service
Coordination
Layer

Layer
Networking

Fig. 2.7 CASCOM: Agent based service oriented architecture

38 Shanshan Yang and Mike Joy

The CASCOM project [14] focuses on semantic service coordination in intel-
ligent agent-based peer-to-peer networks (IP2P). An abstract architecture has been
developed (see Figure 2.7) which within the central Service Coordination Layer uses
Service Discovery Agents (SDAs) and Service Matchmaking Agents (SMAs) to
handle the semantic aspects of service discovery, together with Service Composition
Agents (SCAs) and Service Execution Agents (SEAs) for coordination purposes.
Personal Agents (PAs) handle user interaction, a Directory Services (DS) facility
in the Networking Layer handles low-level service lookup, and two subsystems—
Security and Privacy, and Context—provide the remaining functional support not
handled by the other components. The CASCOM approach has been prototyped
in the field of healthcare business, where its role based semantic service discovery
approach provides a novel mechanism to support (for example) travellers requiring
complex emergency medical and logistical support [14].

Ratsimor et al. [68] note that directory-based service discovery mechanisms do
not work well in ad-hoc (especially mobile) environments. In response, Allia has
been developed as a peer-to-peer caching based and policy driven agent service
discovery framework, in which individual agents form alliances. An alliance (of
a node) is a set of local agent nodes in the network whose service information is
cached by that node. A member of an alliance is aware of the other agents in that al-
liance but is not aware of which alliances it is a member of. As the network changes
in an ad-hoc manner, so do the alliances which have been set up, based on the local
topology in the vicinity of a given node, and on the service advertisements that node
has received. The dynamic nature of this approach is claimed to be effective in sup-
porting agent-service discovery in dynamically changing ad-hoc environments. It
has been implemented as an extension of the LEAP Agent Platform using Bluetooth
as the network communications technology, and its performance has been evaluated
in a GlomoSim simulator.

The proximity of agents in ad-hoc networks has also motivated work by Campo
et al. [16], who proposed a Multi-Agent System for use in pervasive ad-hoc envi-
ronments. Their system allows agents running on different devices to share services
if those devices are close together on the network, and uses a Service Discovery
Agent which supports the communication of service ability information between
different agents in the network. Middleware supporting this architecture includes
the Pervasive Discovery Protocol (PDP), which is fully distributed, supporting ser-
vice discovery via both push and pull mechanisms. The associated Generic Service
Description Language (GSDL) is an XML-based markup language tailored to hier-
archical service descriptions in the context of pervasive environments [16].

The A4 (Agile Architecture and Autonomous Agents) management system for
grid computing is a distributed software system which uses federating agents to
provide services to a large-scale, dynamic, multi-agent system. A4 contains three
models—an hierarchical model (a method for organising large numbers of agents),
which is supported by a discovery model (for the locating of agent services) and
a coordination model (for organising services to provide more complex services).
The hierarchical model is illustrated in Figure 2.8. At the top of the hierarchy is a
single broker agent, and each sub-level contains a single coordinator agent together

2 Service Advertisement and Discovery 39

with individual agents and further sub-levels. The topology of the network is dy-
namic, and each agent can act as a router facilitating communication between agent
requesters and service providers. Each agent’s service information can be advertised
either up or down the hierarchy, and service discovery is likewise facilitated by the
topology of the hierarchy. As implemented, agents include the functionality of the
PACE performance prediction toolset, allowing efficiency issues for such a system
to be investigated [90].

Fig. 2.8 A4: Agent based
service oriented architecture

 Agent

Broker

 Agent

 Agent

 Agent
 Agent

Coordinator

Coordinator

A similar architectural approach has been adopted by the Mobile Service Man-
agement Architecture based on Mobile Agent (MA-MSMA), which uses an hierar-
chical tree-like structure populated by identical mobile agents, each of which can be
both a provider and a requester of Grid services. Agents forming internal nodes of
the tree adopt the role of broker or lookup agent [43].

