

Learning the Shape Manifolds using Diffusion Maps

Nasir Rajpoot

Department of Computer Science, University of Warwick, Coventry

Muhammad Arif

Pakistan Institute of Engineering and Applied Sciences, Islamabad

MiMIC

THE UNIVERSITY OF
WARWICK

PIEAS

Outline

- Introduction
- Motivation
- Relevant Work
- The Proposed Framework
 - Feature Extraction
 - Sub-Manifold Embedding
 - Experimental Results
- Conclusions and Future Directions

WARWICK

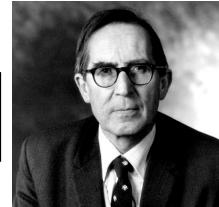
PIEAS

Shape Manifolds

- Kendall's shape spaces (1984)

5. The manifold carrying the shapes of triangles

We now know that there is a natural isometry between Σ_2^3 , the space whose points are the shapes of labelled triangles, and the sphere $S^2(\frac{1}{2})$. The patch on which



- Manifolds of images and shapes exist due to:
 - Sparseness
 - Continuity

[Example with Faces](#)

WARWICK

PIEAS

Motivation

- The *curse of dimensionality*
- Recent surge in research on nonlinear dimensionality reduction (NLDR)
- Object recognition
- Shape-based classification of objects
- Image retrieval
- Object-based image/video coding

WARWICK

PIEAS

Relevant Work (Shape Manifolds)

- Kernel PCA for ASMs (*Twining & Taylor, 2001*)
- Statistical shape priors (*Cremers et al., 2001*)
- Image manifolds for retrieval (*He, Ma & Zhang, 2004*)
- Manifold clustering (*Souvenir & Pless, 2005*)
- Clustering of shape manifolds using Isomaps (*Yankov & Keogh, 2006*)
- Extension of the Laplacian Eigenmaps for interpolation between shape samples (*Etyngier, Keriven & Pons, 2007*)

WARWICK

PIEAS

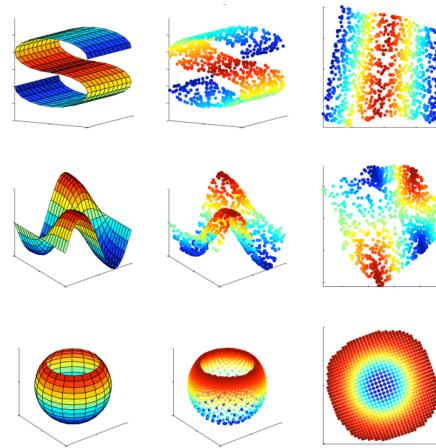
Relevant Work (NLDR)

- When the sub-manifold is linear, we can use standard DR methods, eg PCA, ICA, LDA etc.
- For nonlinear sub-manifolds, we need locality preserving DR methods, such as:
 - LLE (Roweis & Saul, 2000)
 - ISOMAPs (Tenenbaum, Silva & Langford, 2000)
 - Laplacian Eigenmaps (Belkin & Niyogi, 2002)
 - Hessian Eigenmaps (Donoho & Grimes, 2003)
 - Diffusion Maps (Coifman & Lafon, 2004)
 - Logmaps (Brun et al., 2005)

WARWICK

PIEAS

Locality Preservation



Source: Saul & Roweis, 2003

WARWICK

PIEAS

Learning the Shape Manifolds

“Given a set $\Omega = \{\Omega_1, \Omega_2, \dots, \Omega_k\}$, where $\Omega_i = \{C_{ij}\}$, $j = 1, 2, \dots, n_i = |\Omega_i|$ and $C_{ij} \in \mathcal{C}^1$ is a connected closed curve, represented by N boundary points, in the Euclidean plane, find the intrinsic parameters of the k shape classes and the mapping

$$\Psi : \mathbb{R}^{2N} \longmapsto \mathbb{R}^m,$$

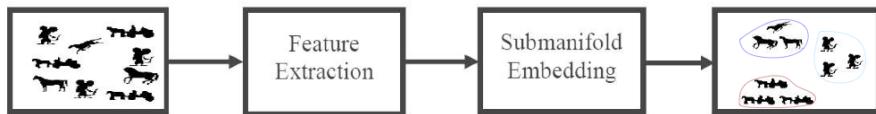
where $m \ll N$, such that clustering in \mathbb{R}^m yields a *plausible* grouping of similar shapes.”

