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Abstract �  Segmentation is an early stage for the 
automated classification of tissue cells between normal 
and malignant types. We present an algorithm for 
unsupervised segmentation of hyperspectral human colon 
tissue cell images into its constituent parts by exploiting 
the spatial relationship between these constituent parts. 
This is done by employing a modification of the 
conventional wavelet based texture analysis, on the 
projection of hyperspectral image data in the first 
principal component direction. Results show that our 
algorithm is comparable to other more computationally 
intensive methods which exploit spectral characteristics of 
the hyperspectral imagery data. 
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1. INTRODUCTION 
 

It has been shown through experiments that 
hyperspectral imaging can be successfully utilized to 
distinguish normal vs. malignant cells of the same cellular 
lineage [1]. Diagnostically important spectral features can 
be subtle and not easily assessed by the naked eye.  Also, 
the high spectral resolution characteristics of hyperspectral 
sensors preserve important aspects of the spectrum [2]. 
This eventually makes segmentation of different materials 
possible. 

According to a recent publication [3], 34,000 new 
cases of colorectal cancer are diagnosed each year. During 
the year 2000, there were 16,250 deaths from colorectal 
cancer in the UK alone. Colorectal cancer is the third most 
commonly diagnosed cancer in the UK after lung and 
breast cancer. The UK had one of the worst detection rates 
for colorectal cancer in Europe. Yet 80% of colorectal 
cancer cases can be treated if caught at an early stage. The 
limited availability of specialist pathological staff and the 
huge amount of data provided by the hyperspectral sensors 
means that the user fatigue is a significant obstruction in 
the examination of these images and the identification of 
colon cancer in early stages. New improved screening and 
diagnosis methods could potentially save thousands more 
lives each year. 

The reliable detection of malignant cells in stained 
tissue samples is still one of the most demanding and time-

consuming tasks in pathology and is a typical example of a 
pattern recognition problem [1]. Generally, the task of 
pattern recognition in images consists of three independent 
steps, which can be applied to the tissue classification 
problem as follows: 

(i) Image segmentation: The objects contained in the 
image scene are separated from the background. 
This is the separation of constituent parts of 
tissue cells. 

(ii) Feature extraction: The characteristics of each 
object are quantified. These features, of course, 
should contain enough discriminant information 
sufficient to distinguish a normal tissue from a 
malignant tissue. 

(iii) Classification: Each object is assigned to a 
generic target class. The extracted features from 
the segmentation labels are utilized to 
discriminate between normal and malignant 
tissue cells. 

 
This paper reports on work related to the above first 

stage of segmentation. The whole process of classification 
is described in the MSc thesis of the primary author [4]. 
The input hyperspectral image cubes were taken from 
micro-array archival colon tissue sections between 450-
650nm wavelength and of dimensions 1024x1024x20. 

This paper starts with a presentation of the essential 
background knowledge for the work, followed by a brief 
description of the dimensionality reduction phase, an 
important step during hyperspectral image segmentation 
process. The wavelet multiresolution analysis procedure to 
perform the segmentation by exploiting the spatial 
relationship is presented. We also illustrate, in brief, 
another experimented method of segmentation which 
utilizes the spectral characteristics. Finally, we conclude 
that the results using the former algorithm are visually 
comparable to those using latter one but with certain 
limitations. 
 
1.1 Background 
 

Hyperspectral imaging sensors capture image scenes 
in contiguous but narrow spectral bands over visible and 
near infrared wavelength range of electromagnetic 
spectrum. In this way, they can potentially capture tens to 
hundreds of spectral bands covering the narrow spectral 



features of the captured material as closely as possible. 
The image data provided by hyperspectral sensors can be 
visualized as a 3D cube or a stack of multiple 2D images 
(Figure 1) because of its intrinsic structure, where the cube 
face is a function of the spatial coordinates ),( yxf  and 

depth is a function of wavelength )(λd . 

 
 

(a) 3D cube 

 
 

(b) Stack of multiple 2D images 

Figure 1: Hyperspectral image data representation 

 
In this case, each spatial point on the face is 

characterized by its own spectrum (often called spectral 
signature). This spectrum is in direct correspondence with 
the amount of energy in the material represented, as 
hyperspectral sensors commonly utilize the simple fact 
that a body with temperature over absolute zero emits light 
in certain frequency bands. Consequently, the separation 
of constituent regions in the image scene becomes possible. 