The Southampton agent Framework for Agent Research (SoFAR) project shows
that the “agent concept can be closely aligned with a web service, in that an agent
can be described as a web service and discovered using a standard mechanism
UDDI”. Using WSDL gives an agent the ability to describe and advertise their ca-
pabilities. The use of ontologies as a semantic enhancement to WSDL and UDDI
enables services to be discovered and invoked by software through common termi-
nology and shared meanings. Avila-Rosas [5] notes that “this is a vital property in
an open system such as the Grid”.

The Software Agent-Based Groupware using E-services (SAGE) project “incor-
porates the use of intelligent agents to integrate human users with web services”.
The approach taken by SAGE is to identify a (human) user’s operational context,
and for each agent in the system to learn the rule-based preferences for that user
based on that contextual information. This allows for targeting of relevant web ser-
vices to be identified by the system and presented to the user [12].

Matchmaking and brokering are multi-agent coordination mechanisms for web
services. Sycara et al. [81] have used novel extensions to the Web Ontology

40 Shanshan Yang and Mike Joy

Language for Semantic Web Services (OWL-S) and to its process model to imple-
ment a broker which both provides discovery services and mediates between agents
and web services. They suggest agents might subcontract, by finding and interacting
with a provider who can solve a goal. The problems with this approach are similar
to those associated with brokering, their current research concerns automatic multi-
agent interaction and automatic Web service composition [81].

The Agent Approach for Service Discovery and Utilisation (AASDU) (Figure
2.9) is a flexible and scalable multi-agent system which allows dynamic insertion
and deletion of services and lightweight autonomous agents. The approach is un-
derpinned by web standards (including UDDI, SOAP, WSDL and XML), and a
communication protocol is employed which does not depend on addresses of the
agents sending and receiving messages. An extension to the Oak Ridge Mobile
Agent Community (ORMAC) framework is used as the basis of the agent archi-
tecture [65].

Registry
Agent A

Registry
Agent B

Rigistry
Agent C

Service

Agent
Composition

Service
Analyzer
Agent

Service
Providers

Fig. 2.9 Palathingal and Chandra’s agent based service oriented architecture

2.8 Challenges in Service Advertisement and Discovery

Service advertisement and discovery is a focus of active research, and a number of
popular areas of investigation and specific challenges have been identified, and can
be categorised as for system requirements and for system modelling.

2 Service Advertisement and Discovery 41

2.8.1 System Requirements

Scalability and adaptability [1, 15]: In particular, Wu [93] proposes that efficient
mechanisms should be introduced to allow “system function gracefully at very
high load of service discovery requests given reasonable resource consump-
tions”.

Security: Different security requirements for different environments, such as in
mobile computing, should be identified. Issues might include secure service reg-
istration, and deregistration; secure discovery and secure delivery, secure com-
munication protocols and more appropriate trust models and communication
paradigms [3, 24, 26, 44, 76].

Quality of service: Efficient protocols for the awareness of quality of service
should be introduced, as “QoS information is particularly important for real time
applications like streaming high quality video over wireless networks” [34].

Interoperability: Interoperability is also important since complex messages ex-
changed by web services are structurally and semantically heterogeneous [2,56].

2.8.2 System Modelling

Theoretical foundations: Little work has been done on theoretical foundations.
No generally accepted principle or procedure for system design and evaluation
has been identified so far, although a number of definitions regarding the concepts
and principles of service and service oriented architecture have been proposed by
different scholars [49, 60].

System structures: A number of different styles of system structures have been
summarised in Section 2, and it is challenge to design more and moreover to
combine these styles of structures together to improve the overall effectiveness
of the systems [32].

Agents based service oriented computing: We have introduced the idea of agent
based service discovery in Section 7, and it is important to identify and adopt
efficient approaches to merge agent technology into service oriented computing,
and develop efficient algorithms for agents to search, match and compose ser-
vices [5, 11, 76].

Technologies integration: It is also an opportunity and challenge to integrate SOA
with other technologies, such as wireless communications and the Grid, in order
to provide more powerful advertisement and discovery mechanisms [19,54,96].