Problem Definition

WARWICK

PIEAS

The Proposed Framework



Our emphasis here is on the nonlinear embedding of sub-manifolds corresponding to shapes of different classes

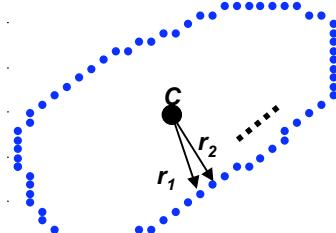
WARWICK

PIEAS

Feature Extraction

- Extract the boundaries of objects in the preprocessed images.
- Resample boundaries into an equal number of points, N .
- Compute centroidal distance function r_i , for $i=1,2,\dots,N$,

$$r_i = \sqrt{([x_i - x_c]^2 + [y_i - y_c]^2)}$$



WARWICK

PIEAS

Feature Extraction

- The distance vector,

$$\mathbf{r} = \{r_1, r_2, \dots, r_N\}$$

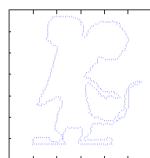
- Rotation and scale invariant feature vector for each shape is obtained as follows,

$$\mathbf{f} = \left[\frac{|F_1|}{|F_0|}, \frac{|F_2|}{|F_0|}, \dots, \frac{|F_{N/2}|}{|F_0|} \right]^T$$

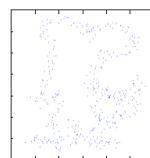
WARWICK

PIEAS

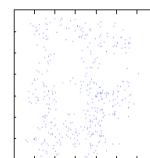
Feature Extraction



$\sigma = 0$



$\sigma = 5$



$\sigma = 10$

Centroidal Distance Vectors for a Rat image

WARWICK

PIEAS

The Shape Distance

- The shape distance w_{ij} between two shape feature vectors \mathbf{f}_i and \mathbf{f}_j for $i,j=1,2,\dots,n$, is computed as follows:

$$w_{ij} = w(\mathbf{f}_i, \mathbf{f}_j) = \exp\left(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2\epsilon}\right)$$

where ϵ denotes the neighbourhood radius.

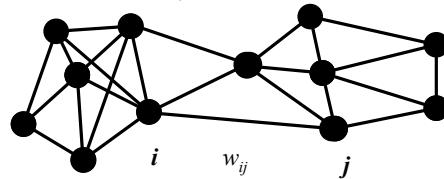
- The above distance measure can also be regarded as a similarity measure between shapes i and j .

WARWICK

PIEAS

Diffusion Maps

- Diffusion based probabilistic interpretation of spectral methods.
- Feature vectors $\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n$ are nodes of a symmetric graph.



- Similarity matrix $\mathbf{W}=[w_{ij}]$ for $i,j=1,2,\dots,n$, where w_{ij} is given by:

$$w_{ij} = w(\mathbf{f}_i, \mathbf{f}_j) = \exp\left(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2\epsilon}\right)$$

WARWICK

PIEAS

Markov Matrix

- The (i,j) th element of a Markov matrix \mathbf{P} is computed as follows,

$$p_{ij} = \frac{w(\mathbf{f}_i, \mathbf{f}_j)}{d(\mathbf{f}_i)}$$

where

$$d(\mathbf{f}_i) = \sum_{\mathbf{z} \in \Omega} w(\mathbf{f}_i, \mathbf{z})$$

denotes the degree of node i in the graph, and

$$\Omega = \{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n\}.$$

- The (i,j) th element of \mathbf{P}^t gives the probability of going from node i to node j in t steps.

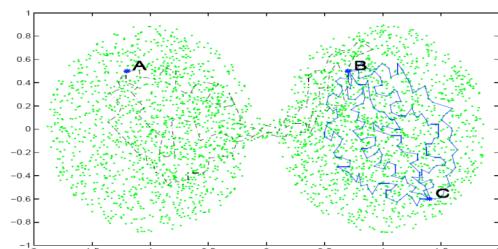
WARWICK

PIEAS

The Diffusion Distance

Diffusion distance between two points A and B is:

$$D(A, B) = \sqrt{\sum_y \frac{(p_{yA} - p_{yB})^2}{\phi_0(y)}}$$



Source : S. Lafon, "Diffusion Maps and Geometric Harmonics,"
Ph.D. Dissertation, Yale University, 2004

and ϕ_0 also denotes the top left eigenvector of \mathbf{P} .

WARWICK

PIEAS

The Mapping Ψ

- Low-dimensional embedding (or diffusion map or DM)
 $\Psi : \mathfrak{N}^N \mapsto \mathfrak{N}^m$ of a feature vector \mathbf{f} is given by:

$$\Psi(\mathbf{f}) = [\lambda_1 \psi_1(\mathbf{f}), \lambda_2 \psi_2(\mathbf{f}), \dots, \lambda_m \psi_m(\mathbf{f})]^T$$

where $m << N$ and λ_i, ψ_i for $i = 1, 2, \dots, m$ respectively denote the eigenvalues and eigenvectors of the Markov matrix \mathbf{P} .

