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ABSTRACT

Diagnosis and cure of colon cancer can be improved by effi-
ciently classifying the colon tissue cells from biopsy slides
into normal and malignant classes. This paper presents the
classification of hyperspectral colon tissue cells using mor-
phology of gland nuclei of cells. The application of hyper-
spectral imaging techniques in medical image analysis is a
new domain for researchers. The main advantage of using
hyperspectral imaging is the increased spectral resolution
and detailed subpixel information. The proposed classifi-
cation algorithm is based on the subspace projection tech-
niques. Support vector machine, with 3rd degree polyno-
mial kernel, is employed in final set of experiments. Dimen-
sionality reduction and tissue segmentation is achieved by
Independent Component Analysis (ICA) andk-means clus-
tering. Morphological features, which describe the shape,
orientation and other geometrical attributes, are extracted
in one set of experiments. Grey level co-occurrence ma-
trices are also computed for the second set of experiments.
For classification, kernel discriminant analysis (LDA) with
co-occurrence features gives comparable classification ac-
curacy to SVM using a gaussian kernel. The algorithm is
tested on a limited set of samples containing ten biopsy
slides and its applicability is demonstrated with the help of
measures such as classification accuracy rate and the area
under the convex hull of ROC curves.

1. INTRODUCTION

Colon cancer is a malignant disease of the large bowel. Af-
ter lung and breast cancer, colorectal cancer (a combined
term for colon and rectal cancer) is the most common cause
of death for cancers in the Western world. The incidence
of disease in England and Wales is about 30,000 cases/year,
resulting in approximately 17,000 death/annum [11], and it
has been estimated that at least half a million cases of col-
orectal cancer occur each year worldwide. It is caused by
colonic polyps, an abnormal growth of tissue that projects
in due course from the lining of the intestine or rectum, into

colorectal cancer. These polyps are often benign and usually
produce no symptoms. They may, however, cause painless
rectal bleeding usually not apparent to the naked eye. The
normal time for a polyp to reach 1 cm in diameter is five
years or a little more. This 1 cm polyp will take around 5-
10 years for the cancer to cause symptoms by which time it
is frequently too late [10].

Diets low in fruits, less protein from vegetable sources,
high age and family history are associated with increased
risk of polyps. Persons smoking more than 20 cigarettes a
day are 250 percent more likely to have polyps as opposed
to nonsmokers who otherwise have the same risks. There is
an association of cancer risk with meat, fat or protein con-
sumption which appear to break down in the gut into cancer
causing compounds called carcinogens [8]. Smoking ces-
sation is important to decrease the likelihood of developing
colon cancer. Dietary supplementation with 1500 mg of cal-
cium or more a day is associated with a lower incidence of
colon cancer. Weight reduction may be helpful in reducing
the risk for colorectal cancer. Daily exercise reduces the
likelihood of developing colon cancer. Turmeric, the spice
which gives curry its distinctive yellow color, may also pre-
vent colon cancer [5].

1.1. Hyperspectral Imaging

Hyperspectral imaging in laboratory experiments, is a non-
contact sensing technique for obtaining both spectral and
spatial information about a tissue sample. Hyperspectral
imaging measures a spectrum for each pixel in an image.
There are many types of spectroscopy which are being used
to study the spectral signatures of individual cells and un-
derlying tissue sections. In optical spectroscopy, which mea-
sures transmission through, or reflectance from, a sample by
visible or near-infrared radiation at the same wavelength as
the source, classification is done mostly by statistical mea-
sures [1].

Hyperspectral images are normally produced by emis-
sion of spectra from imaging spectrometers. Spectroscopy
is the study of light that is emitted by or reflected from



materials and its variation in energy with wavelength [9].
Spectrometers are used to make measurements of the light
reflected from a test specimen. A prism in the centre of
spectrometer splits this light into many different wavelength
bands and the energy in each band is measured by detectors
which are different for each band. By using large number
of detectors (even a few thousand), spectrometers can make
spectral measurements of bands as narrow as 0.01 microm-
eters over a wide wavelength range, typically at least 0.4
to 2.4 micrometers (visible through middle infrared wave-
length ranges). Most approaches to analyse hyperspectral
images concentrate on the spectral information in individ-
ual image cells, rather than spatial variations within individ-
ual bands or groups of bands. The statistical classification
(clustering) methods often used with multispectral images
can also be applied to hyperspectral images but may need to
be adapted to handle high dimensionality.