2.9 Summary

The Service Broker (or Registry), which is one of the entities in current model of
Service Oriented Computing, plays a key role in the process of service advertisement

42 Shanshan Yang and Mike Joy

and discovery. Three types of registry architectures have been introduced—centra-
lised, decentralised and hybrid—together with major users’ requirements for service
advertisement and discovery systems. We have also described a number of mature
discovery technologies in this area, and explored how agent based technology might
improve the effectiveness of this process. This chapter provides a foundation for un-
derstanding the rest of the processes in Agent Based Service Oriented Computing.

References

1. AI-Masri, E., Mahnoud, Q.H.: Discovery the Best Web Service. In: WWW Poster Paper, pp.
1257–1258. ACM Press, Canada (2001)

2. Anjum, F.: Chanllenges on Providing Services in a Ubiquitous, Mobile Environment. In: the
3rd International Conference on Mobile and Ubiquitous Systems: Networking and Services,
pp. 1–3. IEEE Press, California (2006)

3. Antonopoulos, N., Shafarenko, A.: An Active Organisation System for Customized, Secure
Agent Discovery. The Journal of Supercomputing. 20, 5–35 (2001)

4. Arnold, K., Osullivan, B., Scheifler, R.W., Waldo, J., Wollrath, A., O’Osullivan, B.: The Jini
Specification. Addison Wesley, Reading (1999)

5. Avila-Rosas, A., Moreau, L., Dianlani, V., Miles, S., Liu, X.: Agents for the Grid: A Compar-
ison with Web Services. In: Workshop on Challenges in Open Agent Systems, PP. 238–244.
Bologna (2002)

6. Baresi, L., Miraz, M.: A Distributed Approach for the Federation of Heterogeneous Registries.
In: 4th International conference on Service Oriented Computing, pp. 240–251. Chicago (2006)

7. Balken, R., Haukrogh, J., Jensen, J.L., Jensen, M.N., Roost, L.J., Toft, P.N., Olsen, R.L.,
Schwefel, H.P.: Context Sensitive Service Discovery Experiment Prototype and Evaluation.
Wireless Personal Communications. 40, 417–431 (2007)

8. Baresi, L., Nitto, E., Ghezzi, C., Guinea, S.: A Framework for the Deployment of Adaptable
Web Service Compositions. SOCA. 1, 75–91 (2007)

9. Bell, D., Ludwig, S.A., Lycett, M.: Enterprise application reuse: Semantic Discovery of Busi-
ness Grid Services. Information Technology Management. 8, 223–239 (2007)

10. Benbernou, S., Hacid, M., Liris,: Resolution and Constraint Propagation for Semantic Web
Services Discovery. Distributed and Parallel Databases. 18, 65–81 (2005)

11. Blake, M., Cheung, W., Jaeger, M.C., Wombacher, A.: WSC-06: the Web Service Chal-
lenge. In: the IEEE international Conference on E-Commerce Technology, pp. 62. IEEE Press,
New York (2006)

12. Blake, M.B., Kahan, D. R., Nowlan, M. F.: Context-aware Agents for Use r-oriented Web
Services Discovery and Execution. Distributed and Parallel Databases. 21, 39–58 (2007)

13. Bucur, D., Bardram, J.E.: Resource Discovery in Activity-Based Sensor Networks. Mobile
Networks and Applications. 12, 129–142 (2007)

14. Caceres, C., Fernandez, A., Ossowski, S., Vasirani, M.: Agent-Based Semantic Service Dis-
covery for Healthcare: An Organizational Approach. In: IEEE Intelligent Systems, pp.11–20.
IEEE Press, New York (2006)

15. Cao, J., Kerbyson, D.J., Nudd, G.R.: High Performance Service Discovery in Large-Scale
Multi-Agent and Mobile-Agnet Systems. International Journal of Software Engineering and
Knowledge Engineering. 11, 621–641 (2001)