- The mapping Ψ^t at time step t is computed as follows:

$$\Psi^t(\mathbf{f}) = [\lambda_1^t \psi_1(\mathbf{f}), \lambda_2^t \psi_2(\mathbf{f}), \dots, \lambda_m^t \psi_m(\mathbf{f})]^T$$

WARWICK

PIEAS

Properties of the DMs

- The diffusion distance as defined previously can also be written as follows:

$$D^t(\mathbf{f}_i, \mathbf{f}_j) = \|\Psi^t(\mathbf{f}_i) - \Psi^t(\mathbf{f}_j)\|^2$$

- Diffusion Map: Diffusion distance \mapsto Euclidean distance
- Spectral fall-off and time t of the random walk are the main factors contributing to dimensionality reduction.
- For large value of t , we can capture large-scale structures in the data with fewer coordinates.

WARWICK

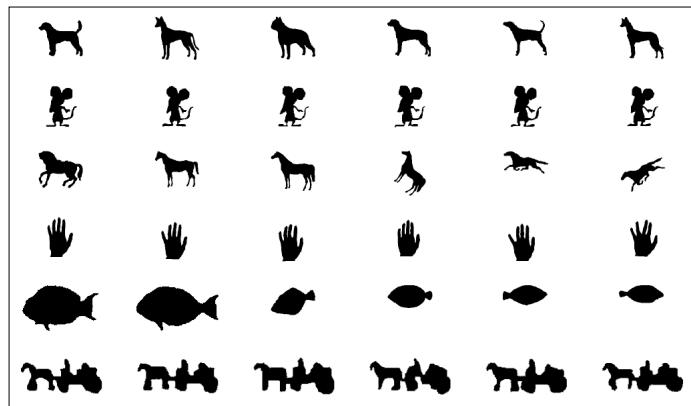
PIEAS

Case Study 1: Clustering of Shapes

WARWICK

PIEAS

Kimia's Shape Dataset

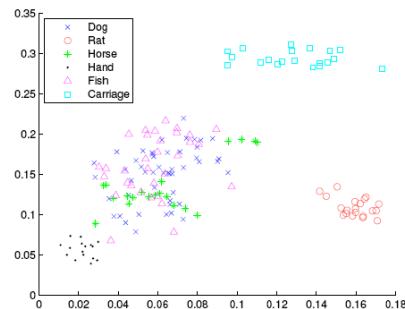


6 classes, variable number of samples, a total of 157 samples.

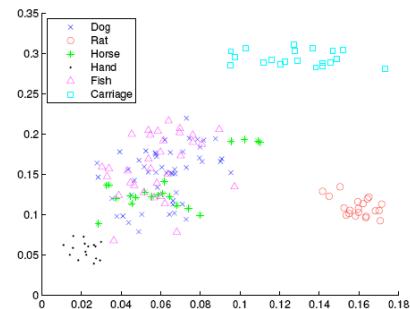
WARWICK

PIEAS

Raw Features



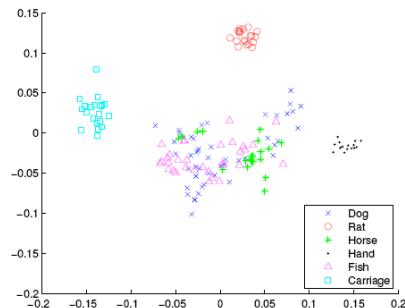
$\sigma = 0$
Two-dimensional feature space using top two (1st and 2nd) Fourier descriptors



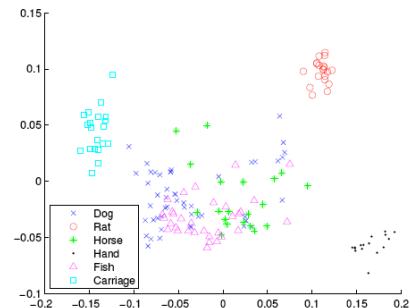
WARWICK

PIEAS

PCA Embedding



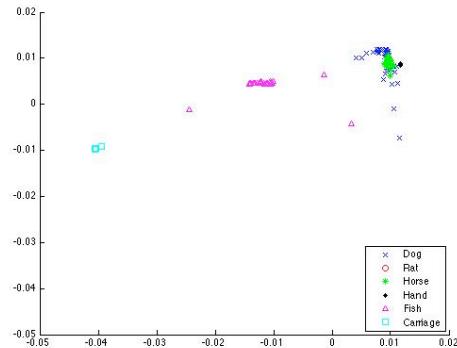
$\sigma = 0$
Scatter plots of top two PCA coordinates



