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ABSTRACT

A novel approach to the removal of noise from three-
dimensional image data is described. The image sequence
is represented using a non-adaptive wavelet basis, carefully
chosen for its ability to compactly represent locally planar
surfaces. This is important in many 3-D applications, includ-
ing video sequences, where they represent moving luminance
edges, and medical volume data, where they represent the
interfaces between tissue and bone, for example. The new
basis, called a Fourier-Wavelet Basis, is an extension of the
complex wavelet bases which have been increasing in popu-
larity in recent years. Because transformation to the new basis
is efficient computationally, the overall denoising algorithm is
highly efficient. The success of the approach is demonstrated
using a noisy video sequence and a noisy human knee MR
image volume.

1. INTRODUCTION

The use of multiresolution image representations in the re-
storation of noisy images dates back to the late 1980’s [1],
in which a statistical estimator based on a simple quadtree
image model was used in smoothing images corrupted by ad-
ditive Gaussian noise. Although the model was simple, it suf-
fered from blocking artefacts associated with Haar wavelets,
due to their non-overlapping support. In recent years, con-
siderable interest has been shown in image restoration tech-
niques based on wavelets [2, 3]. While these are efficient
computationally, they avoid the worst aliasing artefacts and
are quite robust. At its simplest, wavelet ‘denoising’ is partic-
ularly attractive, requiring computation of the transform and
its inverse, combined with a suitable threshold function. A
variety of choices of wavelet have been advocated and vari-
ous ‘hard’ or ‘soft’ thresholding schemes have been proposed
[2]. Nevertheless, there are clearly cases where lack of se-
lectivity in the Fourier domain limits the scope of such tech-
niques: the effectiveness of the technique relies on the abil-
ity of the basis to concentrate signal energy in relatively few
coefficients. This is particularly important in denoising 3-D
image data, where locally planar structures, such as moving
edges or interfaces between volumes, convey most informa-
tion. For example, in image sequences, moving edges sweep
out locally planar shapes. Similarly, the surfaces of objects
within medical images should be preserved during filtering.

Preservation of such features requires a basis in which they
are sparsely represented. Furthermore, translation invariance
has been shown to be important in this application, as in many
others [3]. An obvious choice might, therefore, seem to be the
Fourier basis, since a plane surface in a volume corresponds
to a line in the Fourier domain. Of course, this misses the key
epithet: local; all image data show only local planarity, with
curvature a significant feature at larger scales.

For this reason, we have developed a modification of the
complex wavelet bases proposed in [4, 5], which show trans-
lation invariance, good direction-selectivity and yet can be
implemented efficiently. The new basis, which we label a
Fourier-Wavelet Basis (FWB), has a combination of scal-
ing, locality and directional characteristics which are well
matched to the locally planar surfaces of interest in applica-
tions. Furthermore, it is easy to compute and is invertible. Af-
ter briefly presenting the new basis, we shall demonstrate its
effectiveness in the denoising of an image sequence, based on
a modified, adaptive version of a soft thresholding technique
[2]. The computational complexity of our algorithm is essen-
tially equivalent to a windowed Fourier transform (WFT) and
it does not require any motion estimation.

In the next section, the new basis is briefly described and its
invertibility demonstrated. This is followed by an outline of
the denoising algorithm. Experimental results are presented
and discussed for two image datasets: a noisy video sequence
and an MR image volume. The paper is concluded with some
remarks on the limitations of the current technique and sug-
gestions for its improvement.