16. Campo, C.: Service Discovery in Pervasive Multi-agent Systems. In: Workshop on Ubiquitous
Agents on embedded, wearable, and mobile devices, pp. 133–146. Bologna (2002)

17. Campo, C., Munoz, M., Perea, J.C., Mann, A., Garcia-Rubio, C.: PDP and GSDL: A
New Service Discovery Middleware to Support Spontaneous Interactions in Pervasive Sys-
tems. In: 3rd IEEE International Conference on Pervasive Computing and Communications,
pp. 178–182. IEEE Press, New York (2005)

2 Service Advertisement and Discovery 43

18. Caporuscio, M., Carzangiga, A., Wolf, A.L.: Design and Evaluation of a Support Service for
Mobile, Wireless Publish/Subscribe Applications. IEEE Transactions on Software Engineer-
ing. 29, 1059–1071 (2003)

19. Caron, E., Desprez, F., Tedeschi, C.: Enhancing Computational Grids with Peer-to Peer Tech-
nology for Large Scale Service Discovery. Journal of Grid Computing. 5, 337–360 (2007)

20. Chakraborty, D., Joshi, A., Yesha, Y., Finin, T.: Toward Distributed Service Discovery in Per-
vasive Computing Environments. IEEE Transactions on Mobile Computing. 5, 97–112 (2006)

21. Chappell, D.: Who Cares about UDDI. Addison Wesley, New York (2002)
22. Charlet, D., Issarny, V., Chibout, R.: Service Discovery in Multi-radio Networks: An assess-

ment of Existing Protocols. In: MSWiM’06, pp. 229–238. ACM Press, New York (2006)
23. Chen, H., Joshi, A., Finin, T.: Dynamic Service Discovery for Mobile Computing: Intelligent

Agents Meet Jini in the Aether. Cluster Computing. 4, 343–354 (2001)
24. Cotroneo, D., graziano, A., Russo, S.: Security Requirements in Service Oriented Architec-

tures for Ubiquitous Computing. Middleware for Pervasive and Ad-Hoc Computing. In: 2nd
Workshop on Middleware for Pervasive and Ad-Hoc Computing, pp.172–177. ACM Press,
Canada (2004)

25. Curbera, F., Duftler, M., Khalaf, D., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the
Web Services Web, An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing.
6, 86–93 (2002)

26. Czerwinski, S., Zhao, B., Hodes, T. D., Joseph, vA.D., Katz, R.H.: An Architecture for A
Secure Service Discovery Service. In: International Conference on Mobile Computing and
Networking, pp. 24–35. Washington (1999)

27. Data Distribution Service, http://www.omg.org
28. Degwekar, S., Lam, H., Su, S.Y.W.: Constraint-Based Brokering(CBB) for Publishing and

Discovery of Web Services. Electronic Commerce Research. 7, 45–67 (2007)
29. Doulkeridis, C., Vazirgiannis, M.: Querying and Updating a Context-aware Service Directory

in Mobile Environments. In: IEEE/WIC/ACM Int. Conference on Web Intelligence (WI’04),
pp.562–565, IEEE Press, New York (2004)

30. Doulkeridis, C., Zafeiris, V. N?rv?g, K., Vazirgiannis, M., Giakoumakis, E.A.: Context-Based
Caching and Routing for P2P Web Service Discovery. Distrib Parallel Databases. 21, 59–84
(2007)

31. Dustdar, S., Treiber, M.: A View Based Analysis on Web Service Registries. Distributed and
Parallel Databases. 18, 147–171 (2005)

32. Dustdar, S., Treiber, M.: View Based Integration of Heterogeneous Web Service Registries—
the Case of VISR. World Wide Web. 9, 457–483 (2006)

33. ebXML Project, http://www.ebxml.org
34. Fan, Z., Ho, E.G.: Service Discovery in Ad Hoc Networks: Performance Evaluation and QoS