WARWICK

PIEAS

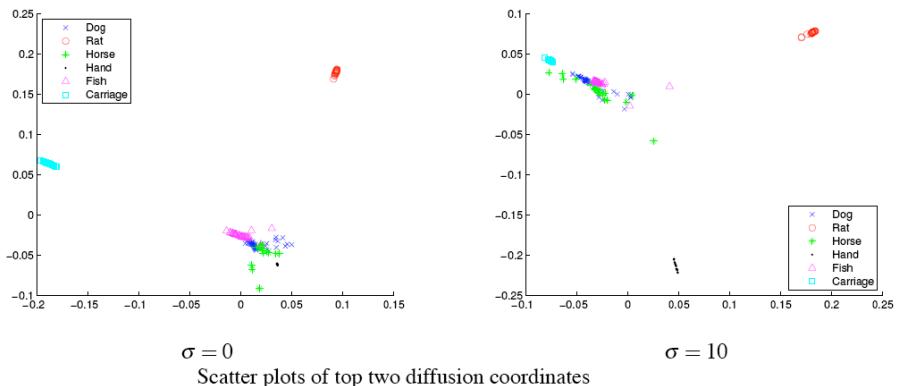
Laplacian Eigenmap



WARWICK

PIEAS

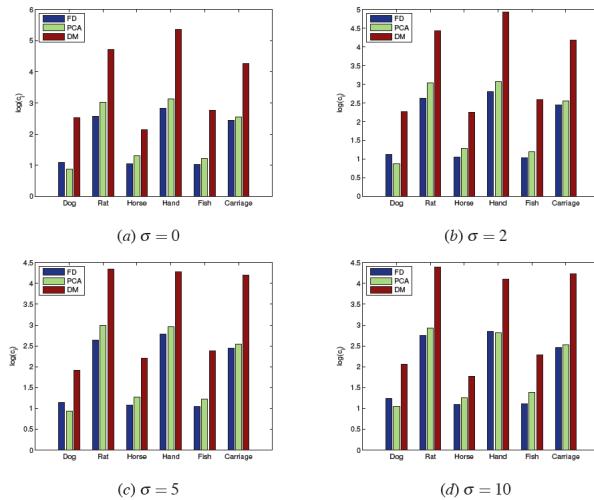
Diffusion Map



WARWICK

PIEAS

Class Separability Index (CSI)



$$c_i = \frac{\bar{d}_i}{\sqrt{\sigma_i^2}}$$

WARWICK

PIEAS

Clustering Validity Index (CVI)

- Commonly used to measure the performance of clustering algorithms and validate their outcome
- Some of the popular CVIs:
 - Dunn (Dunn, 1973)
 - DB (Davies & Bouldin, 1979)
 - DB* (Kim & Ramakrishna, 2005)

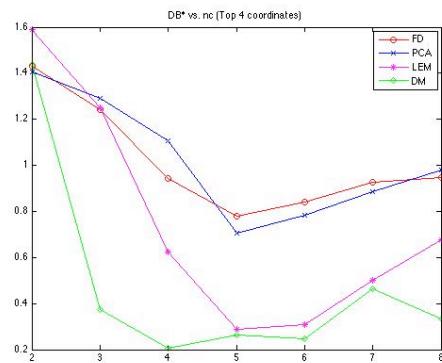
$$DB^*(nc) = \frac{1}{nc} \sum_{i=1}^{nc} \left(\frac{\max_{k=1, \dots, k \neq i} \{S_i + S_k\}}{\min_{l=1, \dots, l \neq i} \{d_{i,l}\}} \right)$$

where $S_i = \frac{1}{n_i} \sum_{x \in c_i} d(x, c_i)$ and $d_{i,j} = d(c_i, c_j)$

WARWICK

PIEAS

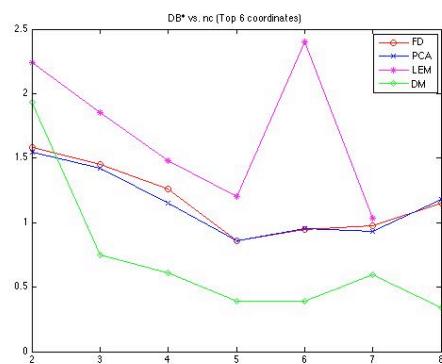
DB^* vs. nc (Top 4 Coordinates)



WARWICK

PIEAS

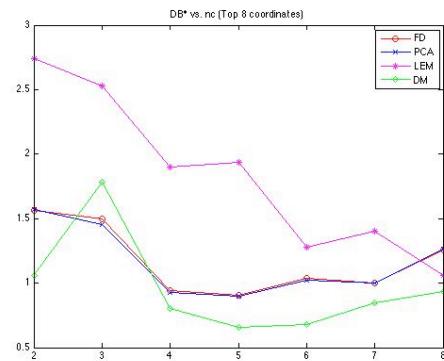
DB^* vs. nc (Top 6 Coordinates)