Anatomically, human body is made up of thousands 
of millions of different kind of cells. Our cell reproduction 
system constantly controls the growth of these cells, and a 
growth is made only if required by the body organs. When 
an organ of the body is affected by cancer, tumour cells 
are created and this reproduction control system becomes 
ineffective due to the continuous growth of these tumour 
cells. 

The colon is the upper part of the large intestine tube 
while the rectum is the lower part of this tube (Figure 2, 
Source: http://cancer.gov/). Practically, colon or rectum 
cancer is characterized as separate cancer instances. 
Colorectal or bowel cancer is a composite name for colon 
and rectum cancer. It is the uncontrolled growth of tissue 
cells in either colon or rectum which causes the colorectal 
cancer. 

 
 

 
Figure 2: Human colon shown in digestive system 

At a microscopic level, human colon tissue cells can 
be characterised as having 4 constituent parts: nuclei, 
cytoplasm, lamina propria, and lumen. According to a 
dictionary of cancer related medical terms [11], these 
constituent parts are defined as: 

(i) Nuclei: the core central part of a cell, 
containing DNA, which controls its growth 

(ii) Cytoplasm: the fluid inside a cell but outside 
the cell's nucleus. Most chemical reactions in 
a cell take place in the cytoplasm. 

(iii) Lamina propria: a type of connective tissue 
found under the thin layer of tissues covering 
a mucous membrane 

(iv) Lumen: the cavity or channel within a tube or 
tubular organ such as a blood vessel or the 
intestine 

 
The aim of this work is to separate a given 

hyperspectral image data cube into these constituent parts. 
 
2. DIMENSIONALITY REDUCTION 
 

Before the formal process of hyperspectral image 
segmentation, an intermediate step of dimensionality 
reduction is often involved. Hyperspectral imagery data 
provides a wealth of information about an image scene 
which is potentially very helpful in the segmentation of 
objects. At the same time, the huge size of hyperspectral 
image data (with tens to hundreds of spectral bands) 
normally means high computational complexity. High 
dimensional vector spaces have been found by 
mathematicians to have some rather unusual and 
unintuitive characteristics [5]. 

This is often recognized as the curse of dimensionality 
in the literature. In this situation, it is usually required to 
reduce the dimensionality of the data before proceeding to 
the next essential tasks. The hyperspectral sensors 
commonly oversample the spectral signal to ensure that 
narrow band features are adequately represented [2]. The 
important job here is to eliminate this redundancy while, at 
the same time, preserving the high-quality features for the 
segmentation algorithm. 

Principal component analysis (PCA) is a statistical 
multivariate data analysis tool which attempts to find the 
natural coordinate axes for the multidimensional dataset. It 
is the representation of the higher-dimensional data into 
lower-dimensional orthogonal axes such that it is highly 
decorrelated. This representation can be considered as the 
transformation of the original data into a new vector space 
where the basis vectors are actually a linear combination 
of the original data vectors. We utilized PCA for 
dimensionality reduction because of its intrinsic simplicity 
and well-established mathematical groundings. 

In a single sentence, PCA can be formulated as the 
projection of the multivariate data on the orthogonal axes 
which are in fact the eigenvectors of the covariance matrix 
of the original data. Thus the new basis set for data is 
derived from the original data vectors. These orthogonal 
eigenvectors of the covariance matrix are actually called 

the principal components. Suppose A  represents the 
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III  
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transform 
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multivariate data, then a mathematical formulation can be 
given as [6]: 

 

TAA
n

1=Σ
   (1) 

 

where Σ  is the covariance matrix of A . The PCA 
problem reduces to the computation of the eigenvectors of 

this matrix where an eigen-analysis problem for Σ  is 
devised as: 
 

vv λ=Σ     (2) 
 

such that v  and λ  represent the eigenvectors and the 

corresponding eigenvalues of Σ  with values in λ  sorted 
in descending order. The eigenvector corresponding to the 
highest eigenvalue is the principal component with 

maximum variation in that direction. If we assume that V  

is a matrix whose columns are the eigenvectors of Σ , then 
the projected data in the direction of principal components 
is given by: 
 

VBZ *=     (3) 
 

where B  is obtained by subtracting mean vector from 

each vector of A . 
 

