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Shape Manifolds
» Kendall’s shape spaces (1984)

S. The manifold carrying the shapes of triangles

We now know that there is a natural isometry between I3, the space whose
points are the shapes of labelled triangles, and the sphere S2(%). The patch on which

» Manifolds of images and shapes exist
due to:

— Sparseness
— Continuity
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Motivation

» The curse of dimensionality

Recent surge in research on nonlinear
dimensionality reduction (NLDR)

Object recognition

Shape-based classification of objects
Image retrieval

Object-based image/video coding
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Relevant Work (Shape Manifolds)

+ Kernel PCA for ASMs (Twining & Taylor, 2001)

« Statistical shape priors (Cremers et al., 2001)

+ Image manifolds for retrieval (He, Ma & Zhang, 2004)
* Manifold clustering (Souvenir & Pless, 2005)

 Clustering of shape manifolds using Isomaps
(Yankov & Keogh, 2006)

« Extension of the Laplacian Eigenmaps for
interpolation between shape samples (Etyngier,
Keriven & Pons, 2007)
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Relevant Work (NLDR)

 When the sub-manifold is linear, we can use
standard DR methods, eg PCA, ICA, LDA etc.

* For nonlinear sub-manifolds, we need locality
preserving DR methods, such as:
* LLE (Roweis & Saul, 2000)
* ISOMAPSs (Tenenbaum, Silva & Langford, 2000)
+ Laplacian Eigenmaps (Belkin & Niyogi, 2002)
» Hessian Eigenmaps (Donoho & Grimes, 2003)
+ Diffusion Maps (Coifman & Lafon, 2004)
* Logmaps (Brun et al., 2005)
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Locality Preservation

s

Source: Saul & Roweis, 2003
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Learning the Shape Manifolds

“Given a set = {1, Qa,..., Q}, where Q; = {Cy 1.7 =1,2,....n; =
|%] and Cj; € C! is a connected closed curve, represented by N boundary
points, in the Euclidean plane, find the intrinsic parameters of the &k shape
classes and the mapping

U RV s

where m << N, such that clustering in R™ yields a plausible grouping of
similar shapes.”

Problem Definition
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The Proposed Framework
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Our emphasis here is on the nonlinear
embedding of sub-manifolds corresponding
to shapes of different classes
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Feature Extraction

= Extract the boundaries of objects
in the preprocessed images.

» Resample boundaries into an §
equal number of points, N. i
= Compute centroidal distance ; Xr‘z
function r;, for i=1,2,...,N, ; 133
: o

r=A(lx - x P+ 1y, -y )
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Feature Extraction

¢ The distance vector,

r={r,r,..ry}

» Rotation and scale invariant feature vector for each shape
is obtained as follows,

e {@ |7 |FN/2|]T

||’ R |l
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Feature Extraction
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Centroidal Distance Vectors for a Rat image
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The Shape Distance

* The shape distance w; between two shape feature
vectors f; and f, for i,j=1,2,...,n, is computed as

follows: )
(g = exp | =il
wij = w(f;,f;) =exp e

where ¢ denotes the neighbourhood radius.

+ The above distance measure can also be regarded
as a similarity measure between shapes i and .
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Diffusion Maps

= Diffusion based probabilistic interpretation of spectral
methods.

» Feature vectors f,,f,, ..., f are nodes of a symmetric
graph.

= Similarity matrix W=[w,] for i,j=1,2,...,n, where w; is given by:

f;— £
wij = w(f;,£;) = exp (-*H 28’” )
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Markov Matrix

* The (i))th element of a Markov matrix P is computed as
follows, w(f;, £;)

d(f;) = 1622 w(f;,z)

denotes the degree of node i in the graph, and

where

Q={f,b,....5}.

+ The (i,j)th element of P’ gives the probability of going
from node i to node j in ¢ steps.
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The Diffusion Distance

Diffusion distance between two points A and B is:

-
D(AB>—JEM -

< do(y)
where
d(y)
bo(y) = - . .
EZeQ d(Z) Source : S. Lafon, “Diffusion Maps and Geometric Harmonics,”

Ph.D. Dissertation, Yale University, 2004

and ¢, also denotes the top left eigenvector of P.
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The Mapping ¥

= Low-dimensional embedding (or diffusion map or DM)
pR(Y s R of a feature vector fis given by:

() = M1 (6), Ao (B), -, At (6)]”

where m << N and A;,y; for ,i=1,2,...,m respectively
denote the eigenvalues and eigenvectors of the
Markov matrix P.