WARWICK

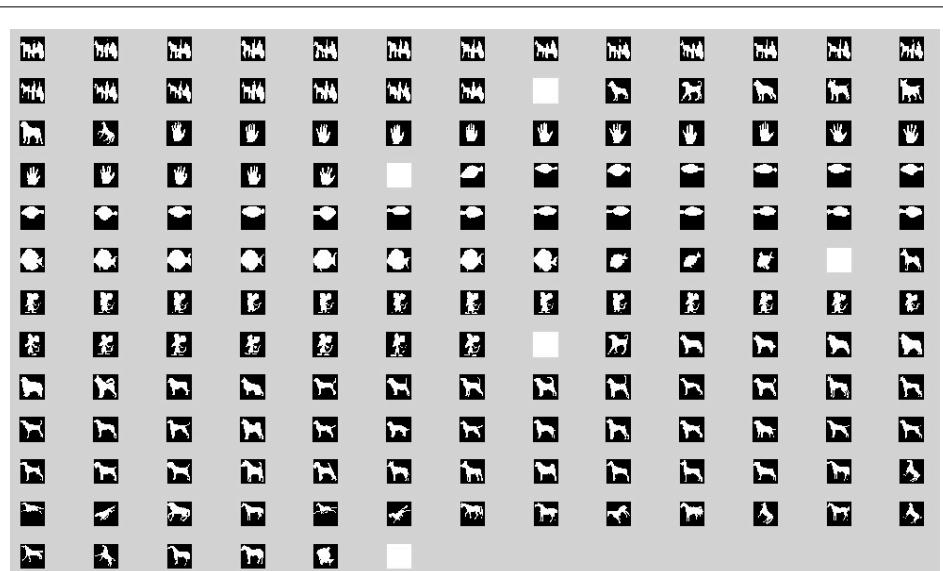
PIEAS

DB^* vs. nc (Top 8 Coordinates)