Enhancement. Wireless Personal Communications. 40, pp. 215–231 (2007)
35. Flores-Cortés, C.A., Blair, G.S., Grace, P.: A Multi-Protocol Framework for As-hoc Service

Discovery. In: MPAC’06, pp.10. ACM Press, New York (2006)
36. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: the Proced-

ding of the IFIP International Conference on Network and Parallel Computing, pp. 2–13,
Springer-Verlag, New York (2006)

37. Friday, A., Davies, N., Wallbank, N., Catterall, E., Pink, S.: Supporting Service Discovery,
Querying and Interaction in Ubiquitous Computing Environments. Wireless Networks. 10,
631–641 (2004)

38. Garg, P., Griss, M., Machiraju, V.: Auto-Discovery Configurations for Service Management.
Journal of Network and Systems Management. 11, 217–239 (2003)

39. Ghamri-Doudane, S., Agoulmine, N.: Enhanced DHT-Based P2P Architecture for Effective
Resource Discovery and Management. Journal of Network and Systems Management. 15,
335–354 (2007)

40. Globus Project, http://www.globus.org/
41. Gnutella Project, http://www.gnutella.com/
42. Guttman, E.: Service Location Protocol: Automatic Discovery of IP Network Service. IEEE

Internet Computing. 3, 71–80 (1999)

http://www.omg.org
http://www.ebxml.org
http://www.globus.org/
http://www.gnutella.com/

44 Shanshan Yang and Mike Joy

43. He, Y., Wen, W., Jin, H., Liu, H.: Agent based Mobile Service Discovery in Grid Computing.
In: Proceedings of the Fifth International Conference on Computer and Information Technol-
ogy, pp. 78–101. IEEE Press, New York (2005)

44. Hodes, T.D., Czerwinski, S.E, Zhao, B.Y., Joseph, A.D., Katz, R.H.: An Architecture for Se-
cure Wide-Area Service Discovery. Wireless Networks. 3, 213–230 (2002)

45. Hoffert, J., Jang, S., Schmidt, D.C.: A Taxonomy of Discovery Services and Gap Analysis for
Ultra-Large Scale Systems. In: ACMSE 2007, pp. 355–361. ACM Press, New York (2007)

46. Hoschek, W.: The Web Service Discovery Architecture. In: ACM/IEEE SC Conference
(SC’02), pp.38. IEEE Press, New York (2002)

47. Hu, C., Zhu, Y., Huai, H., Liu, Y., Ni, L.M.: S-Club: An Overlay-Based Efficient Service
Discovery Mechanism in CROWN Grid. Knowledge and Information Systems. 12, 55–75
(2007)

48. Huang, A. C., Steenkiste, P.: Network-Sensitive Service Discovery. Journal of Grid Comput-
ing. 1, 309–326 (2003)

49. Huhns, M., Singh, M.: Service Oriented Computing: Key Concepts and Principles. IEEE In-
ternet Computing. 9, 75–81 (2005)

50. Issarny, V., Caporuscio, M., Georgantas, N: A Perspective on the Future of Middleware-Based
Software Engineering. In: Future of Software Engineering, pp. 244–258. IEEE Press, New
York (2007)

51. Jini Lookup Service, http://www.jini.org/
52. JXTA Project, https://jxta.dev.java.net/
53. Kontogiannis, K., Smith, G.A., Litoiu, M., Müller, H., Schuster, S., Stroulia, E.: The Land-

scape of Service Oriented Systems: A Research Perspective. In: the International Workshop
on Systems Development in SOA Environments, pp. 1. IEEE Press, New York (2007)

54. Li, J., Mohapatra, P.: PANDA: A Novel Mechanism for Flooding Based Route Discovery in
Ad-hoc Networks. Wireless Netw. 12, 771–787 (2006)

55. Luck, M., McBurney, P., Shehory, O., Willlmott, S.: Agent Technology: Computing as Inter-
action. University of Southampton, Southamptom (2005)

56. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J., Lathem, J.: Semantic Interoperability of Web
Services—Challenges and Experiences. In: Proceeding of the IEEE International Conference
on Web Services, pp.373–382. IEEE Press, New York (2006)

57. Napster Project, http://www.napster.co.uk/
58. Naumenko, A., Nikitin, S., Terziyan, V.: Service Matching in Agent Systems. Applied Intelli-

gence. 25, 223–237 (2006)
59. Nedos, A., Singh, K., Clarke, S: Mobile Ad Hoc Services: Semantic Service Discovery in

Mobile Ad Hoc Networks. Springer, Berlin (2006)
60. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison Wesley, London

(2005)
61. OASIS Homepage, http://www.oasis-open.org/home/index.php
62. O’Brien, L., Merson, P., Bass, L.: Quality Attributes for Service Oriented Architectures. In:

Internal Workshop on Systems Development in SOA Environments, pp. 216–122. IEEE Press,
New York (2007)

63. Object Management Group, http://www.omg.org/gettingstarted/
64. The Open Group Homepage, http://www.opengroup.org/
65. Palathingal, P., Chandra, S.: Agent Approach for Service Discovery and Utilization. In: Pro-

ceedings of the 37th Hawaii International Conference on System Sciences, pp. 1–9. IEEE
Press, New York (2004)

66. Papazoglou, M.P., Krimer, B.J., Yang, J.: Leveraging web services and Peer to Peer Networks.
Springer, Berlin (2003)

67. Papazoglou, M., Heuvel, W.: Service Oriented Architectures: Approaches, Technologies and
Research Issues. The VLDB Journal. 16, 389–415 (2007)

68. Ratsimor, D. Chakraborty, D., Joshi, A., Finin, T.: Allia: Alliance-Based Service Discovery
for Ad-Hoc Environments. In: International Workshop on Mobile Commerce, pp. 1–9. ACM
Press, New York (2002)

http://www.jini.org/
https://jxta.dev.java.net/
http://www.napster.co.uk/
http://www.oasis-open.org/home/index.php
http://www.omg.org/gettingstarted/
http://www.opengroup.org/

2 Service Advertisement and Discovery 45

69. Ratsimor, O. Chakraborty, D. Joshi, A., Finin, T., Yesha, Y.: Service Discovery in Agent-Based
Pervasive Computing Environments. Mobile Networks and Applications. 9, 679–692 (2004)

70. Richard III, G.G.: Service Advertisement and Discovery: Enabling Universal Device Cooper-
ation. IEEE Internet Computing. 5, 18–26 (2000)

71. Salutation Architecture Specification, http://www.salutation.org/specordr.
htm

72. Scherson, I.D. and Cauich, E., Valencia, D.S.: Service Discovery for GRID Computing Using
LCAN-mapped Hierarchical Directories. Journal of Supercomputing. 42, 19–32 (2007)

73. Service Oriented Architecture, http://www.w3.org/TR/ws-arch
74. ShaikhAli, A., Rana, O.F., AI-Ali, R., Walker, D.W. UDDIe: an tetended registry for web ser-

vices. In: the Proceedings of Application and the Internet Workshops, pp.85–89, IEEE Press,
New York (2003)

75. Singh, M.P., Huhns, M.N.: Service Oriented Computing, Semantics, Processes, Agents. John
Wiley & Sons, Chichester (2005)

76. Singha, A.: Web Services Security: Chanllenges and Techniques. In: 8th IEEE International
Workshop on Policies for Distributed Systems and Networks, pp. 282. IEEE Press, New York
(2007)

77. Sivavakeesar, S., Gonzalez, O.F., Pavlou, G.: Service Discovery Strategies in Ubiquitous Com-
munication Environments. IEEE Communications Magazine, 12, 106-113 (2006)

78. SOAP Specification, http://www.w3.org/TR/soap/
79. Soldatos, J., Dimarkis, N., Stamatis. K., Polymenakos, L.: A Breadboard Architecture for

Pervasive Context-Aware Services in Smart Spaces: Middleware Components and Prototype
Applications. Personal and Ubiquitous Computing. 11, 193–212 (2007)