2. FOURIER-WAVELET BASIS

The discrete Fourier-Wavelet transform is a combination of
two well known image transforms: the Laplacian pyramid [6]
and the windowed Fourier transform. In some ways, it is sim-
ilar to the octave band Gabor representation proposed in [7],
but avoids some of the more unpleasant numerical properties
of the Gabor functions. Although the pyramid is overcom-
plete, by some 33% in 2-D, this becomes negligible in 3-D
(14%) unless overlapping windows are used in the WFT. Thus
in 1-D, in the continuous domain, a prototypical FWB vector
has the form
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where ξ, ω and a are respectively the location, frequency and
scale parameters of the function. The function w(.) is a win-
dow function, chosen along with the sampling interval to en-
sure invertibility of the discrete form of the transform. In 3-D,
the basis comprises the set of Cartesian products over ξ, ω at
each scale a. That the continuous transform defined by (1)
is invertible follows directly from the observation that it is
simply the multiresolution Fourier transform (MFT) [4].

The discrete form, however, is significantly different from
that described in [4], for in the present case, the transform of
an image volume f , in vector form, is given at scale m by

f̂m = Fn(I − Gm,m+1Gm+1,m)fm (2)

whereˆdenotes the FWT at scale m, Fn is the WFT operator
with block size n×n×n, I is the identity operator, fm is the
Gaussian pyramid representation of f on level m

fm =

m−1
∏

0

Gl+1,lf (3)

and Gm,m+1, Gm+1,m are the raising and lowering opera-
tors associated with transitions between levels in the Gaussian
pyramid. Invertibility follows directly from equations (2) and
(3):

Theorem 1 The representation defined by equation (2) is in-
vertible.

Proof

First we note that the WFT operator Fn has an inverse, which
can be denotedF−1

n . Secondly, we know from Burt and Adel-
son that the Laplacian pyramid is invertible, since, trivially,

fm = fm − Gm,m+1fm+1 + Gm,m+1fm+1 (4)

and the proof is completed by induction on m.
Importantly, although both the pyramid and FT operators

are Cartesian separable, the closeness of the Burt and Adel-
son filter to a Gaussian function gives the pyramid virtually
isotropic behaviour, which can be exploited well by the high
frequency resolution of a Fourier basis. Although the non-
orthogonality of the FWB may be a handicap in some appli-
cations, this is not a significant disadvantage in denoising.

3. THE DENOISING ALGORITHM

The denoising algorithm works in three steps: forward FWT,
adaptive thresholding, and inverse FWT. The coefficients of
three-dimensional forward FWT of the image volume are
computed using the algorithm outlined in the previous sec-
tion. Since the presence of additive Gaussian white noise
means that almost all the FWT coefficients are affected by
it, soft thresholding would reduce the contribution of noise
to the restored image volume. Based on the assumption that
the coefficients relatively small in magnitude at each reso-
lution (ie, below a certain threshold) are most probably due
to the noise variation, coefficients with magnitude above a

certain threshold are kept while the remaining ones are dis-
carded. The inverse FWT, therefore, provides an estimation
of the original uncorrupted image volume.

The choice of threshold is crucial to the performance of
this type of transform domain denoising. Donoho and John-
stone [2] have shown that an adaptive threshold θ given by

θ = σ
√

2logn (5)

is an asymptotically optimal choice for threshold value when
denoising a 1-D noisy signal, where n denotes the number
of samples in the signal and σ is standard deviation of the
additive Gaussian white noise. Our experiments showed that
using an adaptive threshold for coefficients at different res-
olutions gives better denoising results as compared to using
same threshold value for transform coefficients at all resolu-
tions. We use threshold value θi for coefficients at level i of
the pyramid as given by

θi = L(σ)
√

2log ni (6)

where ni denotes the number of pixels at level i of the pyra-
mid and L(σ) is a suitably chosen function of σ. The fol-
lowing expression for L(σ) was empirically chosen for our
experiments

L(σ) = a log10 σ + b (7)

where a, b∈< and b = 2a.

4. EXPERIMENTAL RESULTS

The algorithm described above for denoising 3-D image data
was tested on the Miss America sequence of size 1283 and a
human knee MR image volume of size 256×256×64. The
image data was corrupted with additive Gaussian noise, and
adaptive thresholding was applied to transform coefficients of
the noisy sequence represented in a 3-level Fourier-wavelet
domain using a 163 window. Experimental results for the
FWB denoising and translation invariant wavelet (TIW) de-
noising [3] of the noisy Miss America sequence and noisy
human knee image volume for signal-to-noise-ratio (SNR) of
0dB, 5dB, and 10dB are shown in Figures 1 and 2. The value
of a = 0.46 for equation (7) was chosen empirically using
least squares fitting.