Later in the paper, we will come across the concept of 
the amount / percentage of variance preserved by the 
projected data in a certain principal component direction. 
Here, we explain this for the variance preserved in one or 
more directions. This is directly related to the 
corresponding eigenvalues and is computed, for k 
eigenvectors, as follows: 
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where k < n, while assuming that the eigenvalues of the 
covariance matrix are in a sorted order. 
 
3. SEGMENTATION 
 

Two ways of segmenting the hyperspectral image data 
into its constituent parts are: (1) spatial analysis: by 
exploiting the spatial relationships between these parts, 
and (2) spectral analysis: the exploitation of spectral 
characteristics. Wavelet multiresolutional analysis 
technique evaluates the spatial relationship between the 
objects in an image at multiple scales and thus falls in the 
former category.  

Wavelets are orthogonal basis functions, having 
compact support in time (space), which can be used to 
represent a signal (image). Unlike conventional Fourier 
transform, which utilizes sines and cosines of varying 
amplitude and frequency as its basis functions, wavelet 
transform makes use of these wavelet functions which are 
scalable. A variety of such functions exists and a well 
suitable wavelet can be selected particular to an 
application depending on the signal / image characteristics 
to represent. 

Wavelet theory is based on strong mathematical 
foundations and it employs established tools including 
pyramidal image processing, subband coding, and 
quadrature mirror filtering. One of the most striking and 
powerful applications of wavelet theory is the possibility 
of multiresolution analysis, shown by Mallat in 1987 [12]. 
Multiresolution analysis allows us to exploit the signal or 
image characteristics, matched to a particular scale, which 
might go undetected in other analysis techniques [7]. This 
capability of multiresolution processing paved the way to 
successful analysis of various kinds of texture. 

In the following section, we present briefly the 
conventional wavelet based texture analysis procedure and 
describe how it was modified to our wavelet based 
hyperspectral image segmentation. 
 
3.1 Wavelet based texture analysis 
 

Texture can be defined as an attribute representing the 
spatial arrangement of the gray levels of the pixels in a 
region [8]. The sole aim of a texture analysis method is to 
describe different textures present in an image. One of the 
most important aspects of texture description has been 
identified as scale [9]. If we can collect these descriptive 
features corresponding to a texture at various scales, we 
can distinguish different textures in an image. Wavelet 
transform, on the other hand, provides a unified way of 
multiresolution analysis. 

A usual sequence of operations performed for wavelet 
based texture analysis [10] is: 

 
 

 

Figure 3: Sequence of operations for wavelet based texture 
analysis 
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Texture segmentation results for two image scenes 
with quite dissimilar textures produced with the above 
sequence of operations are shown in the following figures. 
 
 

Original image with 
two different kinds of 
texture 

Textures segmented 
using wavelet based 
approach at wavelet 
decomposition level 2 

Textures segmented 
using wavelet based 
approach at wavelet 
decomposition level 3 

Figure 4: Texture segmentation with wavelet based 
approach - I 

 
 

Original image with 
two different kinds of 
texture 

Textures segmented 
using wavelet based 
approach at wavelet 
decomposition level 2 

Textures segmented 
using wavelet based 
approach at wavelet 
decomposition level 3 

Figure 5: Texture segmentation with wavelet based 
approach - II 

 
These results basically highlight the important role of 

the wavelet decomposition level which sets the detail of 
scale viewed by processing / analysis method. The hidden 
fact behind multiresolution processing for texture analysis 
is to generate a number of homogeneous features that 
represent the response of a bank of filters at different 
scales. 
 
3.2 Spatial analysis based hyperspectral image 

segmentation 
 

The sole purpose of this practice is to exploit the 
spatial characteristics in the image rather than the spectral 
features. Before describing the method, we would like to 
state what the input to this method is. It is not very 
uncommon in hyperspectral colon tissue imagery to have 
80% or even more variance concentrated in the data 
projected in the first principal component direction (this 
fact is based on experimental results with image data 
cubes). Our experiments show that the projected data in 
the first principal component direction has sufficient 
spatial information to segment the cell image into 
constituent parts. 