Recent developments in hyperspectral imaging have en-
hanced the usefulness of the light microscope [3]. A stan-
dard epifluorescence microscope can be optically coupled
to an imaging spectrograph, with output recorded by a CCD
camera. Individual images are captured representing Y-wave-
length planes, with the stage successively moved in the X di-
rection, allowing an image cube to be constructed from the
compilation of generated scan files. Hyperspectral imaging
microscopy permits the capture and identification of differ-
ent spectral signatures present in an optical field during a
single-pass evaluation, including molecules with overlap-
ping but distinct emission spectra. High resolution charac-
teristics of hyperspectal imaging is reflected in two sample
images in Figure 1 of colon tissue cells.

2. DIMENSIONALITY REDUCTION AND
SUBSPACE PROJECTION

There is a large redundant information in the subbands of
hyperspectral imagery. Independent component analysis (ICA)
is used to discard the redundancy and extract the variance
among different wavelengths of spectra. K-means cluster-
ing is used to help the dimensionality reduction procedure
and to segregate the biopsy slide into its cellular compo-
nents. Subspace projection is achieved with principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA).
A brief introduction to the mathematical derivation of these
methods is presented in the following subsections.

2.1. Independent Component Analysis (ICA)

The objective of Independent Component Analysis (ICA)
is to perform a dimension reduction approach to achieve
decorrelation between independent components [14]. Let us
denote byX = (x1, x2, . . . , xm)T a zero-mean m-dimensional
variable, andS = (s1, s2, . . . , sn)T , n < m, is its linear

(a) Normal Cells

(b) Malignant Cells

Fig. 1. Colon Tissue Imagery

transform with a constant matrixW [17]:

S = WX

Given X as observations, ICA aims to estimating W and S.
The goal of ICA is to find a new variable S such that trans-
formed componentssi are not only uncorrelated with each
other, but also statistically as independent of each other as
possible. An ICA algorithm consists of two parts, an ob-
jective function which measures the independence between
components, entropy of each independent source or their
higher order cumulants, and the second part is the optimisa-
tion method used to optimise the objective function. Higher
order cumulants like kurtosis, and approximations of ne-
gentropy provide one-unit objective function. A decorrela-
tion method is needed to prevent the objective function from
converging to the same optimum for different independent
components. Whitening or data sphering project the data
onto its subspace as well as normalizing its v ariance.

2.2. K-Means Clustering

Clustering is the process of partitioning or grouping a given
set of patterns into disjoint clusters. This is done such that



patterns in the same cluster are alike and patterns belonging
to two different clusters are different. Thek-means method
has been shown to be effective in producing good clustering
results for many practical applications [2]. The aim of thek-
means algorithm is to dividem points inn dimensions into
k clusters so that the within-cluster sum of squared distance
from the cluster centroids is minimised. The algorithm re-
quires as input a matrix ofm points inn dimensions and
a matrix ofk initial cluster centres inn dimensions. The
number of clustersk is assumed to be fixed ink-means clus-
tering. Let thek prototypes(w1, . . . , wk) be initialised to
one of them input patterns(i1, . . . , im). Therefore;

wj = il, j ∈ {1, . . . , k}, l ∈ {1, . . . ,m}

The appropriate choice ofk is problem and domain depen-
dent and generally a user must try several values ofk. The
quality of the clustering is determined by the following error
function:

E =
k∑

j=1

∑
il∈Cj

|il − wj |2

The direct implementation ofk-means method is computa-
tionally very intensive.

2.3. Kernel Principal Component Analysis

PCA is a kind of linear transform, while Kernel PCA is a
nonliner transform. The basic idea of KPCA [13] is based
on the theory that by doing nonlinear mapping of the data
points to a higher dimensional space, better features are ob-
tained which is more natural and compact representation of
the data. The computational complexity arising from the
high dimensionality mapping is mitigated by using the ker-
nel trick. Consider a nonlinear mappingΦ(.) : Rn →
Rf , f > n the space of n dimensional data points to some
higher dimensional spaceRf . So every pointxn is mapped
to some pointφ(xf ) in a higher dimensional space. Af-
ter mapping, KPCA is nothing but linear PCA done on the
points in the higher dimensional space. Denoting am ×
m matrix K by

Kij = k(xi, xj) = Φ(xi).Φ(xj)

the kernel PCA problem becomes

mλkα = k2α ≡ mλα = kα

whereα denotes a column vector with entriesα1, · · · , αm.
The projection vectors inRf to a lower dimensional space
spanned by the eigenvectorswΦ is the nonlinear principal
components corresponding toΦ:

wΦ.Φ(x) =
m∑

i=1

αi(Φ(xi)).Φ(x) =
m∑

i=1

αik(xi, x)

hence the first m nonlinear principal components are ex-
tracted without the expensive operation of high dimensional
projection of the data.