As is evident from these results, the FWB denoising per-
forms quite well when compared to the TIW denoising, in
terms of both visual quality and SNR gain. In particular, the
SNR gain of 7.6dB over TIW denoising for noisy Miss Amer-
ica sequence of 0dB SNR shows the promise that FWB repre-
sentation offers for efficiently representing planar structures.
However, SNR gains for knee image volume are not so high,
which can be explained by the fact that most structures preva-
lent in this volume are mainly solid rather than planar. Two
types of artifacts can be observed from these results: blocky
artifacts due to the use of a 163 window, and fake textures
which sometimes persist within these windows due to sup-
pressing a significant amount of high frequency details.

The computational complexity of our algorithm is O(n)
as compared to O (n log2(n)) in case of the TIW denoising,
making our algorithm faster by orders of magnitude. It is to



be noted, however, that the TIW denoising with a soft thresh-
olding was applied to the individual 2-D frames (or slices) as
opposed to the FWB denoising which benefits from represen-
tation of the noisy image volume in a 3-D Fourier-wavelet
domain. This means a higher storage requirement for our
method.

Experimental results in terms of the SNR gain for five dif-
ferent SNR values of the noisy Miss America sequence and
the human knee MR image volume are provided in Tables 1
and 2, respectively. Overall, these results compare favourably
with those found in the literature [8], in terms of both visual
quality and SNR gain.

Noisy Volume TIW Denoising FWB Denoising
0 9.5 17.1
5 12.6 18.9
10 15.3 20.9
15 18.1 23.5
20 20.6 25.3

Table 1. SNR (in dB) values for the Miss America video sequence

Noisy Volume TIW Denoising FWB Denoising
0 10.2 13.1
5 12.3 14.9
10 14.6 16.7
15 17.0 18.8
20 19.4 21.3

Table 2. SNR (in dB) values for the human knee MR image volume

5. CONCLUSIONS

This paper has introduced a new, computationally efficient
wavelet representation particularly suited to the surface struc-
tures which are important in many 3-D imaging applications.
After a brief review of its properties, the new representa-
tion was used in a denoising scheme based on soft threshold-
ing and was shown to give high gains in terms of signal-to-
noise-ratio. This was achieved without motion compensation.
Although the technique appears promising, it remains to be
demonstrated just how effective it might be with a more com-
plex, adaptive thresholding method. The effects of oversam-
pling and using tapered windows for the WFT also remain to
be investigated.
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Fig. 1. Denoising results for the Miss America video sequence

Frame# 90: (a) Original (b) Noisy (SNR=0dB) (c) TIW Denoised (SNR=9.5dB) (d) FWB Denoised (SNR=17.1dB)

Frame# 70: (e) Original (f) Noisy (SNR=5dB) (g) TIW Denoised (SNR=12.6dB) (h) FWB Denoised (SNR=18.9dB)

Frame# 75: (i) Original (j) Noisy (SNR=10dB) (k) TIW Denoised (SNR=15.3dB) (l) FWB Denoised (SNR=20.9dB)
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Fig. 2. Denoising results for human knee MR image volume

Slice# 20: (a) Original (b) Noisy (SNR=0dB) (c) TIW Denoised (SNR=9.5dB) (d) FWB Denoised (SNR=13.1dB)

Slice# 45: (e) Original (f) Noisy (SNR=5dB) (g) TIW Denoised (SNR=12.3dB) (h) FWB Denoised (SNR=14.9dB)

Slice# 30: (i) Original (j) Noisy (SNR=10dB) (k) TIW Denoised (SNR=14.6dB) (l) FWB Denoised (SNR=16.7dB)