80. Sreenath, R., Singh, M.: Agent based service selection. Web Semantics: Science, Services and
Agents on the World Wide Web. 1, 261–279 (2004)

81. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic Discovery and Coordination of
Agent Based Semantic Web Services. IEEE Internet Computing, 66–73 (2004)

82. Talwar, B., Venkataram, P., Patnaik, L.M.: A Method for Resource and Service Discovery in
MANETs. Wireless Personal Communications. 41: 301–323 (2007)

83. Tyan, J., Mahmoud, Q.H.: A Comprehensive Service Discovery solution for Mobile Ad-Hoc
Networks. Mobile Networks and Applications. 10, 423–434 (2005)

84. UDDI Project Version 3.0.2, http://uddi.org/pubs/uddi-v3.0.2-20041019.
htm#_Ref8884251

85. Vanthournout, K., Deconinck, G., Belmans, R.: A Taxonomy for Resource Discovery. Personal
and Ubiquitous Computing. 9, 81–19 (2005)

86. Verma, K., Sivashanmugam, K., Sheth, A. Patil, A., Oundhakar, S., Miller, J.: METEOR-S
WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of
Web Services. Information Technology and Management. 6, 17–39 (2005)

87. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zeremba, M., Moran, M., Cimpian, E.,
Haselwanter, T., Fensel, D.: Semantically-Enable Service Oriented Architecture: Concepts,
Technology and Application. In: Service Oriented Computing and Applications. 1, 129–154
(2007)

88. W3C School, http://www.w3schools.com/
89. Wang, H., Huang, J. Z., Qu, Y., Xie, J.:Web Semantics: Science, Services and Agents. World

Wide Web. 1, 309–320 (2004)
90. Warwick University Computer Science Department High Performance Systems Research

Group, http://www.dcs.warwick.ac.uk/research/hpsg/A4/A4.html
91. Web Services Inspection Language, http://www.ibm.com/developerworks/

library/ws/wsilover/
92. WSDL Specification, http://www.w3.org/TR/wsdl
93. Wu, C., Chang, E.: Aligning with the Web: an Atom-based Architecture for Web Service

Discovery. SOCA. 1, 97–116 (2007)
94. Yang, Y., Dunlap, R., Rexroad, M, Cooper, B.: Performance of full text search in structured

and unstructured peer to peer systems. In: Proceedings of the 5th IPTPS, pp. 27–28. Santa
Barbara, USA (2006)

http://www.salutation.org/specordr.htm
http://www.salutation.org/specordr.htm
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/soap/
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Ref8884251
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Ref8884251
http://www.w3schools.com/
http://www.dcs.warwick.ac.uk/research/hpsg/A4/A4.html
http://www.ibm.com/developerworks/library/ws/wsilover/
http://www.ibm.com/developerworks/library/ws/wsilover/
 http://www.w3.org/TR/wsdl

46 Shanshan Yang and Mike Joy

95. Yu, J., Venugopal, S., Buyya, R.: A Market-Oriented Grid Directory Service for Publication
and Discovery of Grid Service Providers and their Services. Journal of Supercomputing. 36,
17–31 (2006)

96. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing Web Services: Is-
sues, Solutions and Directions. The VLDB Journal The International Journal on Very Large
Data Bases. 17, 537–572 (2006)

	Service Advertisement and Discovery
	Shanshan Yang and Mike Joy
	Introduction to Service Advertisement and Discovery
	Basic Technologies
	SOAP
	WSDL
	UDDI

	Web Service Registry Architectures
	Centralised Registries
	Decentralised Registries
	Hybrid Registries

	Data Structures
	System Requirements
	Advertisement and Discovery Services
	Agents in Service Advertisement and Discovery
	Agents in Service Oriented Computing
	Development of Agents in Service Advertisement and Discovery

	Challenges in Service Advertisement and Discovery
	System Requirements
	System Modelling

	Summary
	References