2.4. Kernel Linear Discriminant Analysis

Similar to KPCA, mapping is performed on the input space
to the high dimensional feature space with linear properties
[13]. In the new space, the problem is solved in a clas-
sical way in the transformed space using the kernel oper-
ators.Denoting the wihin-class and between-class matrices
by Sw andSb and applying FDA in kernel space, the so-
lution of the equation below will give the eigenvalues and
eigenvectors w ;

λSΦ
wwΦ = SΦ

BwΦ

which can be obtained by

WΦ
OPT = argmaxwΦ

|(WΦ)T SΦ
BWΦ|

|(WΦ)T SΦ
W WΦ|

= [wΦ
1 , · · · , wΦ

m]

. Consider a c-classs problem and let therth sample of class
t andsth sample of class u bextr andxus respectively. The
kernel function is defined as

(krs)tu = k(xtr, xus) = Φ(xtr).Φ(xus)

. Let K be am×m matrix defined by the elements(Ktu)t=1,··· ,c
u=1,··· ,c

whereKtu is a matrix composed of dot products in the
feature spaceRf ,i.e., K = (Ktu)t=1,··· ,c

u=1,··· ,c whereKtu =
(krs)

r=1,··· ,lt
s=1,··· ,lu . Note Ktu is a lt × lu matrix, and K is a

m×m symmetric matrix. We can also define a matrix Z :

Z = (Zt)t=1,··· ,c

whereZtis am × m block diagonal matrix. The between-
class and within-class scatter matrices in a high dimensional
feature spaceRf are defined as;

SΦ
B =

C∑
c=1

liµ
Φ
i (µΦ

i )T

SΦ
w =

C∑
i=1

li∑
j=1

Φ(xij)(Φ(xij)T

whereµΦ
i is the mean of class i inRf , li is the number of

samples belonging to class i. From the theory of reproduc-
ing kernels, any solutionwΦ ∈ Rf must lie in the span of
all training samples inRf ,i.e.

wΦ =
C∑

p=1

lp∑
q=1

αpqΦ(xpq)



3. METHODOLOGY

The proposed classification algorithm consists of three mod-
ules as shown in Figure 2. Brief description of dimensional-
ity reduction and feature extraction modules is given in the
following sub-sections. Detailed description of the segmen-
tation can be found in [12].
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Fig. 2. Classification Algorithm Block Diagram

3.1. Segmentation

High dimensional data in the form of 3-D cubes is obtained
using hyperspectral imaging. For efficient processing this
data has to be dimensionally reduced. Dimensionality re-
duction involves two steps, extraction of statistically inde-
pendent components using Independent Component Anal-
ysis (ICA) and colour segmentation usingk-means cluster-
ing. Flexible ICA (FlexICA) [6], a fixed point algorithm
for ICA, adopting a generalised Gaussian density, is used
for data sphering (whitening) and achieves considerable di-
mensionality reduction. Data is distributed towards heavy-
tailedness by the high-emphasis filters. The data with re-
duced dimensionality is then fed tok-means clustering al-
gorithm for segmentation.

The hyperspectal data cube containing 28 subbands is
segmented into four labeled parts. Each slide of the tissue
cells is divided into four regions represented by four colours
as shown in Figure 3. The four labeled parts are denoted by
colours as dark blue for nuclei, light blue for cytoplasm,
yellow for gland secretions and red for lamina propria.

3.2. Feature Extraction

3.2.1. Morphological Features

In order for the pattern recognition process to be tractable
it is necessary to represent patterns into some mathemati-

(a) Benign Cells

(b) Malignant Cells

Fig. 3. Segmentation Results

cal or analytical model. The model should convert patterns
into features or measurable values, which are condensed
representations of the patterns, containing only salient in-
formation [7]. Features contain the characteristics of a pat-
tern to make them comparable to standard templates making
the pattern classification possible. The extraction of good
features from these pattern models and the selection from
them of the ones with the most discriminatory power are
the basis for the success of the classification process. In
this work morphological texture features, extracted from the
segmented images of a hyperspectral data cube for a biopsy
slide of colon tissue cells, are used for the classification of
the tissue cells.

Morphological features, which describe the shape, size,
orientation and other geometrical attributes of the cellular
components, are extracted to discriminate between two classes
of input data. The segmented image is first split into four
binarised image in accordance with the four cellular com-
ponents. In each binary image, the corresponding cellular
components i.e. nuclei, cytoplasm, gland secretions and
stroma of lamina propria have binary value equal to 1.