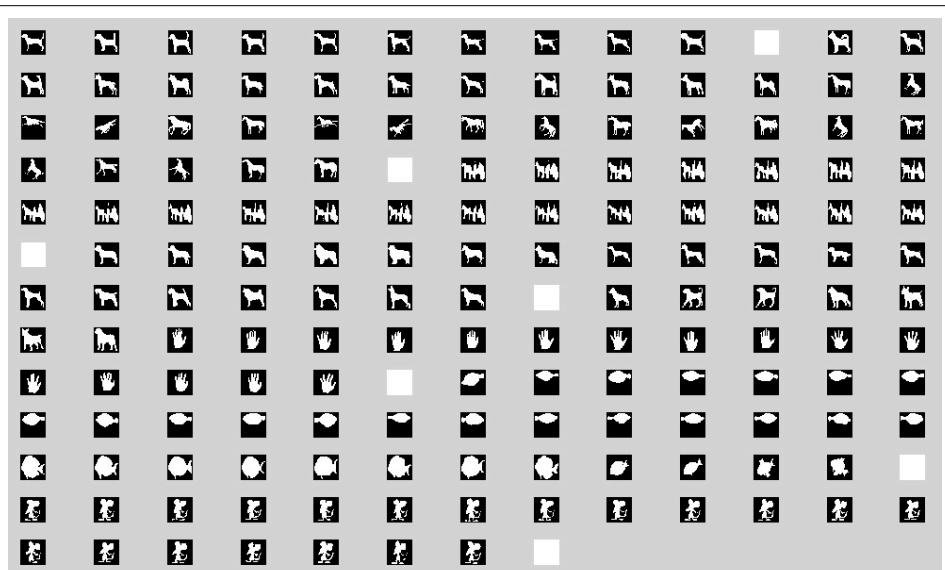
WARWICK

PIEAS



WARWICK

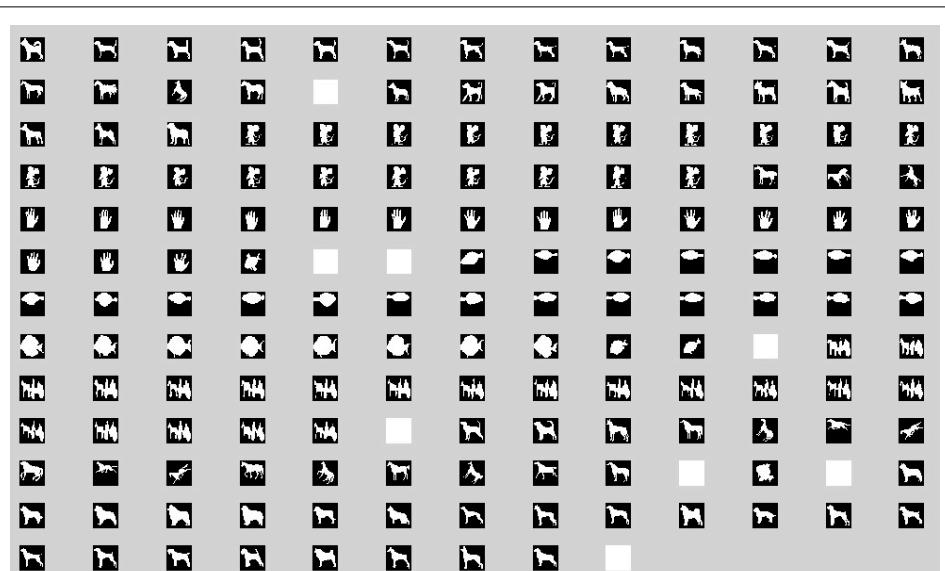
PIEAS



Results of unsupervised FCM clustering using top 6 LEM coordinates

WARWICK

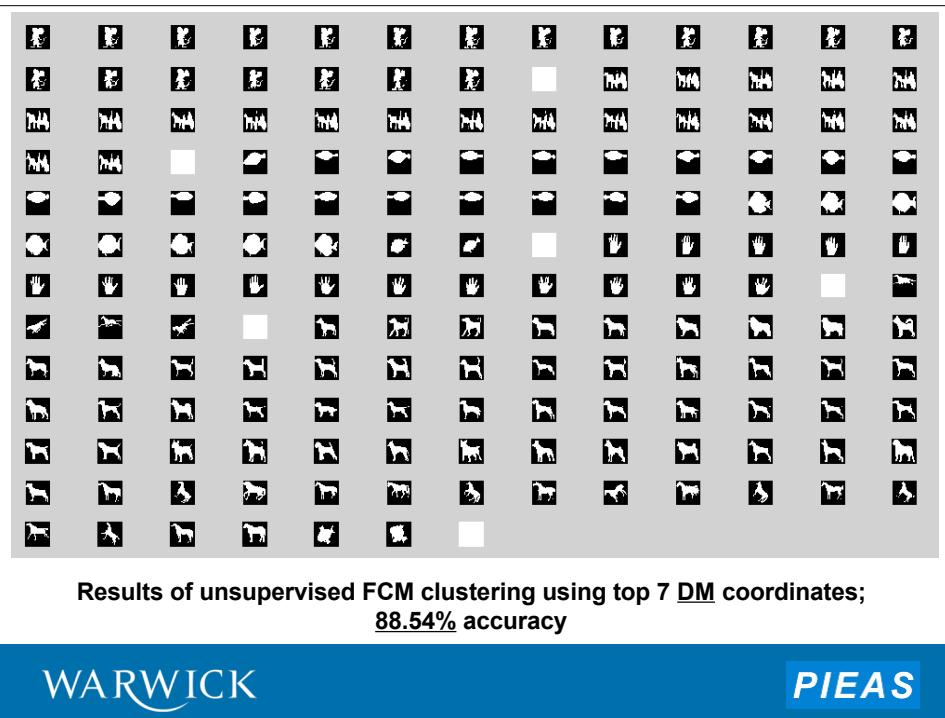
PIEAS



Results of unsupervised FCM clustering using top 8 LEM coordinates

WARWICK

PIEAS

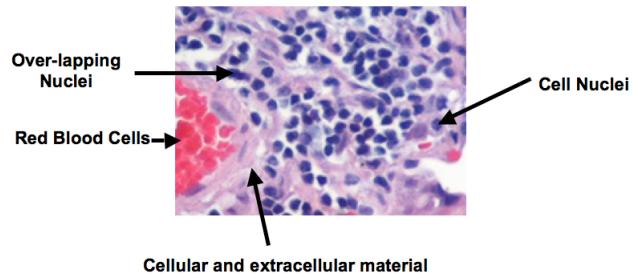


Case Study 2: Detection of Nuclei

WARWICK

PIEAS

Problem Definition

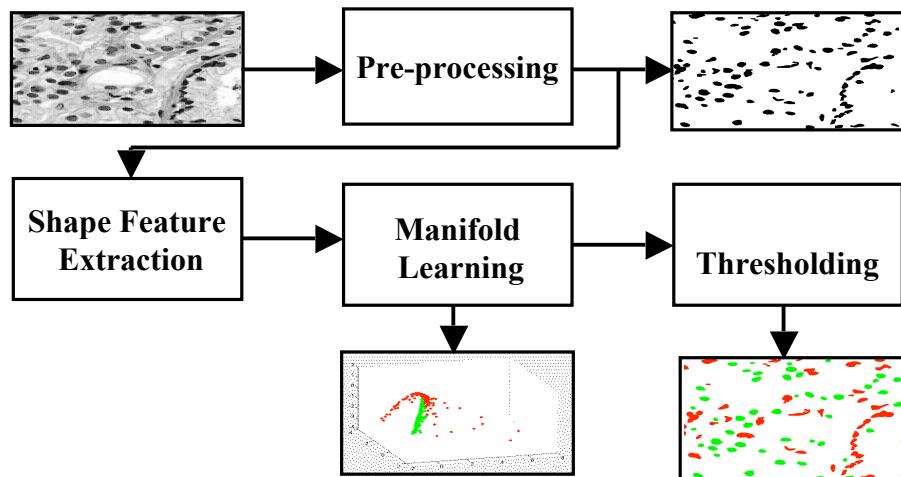


“Detecting nuclei in a histology image by posing it as a problem of classification of closed objects using unsupervised shape manifold learning”