= The mapping ¥ at time step ¢ is computed as follows:
lp’(f) = [)‘Ilwl(f)’}‘éWZ(f)’ oo ,)\,inxpm(f)]T
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Properties of the DMs

» The diffusion distance as defined previously can also be
written as follows:

D'(fi,£) = |9 (£) — W' (£))|

= Diffuison Map: Diffusion distance — Euclidean distance

= Spectral fall-off and time ¢ of the random walk are the
main factors contributing to dimensionality reduction.

= For large value of ¢, we can capture large-scale structures
in the data with fewer coordinates.
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Case Study 1:
Clustering of Shapes
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Kimia’s Shape Dataset

6 classes, variable number of samples, a total of 157 samples.
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Raw Features
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Two-dimensional feature space using top two (1st and 2nd) Fourier descriptors
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PCA Embedding
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Scatter plots of top two PCA coordinates
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Laplacian Eigenmap
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Diffusion Map
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Scatter plots of top two diffusion coordinates
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Class Separability Index (CSl)
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Clustering Validity Index (CVI)

« Commonly used to measure the performance of
clustering algorithms and validate their outcome
« Some of the popular CVls:
— Dunn (Dunn, 1973)
— DB (Davies & Bouldin, 1979)
— DB* (Kim & Ramakrishna, 2005)

DB* (nc) = iz(maxk=l ,,,,, WS+ Sk})

nc “{\ min xl=1,...,l¢i{di,l}

1
where s, =n_,-2x6eid(x’c") and di’j = d(cl-,cj)
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DB* vs. nc (Top 4 Coordinates)
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DB* vs. nc (Top 6 Coordinates)

DB* vs. nc (Top 6 coordinates)
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DB* vs. nc (Top 8 Coordinates)

DB* vs. ¢ (Top 6 coordinates)
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Results of unsupervised FCM clustering using top 8 PCA coordinates
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Results of unsupervised FCM clustering using top 6 LEM coordinates
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Case Study 2
Detection of Nuclei
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Problem Definition

.VOQ-
- .g. » 2~ ¥.e 1 Cell Nuclei
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Cellular and extracellular material

“Detecting nuclei in a histology image by posing it as a
problem of classification of closed objects using
unsupervised shape manifold learning”

WARWICK PIEAS

The Proposed Algorithm
Pre-processing )»}.:;;.: ‘:;: :~-:'::'::
Shape Feature Manifold
Extraction > Learning — > Thresholding
- = _.:_: ';}.‘ |
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Pre-processing

H&E stained colour image of prostate tissue
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Pre-processing

Result of greyscale conversion and smoothing by bilateral filtering
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Preprocessing

Result of ~-means clustering and morphological operations
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Towards the Nuclei Detection

Diffusion maps in 3D
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Towards the Nuclei Detection
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Diffusion maps in 2D
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Experimental Results
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Experimental Results

S

A typical prostate tissue specimen
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Experimental Results

Binary image
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Experimental Results

R W N

Nuclei detected (shown in green) by our detection algorithm
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Out-of-Sample Extention

Nystrom’s Formula:

X = ,Jp f,,f

||Ms

where xr is rth Nystrom sample estimator and ¥
is jth coordinate of ith eigenvector.
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Experimental Results
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Detection of potential nuclei using the out-of-sample extension
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Conclusions

* Presented a framework for unsupervised learning of
shape manifolds
 Diffusion maps were used to:

— Preserve the local diffusion distance (a geodesic) on shape
manifolds

— Learn the global structure of the manifolds

» Results for unsupervised shape clustering (and
detection of nuclei) are quite encouraging

* Currently limited to:
— Connected closed curves in 2D
— Computation of similarity matrix is expensive
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Learning the Shape Manifolds
using Diffusion Maps

a. Arif & Rajpoot, “Classification of Potential Nuclei in Prostate Histology
Images using Shape Manifold Learning”, ICMV’2007

b. Rajpoot, Arif & Bhalerao, “Unsupervised Learning of Shape Manifolds”,
BMVC’2007

c. Arif & Rajpoot, Detection of Nuclei by Unsupervised Manifold Learning,
MIUA’2007
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