3.2.2. Co-occurnence Features

The co-coourrence approach is based on the grey level spa-
tial dependence. Co-occurrence matrix is computed by second-
order joint conditional probability density functionf(i, j|d, θ).
Eachf(i, j|d, θ) is computed by counting all pairs of pixels
separated by distanced having grey levelsi and j, in the
given directionθ. The angular displacementθ usually takes
on the range of values fromθ = 0, 45, 90, 135 degrees.
The co-occurrence matrix captures a significant amount of
textural information. The diagonal values for a coarse tex-
ture are high while for a fine texture these diagonal values
are scattered. To obtain rotataion invariant features the co-
occurrence matrices obtained from the different directions
are accumulated. The three set of attributes used in our ex-
periments are Energy, Inertia and Local Homogeneity.

E =
∑

i

∑
j

[f(i, j|d, θ)]2

I =
∑

i

∑
j

[(i− j)2f(i, j|d, θ)]

LH =
∑

i

∑
j

f(i, j|d, θ)
1 + (i + j)2

4. EXPERIMENTS

4.1. Experimental Setup

The experimental setup consists of a CRI Nuance micro-
scope and a CCD camera. Two different biopsy slides con-
taining several microdots, where each microdot is from a
distinct patient, is prepared. Then each slide is illuminated
with a tuned light source (capable of emitting any combina-
tion of light frequencies in the range of 450-850 nm), fol-
lowed by magnification to 400 X. Thus several images, each
image using a different combination of light frequencies, are
produced [4].

The first set of experiments is carried out with mixed
training/test data. Each image is divided into 4096 patches
of 16× 16 dimensions per patch. Morphological opera-
tion is performed on the patches for extraction of feature
vectors using different combinations of ten scalar morpho-
logical properties. The data (patches of all slides randomly
mixed) is divided into training set (about one quarter of the
patches) and test set (remaining three quarters of patches).
In the other experiment, multiscale feature extraction is per-
formed. Feature values are initially calculated for base patch
size16 × 16, patch size is then doubled and feature values
are re-calculated. This process continues for at least upto
five scales. Fusion of the features, for different scales, is
done by simple concatenation. Thus largest feature vector
for five scales and using ten morphological parameters has
dimensions of 200 fetures values.

Classification Accuracy
Method Features Experiment Accuracy (%)

PCA Morphological Single scale 55
PCA Morphological Multiscale 75
LDA Morphological Single scale 65
LDA Morphological Multiscale 84
PCA GLCM LOO 70
LDA GLCM LOO 80

SVM (poly) GLCM LOO 90
SVM (gaussian) GLCM LOO 100

Table 1. Classification Results

4.2. Experiments with Leave one out data

The second set of experiments are used with LOO (leave
one out) settings and employing two different subsets. In
the second setting, co-occurrence matrix is computed from
the block size of 64x64 for each slide. Three co-occurrence
features i.e. Angular second moment (Energy), variance
and homogenity are calculated while pixel distance is varied
from one pixel to two pixel values. Four directional features
in the direction of 0, 45, 90 and 135 are concanated together
so that feature vector with 24 dimensions is used in the
classifiers. The last experiment is carried out with SVMs.
Polynomial kernel of 3rd degree with parameters C=1 (cost
of constrain violation), epsilon=0.001 (tolerance of termi-
nation criterion), and coefficient=0 is used in this exercise.
Experiments with SVM using Gaussian kernel have the best
classification accuracy of 100 percent for a threshold of 60
percent coorect patches.

4.3. Results

The classification accuracy in GLCM-LOO is about 90 per-
cent and 9 slides on the whole are classified correctly with a
threshold of 55 percent on the patches. Directly fed patches
have a little less performance as compared to the co-occurrence
features from the patches. As we have only limited number
of input slides, so comparison is difficult on these set of ex-
periments. Using new data with these setting will give better
comparison for the classification accuracy.

5. CONCLUSIONS

In this paper, classification of colon tissue cells is achieved
using the morphology of the glandular cells of the tissue re-
gion. There is an indication that the morphology of the cells,
obtained from the hyperspectral analysis of biopsy slides,
has strong discriminatory power. Regular structured cell
shapes with some orientations are characteristics of normal
cells, whereas irregular and deformed cell shapes represent



(b) AUCH of LDA vs PCA

Fig. 4. AUCH Performance Curves

malignant tissue. In morphological analysis, five features’
subset is used to achieve 80 percent accuracy. In the second
set of experiments with gray level co-occurrence matrix and
using a feature vector of 24 dimensions, reasonable classi-
fication is performed even with simple classifiers like LDA.
However, employing properly tuned Gaussian kernel with
grid search method, accuracy level as good as 100 percent
can be achieved.
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