WARWICK

PIEAS

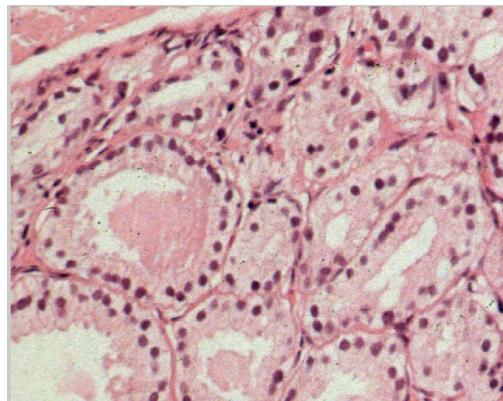
The Proposed Algorithm



WARWICK

PIEAS

Pre-processing

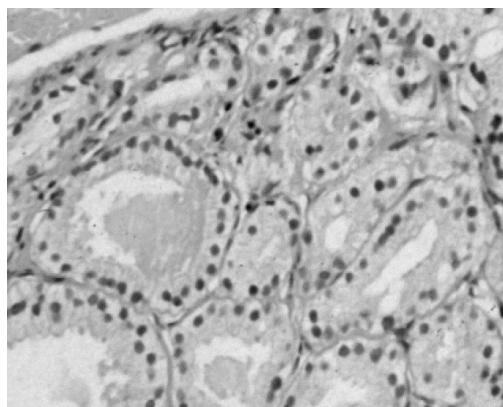


H&E stained colour image of prostate tissue

WARWICK

PIEAS

Pre-processing

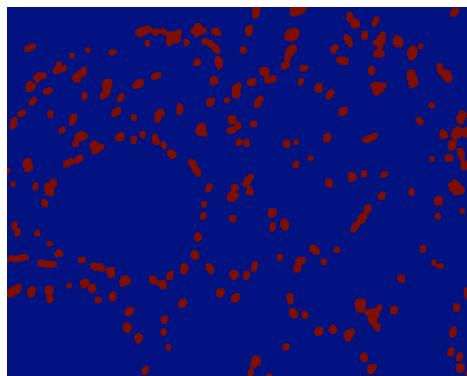


Result of greyscale conversion and smoothing by bilateral filtering

WARWICK

PIEAS

Preprocessing

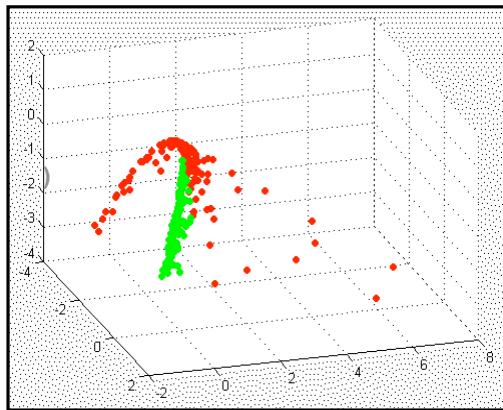


Result of k -means clustering and morphological operations

WARWICK

PIEAS

Towards the Nuclei Detection

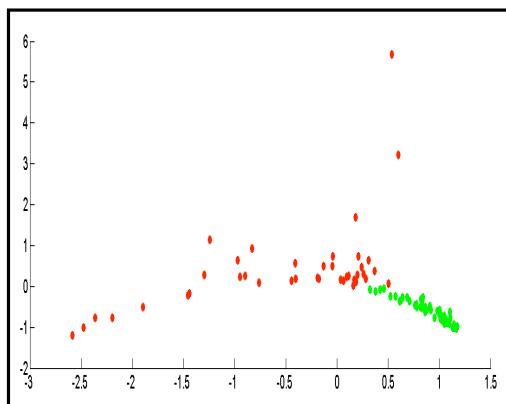


Diffusion maps in 3D

WARWICK

PIEAS

Towards the Nuclei Detection



WARWICK

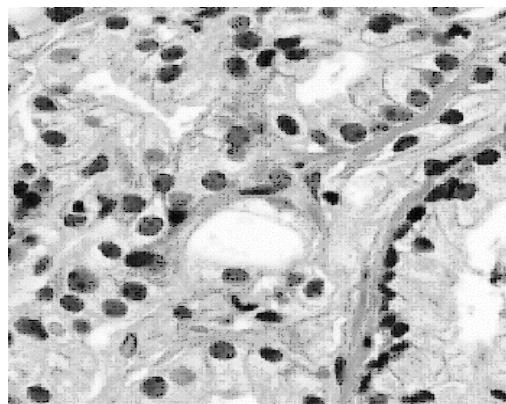
PIEAS

Experimental Results

WARWICK

PIEAS

Experimental Results

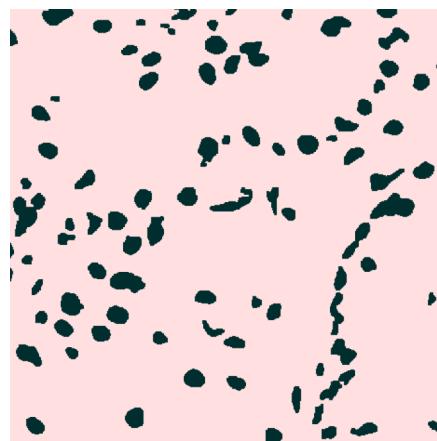


A typical prostate tissue specimen

WARWICK

PIEAS

Experimental Results

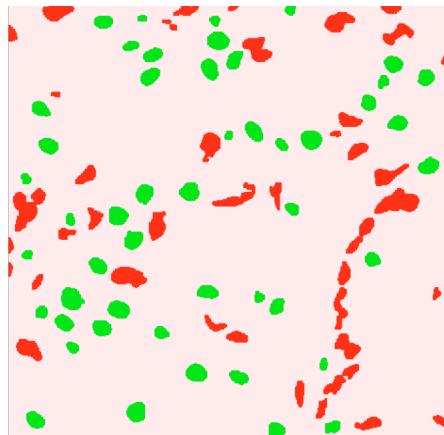


Binary image

WARWICK

PIEAS

Experimental Results



Nuclei detected (shown in green) by our detection algorithm

WARWICK

PIEAS

Out-of-Sample Extension

Nyström's Formula:

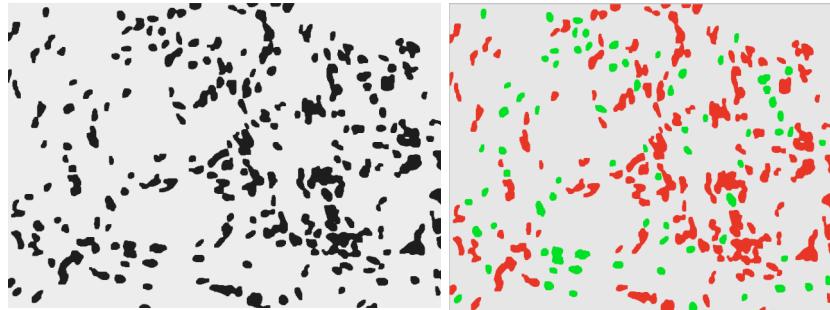