Assuming that each of the constituent parts of the 
colon tissue cells is a distinct type of texture which may be 
described by multiresolutional analysis procedure, we 
experimented with wavelet texture analysis technique on 

this projected data. Results showed (Figure 7 (b) ) that this 
is perhaps not a suitable segmentation method for our 
problem. This was the stimulation behind experimenting 
new methods to exploit the multiresolutional 
characteristics. 

The simple trick we used in our segmentation 
algorithm was the skipping of steps II and IV of Figure 3. 
Thus, the sequence of operations for hyperspectral colon 
tissue image segmentation becomes: 

 
 

 

Figure 6: Sequence of operations for wavelet based 
hyperspectral image segmentation 

 
Hyperspectral colon tissue image segmented into cell-

constituent parts with this method is shown in the Figure 
below: 

 
 

(a) Projected data in 
the first principal 
component direction 

(b) Segmentation with 
conventional wavelet 
texture analysis 
approach 

(c) Segmentation with 
our proposed 
approach 

Figure 7: Wavelet based hyperspectral colon tissue image 
segmentation 

 
The rationale behind this process is that the 

preprocessing stage (smoothing, etc.) in conventional 
wavelet texture analysis method loses the necessary 
discriminant information. Also, the discarded DC subband 
contains important grey value intensity approximation to 
the original input image. Therefore, inclusion of the DC 
subband feature image and avoiding the preprocessing 
stage actually permits the clustering algorithm to observe 
the intensity variation in the features and assign the labels 
based on these differences. Although the experimentation 
with wavelet decomposition level and selection of wavelet 
filters is not exhaustive, early attempts show that a 



decomposition level 2 and daubechies-8 filters perform 
well for hyperspectral colon tissue segmentation. 
 
3.3 Spectral analysis based hyperspectral image 

segmentation 
 

Apart from the spatial analysis, another possibility for 
the segmentation of hyperspectral data is by doing a 
spectral analysis. This approach is in correspondence with 
the spectral signature (or spectrum) of each point on the 
face of the data cube. In practice, we rarely perform a 
spectral analysis on the original image cube. Rather, we 
transform it into lower dimensions (by PCA, ICA, etc.), to 
remove the spectral redundancy which may hamper the 
segmentation procedure, and then perform the analysis to 
differentiate between the objects by labeling each face 
point. In the case of PCA used for dimensionality 
reduction, the data is projected in first few principal 
component directions such that this projection contains 
possibly over 98% of the variance, calculated according to 
equation (4). Usually, the projected data in first three to 
four principal component directions can preserve over 
99% variance of the whole data. This is also the case with 
our data where we fed the projected data into a nearest-
centroid K-means clustering algorithm for the 
segmentation, Figure 8 (b). Shown also, in Figure 8 (c), is 
the segmentation result based on spectral analysis but with 
a relatively sophisticated approach of ICA (Independent 
Component Analysis) preprocessed by high-emphasis 
filtering. This method is described in detail in [4]. 
 
 

 
(a) Wavelet based 
segmentation 
 

 
(b) Spectral analysis 
based segmentation 
with PCA 

 
(c) Spectral analysis 
based segmentation 
with ICA 

Figure 8: Comparison of segmentation performance 

 
4. CONCLUSIONS 
 

A method for segmentation of hyperspectral cell 
imagery data is presented with the objective of exploiting 
the spatial relationships between constituent parts of the 
tissue cells. This is quite a simple but elegant approach 
with established mathematical groundings. Experimental 
results show that although projection of data in only one 
principal direction was used to segment the image data, 
consequently saving storage and computational time, our 
algorithm is comparable to spectral analysis method for 
segmentation. 

However, our wavelet based technique is limited as it 
will produce fine results only when the projected data in 
the first principal component direction covers more than 
80% of the data variance. Although its performance on the 
data projected in the first principal component direction 

with less than 80% of the variance is not tested, we predict 
that the resulting segmentation may not be a true 
representation of the regions in the colon imagery. On the 
other hand, spectral analysis based technique is not merely 
dependent on first principal component direction and, 
therefore, it should be relatively more consistent and 
reliable than wavelet based technique. 

The segmentation labels (or the segmented image, in 
other words) are further utilized for feature extraction and 
classification tasks. The details of this can be found in [4]. 
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