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Shape Manifolds
• Kendall’s shape spaces (1984)

• Manifolds of images and shapes exist
due to:
– Sparseness
– Continuity

Example with Faces

Motivation
• The curse of dimensionality
• Recent surge in research on nonlinear

dimensionality reduction (NLDR)

• Object recognition
• Shape-based classification of objects
• Image retrieval
• Object-based image/video coding
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Relevant Work (Shape Manifolds)
• Kernel PCA for ASMs (Twining & Taylor, 2001)
• Statistical shape priors (Cremers et al., 2001)
• Image manifolds for retrieval (He, Ma & Zhang, 2004)
• Manifold clustering (Souvenir & Pless, 2005)
• Clustering of shape manifolds using Isomaps

(Yankov & Keogh, 2006)
• Extension of the Laplacian Eigenmaps for

interpolation between shape samples (Etyngier,
Keriven & Pons, 2007)

Relevant Work (NLDR)
• When the sub-manifold is linear, we can use

standard DR methods, eg PCA, ICA, LDA etc.

• For nonlinear sub-manifolds, we need locality
preserving DR methods, such as:

• LLE (Roweis & Saul, 2000)
• ISOMAPs (Tenenbaum, Silva & Langford, 2000)
• Laplacian Eigenmaps (Belkin & Niyogi, 2002)
• Hessian Eigenmaps (Donoho & Grimes, 2003)
• Diffusion Maps (Coifman & Lafon, 2004)
• Logmaps (Brun et al., 2005)
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Locality Preservation

Source: Saul & Roweis, 2003

Learning the Shape Manifolds

Problem Definition
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The Proposed Framework

   Our emphasis here is on the nonlinear
embedding of sub-manifolds corresponding
to shapes of different classes

Feature Extraction
 Extract the boundaries of objects

in the preprocessed images.

 Resample boundaries into an
equal number of points, N.

 Compute centroidal distance
function ri, for i=1,2,…,N,

! 

ri = ([xi " xc ]
2

+ [yi " yc ]
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Feature Extraction
• The distance vector,

     r={r1,r2,…rN }

• Rotation and scale invariant feature vector for each shape
is obtained as follows,

Feature Extraction

Centroidal Distance Vectors for a Rat image
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The Shape Distance
• The shape distance wij between two shape feature

vectors fi and fj for i,j=1,2,…,n, is computed as
follows:

    where ε denotes the neighbourhood radius.

• The above distance measure can also be regarded
as a similarity measure between shapes i and j.

Diffusion Maps
 Diffusion based probabilistic interpretation of spectral

methods.
 Feature vectors  f1, f2 , …, fn  are nodes of a symmetric

graph.

 Similarity matrix W=[wij] for i,j=1,2,…,n, where wij is given by:

wiji j
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Markov Matrix
• The (i,j)th element of a Markov matrix P is computed as

follows,

    where

    denotes the degree of node i in the graph, and

• The (i,j)th element of Pt  gives the probability of going
from node i to node j in t steps.

The Diffusion Distance

Source : S. Lafon, “Diffusion Maps and Geometric Harmonics,”
Ph.D. Dissertation, Yale University, 2004

Diffusion distance between two points A and B is:

where

and φ0 also denotes the top left eigenvector of P.
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 Low-dimensional embedding (or diffusion map or DM)
                          of a feature vector f is given by:

    where m << N and                                      respectively
denote the eigenvalues and eigenvectors of the
Markov matrix P.

 The mapping     at time step t is computed as follows:

The Mapping Ψ

Properties of the DMs
 The diffusion distance as defined previously can also be

written as follows:

 Diffuison Map: Diffusion distance      Euclidean distance

 Spectral fall-off and time t of the random walk are the
main factors contributing to dimensionality reduction.

 For large value of t, we can capture large-scale structures
in the data with fewer coordinates.
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Case Study 1:
Clustering of Shapes

Kimia’s Shape Dataset

6 classes, variable number of samples, a total of 157 samples.
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Raw Features

PCA Embedding
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Laplacian Eigenmap

Diffusion Map
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Class Separability Index (CSI)

Clustering Validity Index (CVI)
• Commonly used to measure the performance of

clustering algorithms and validate their outcome
• Some of the popular CVIs:

– Dunn (Dunn, 1973)
– DB (Davies & Bouldin, 1979)
– DB* (Kim & Ramakrishna, 2005)

    where                              and
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DB* vs. nc (Top 4 Coordinates)

DB* vs. nc (Top 6 Coordinates)
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DB* vs. nc (Top 8 Coordinates)

Results of unsupervised FCM clustering using top 8 PCA coordinates
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Results of unsupervised FCM clustering using top 6 LEM coordinates

Results of unsupervised FCM clustering using top 8 LEM coordinates
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Results of unsupervised FCM clustering using top 7 DM coordinates;
88.54% accuracy

Case Study 2:
Detection of Nuclei
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“Detecting nuclei in a histology image by posing it as a
problem of classification of closed objects using
unsupervised shape manifold learning”

Problem Definition

The Proposed Algorithm

Pre-processing

Thresholding
Shape Feature

 Extraction
Manifold
 Learning
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Pre-processing

H&E stained colour image of prostate tissue

Pre-processing

Result of greyscale conversion and smoothing by bilateral filtering
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Preprocessing

Result of k-means clustering and morphological operations

Diffusion maps in 3D

)

Towards the Nuclei Detection



21

Diffusion maps in 2D

Towards the Nuclei Detection

Experimental Results
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Experimental Results

A typical prostate tissue specimen

Experimental Results

     Binary image 
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Experimental Results

Nuclei detected (shown in green) by our detection algorithm

Out-of-Sample Extention
Nyström’s Formula:

     where xr  is rth Nystrom sample estimator and ψij

is jth coordinate of ith eigenvector.
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Experimental Results

Detection of potential nuclei using the out-of-sample extension

Conclusions
• Presented a framework for unsupervised learning of

shape manifolds
• Diffusion maps were used to:

– Preserve the local diffusion distance (a geodesic) on shape
manifolds

– Learn the global structure of the manifolds

• Results for unsupervised shape clustering (and
detection of nuclei) are quite encouraging

• Currently limited to:
– Connected closed curves in 2D
– Computation of similarity matrix is expensive
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