$$x_i = [\Psi(\mathbf{f})]_i = \frac{1}{\lambda_i} \sum_{j=1}^m \psi_{ij} p(\mathbf{f}_i, \mathbf{f})$$

where x_r is r th Nystrom sample estimator and ψ_{ij} is j th coordinate of i th eigenvector.

WARWICK

PIEAS

Experimental Results



Detection of potential nuclei using the out-of-sample extension

WARWICK

PIEAS

Conclusions

- Presented a framework for unsupervised learning of shape manifolds
- Diffusion maps were used to:
 - Preserve the local diffusion distance (a geodesic) on shape manifolds
 - Learn the global structure of the manifolds
- Results for unsupervised shape clustering (and detection of nuclei) are quite encouraging
- Currently limited to:
 - Connected closed curves in 2D
 - Computation of similarity matrix is expensive

WARWICK

PIEAS

Learning the Shape Manifolds using Diffusion Maps

- a. *Arif & Rajpoot*, "Classification of Potential Nuclei in Prostate Histology Images using Shape Manifold Learning", ***ICMV'2007***
- b. Rajpoot, Arif & Bhalerao, "Unsupervised Learning of Shape Manifolds", ***BMVC'2007***
- c. *Arif & Rajpoot*, Detection of Nuclei by Unsupervised Manifold Learning, ***MIUA'2007***

MiMIC

THE UNIVERSITY OF
WARWICK

PIEAS