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ABSTRACT

A novel agorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The
microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at
contiguous wavelength intervals of visible light. While hyperspectral imagery data provides awealth of information,
its large size normally means high computational processing complexity. Several methods exist to avoid the so-
caled curse of dimensiondity and hence reduce the computational complexity. In this study, we experimented with
Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first
stage of the agorithm, the extracted components are used to separate four constituent parts of the colon tissue:
nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the
nearest centroid clustering a gorithm. The segmented image is further used, in the second stage of the classification
algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimenta results using
supervised Support Vector Machines (SVM) classification based on multiscale morphological features revea the
di scrimination between normal and malignant tissue cells with a reasonable degree of accuracy.

Keywords: Hyperspectral imagery, dimensiondity reduction, multiscale morphological festures, multiscale
stetistica festures, SVM classification, colon cell classification

1. INTRODUCTION

The colon is the upper part of the large intestine tube while the rectum is the lower part of this tube Practically,
colon or rectum cancer is characterized as separate cancer instances. Colorectal or bowe cancer is acomposite name
for colon and rectum cancer. It is the uncontrolled growth of tissue cells in ether the colon or rectum which causes
the colorectal cancer. According to a recent publication®, over 34,000 new cases of colorectal cancer are diagnosed
each year. During the year 2000, there were 16,250 desths from colorectal cancer in the UK. It is the third most
commonly diagnosed cancer in the UK after lung and breast cancer. The UK had one of the worst detection rates for
bowel cancer in Europe. Y et 80% of colorectal cancer cases can betreated if caught at an early stage. New improved
screening and diagnosis methods could potentially save thousands more lives each year.

High spectra resolution characteristics of hyperspectral sensors preserve important aspects of the spectrun.
Usudly, the image data provided by hyperspectral sensors is visualized as a 3D cube because of its intrinsic
structure, where the face is a function of spatial coordinates f(x,y) and depth is a function of wavelength d(A).

The image data can & so be seen as a stack of multiple 2D images. Each spatial point on the face is characterized by
its own spectrum (often caled spectral signature). This spectrum is in direct correspondence with the amount of
energy in the materia represented, as hyperspectra sensors commonly utilize the smple fact that any body with
temperature over absolute zero either emit or reflect the absorbed energy in certain frequency bands. This eventually
makes segmentation of different materials possible. Diagnostically important spectral features can be subtle and not
easily assessed by the naked eye’. Hyperspectral imaging devices capture such features from the image scene for a
deeper understanding and analysis. Having been widely used in remote sensing applications, hyperspectral imaging
technology, coupled with microscopy, is now finding a broad set of application areas including biomedicine for
disease diagnostics. One such application is the classification of healthy and malignant cells in microscopic level
hyperspectra tissue image data. The limited availability of speciaist pathological staff and the huge amount of
information provided by the hyperspectral sensors means that user fatigue is a significant obstruction in the
examination of theseimages and the identification of colon cancer in early stages.
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This work deals with the analysis of hyperspectral colon images to classify between norma and maignant tissue
sections with a reasonabl e degree of accuracy and reliable performance. It is an attempt to find a solution which can
consistently assist the pathologists. For this work, 12 microscopic level hyperspectral image data cubes of normal
and malignant human colon were acquired from archiva H & E (hematoxylin & eosin) stained micro-array tissue
sections. The resolution of each band is 1024x1024 and 20 bands were used (in order to reduce the computational
burden) with wavelengthsin the interval 450-650nm.

The reliable detection of malignant cells in stained tissue samples is normally recognized as one of the most
demanding and time-consuming tasks in pathology and is a typical example of a pattern recognition problem®.
Generdly, the task of pattern recognition in images consists of three independent steps, which can be applied to the
tissue classification problem as follows: (i) image segmentation: the objects contained in the image scene are
separated from the background. This is the separation of constituent parts of tissue cells, (ii) feature extraction: the
characteristics of each object are quantified. These features, of course, should contain enough discriminant
information sufficient to distinguish a normd tissue from a malignant tissue, and (iii) classification: Each object is
assigned to a generic target class. The extracted features from the segmentation labels are utilized to discriminate
between normal and malignant tissue cdls. In case of classification for hyperspectral images, dimensionality
reduction normally precedes the segmentation phase.

In the next section, abrief description of the dimensi ondity reduction phase is presented. A number of segmentation
methods, by exploiting the spatial and/or spectral characteristics, are explained in Section 3. Towards the end,
feature extraction schemes using multiscae statistical and morphologica features are described, followed by the
details of the classification procedure. Finally, we conclude the paper with remarks on segmentation methods and the
classification performance, and some future directions.

2. DIMENSIONALITY REDUCTION

Before the forma process of segmentation of hyperspectral imagery, an intermediate step of dimensionality
reduction is often involved. Hyperspectral imagery data provides a wealth of information about an image scene
which is potentialy very helpful in the segmentation of objects. At the same time, the huge size of hyperspectral
image data (with tens to hundreds of spectra bands) normally means high computational complexity. High
dimensional vector spaces have been found to have some rather unusual and unintuitive characteristics’. This is
often recognized as the curse of dimensionality. The goa is to eliminate the redundancy in the data while
simultaneoudly preserving the discriminant features for segmentation, detection or classification algorithms.

A wide variety of methods can be found in the literature for reducing the dimensiondity of a problem. At a higher
level, these can be categorized into two groups: (1) linear methods: principal component analysis, factor analysis and
independent component analysis (2) non-linear methods: curvilinear component analysis, curvilinear distance
andysis and multi-dimensional scaling. Other well-known techniques include projection pursuit® and discrete
wave et transform®. Each of these may have different criteria for projecting the data into lower dimensional spaces
(for example: variance in principal component analysis, statistical independence in independent component
andysis, etc.) and thus preferably preserving the dissimilar nature of the characteristics of the data

In our work, we experi mented with principal component analysis (PCA) and independent component analysis (ICA)
for reducing the dimension of the image data cubes. The sel ection was made because of the intrinsic simplicity and
well-established mathematical groundings of PCA, and immense potentia and capability found in recent years of
ICA. There exists arange of ICA modifications, devel oped largely by the signal processing and machine learning
research community, such as FastiCA, SparselCA, RADICAL, KerngICA, and FexICA. In this study, we
experimented with the FastiICA™ and FlexICA™® variants. The objective of dimensionality reduction hereis to reduce
the computational complexity as well as to improve the subsequent tasks of segmentation and cl assification.

2.1. Principal component analysis (PCA)

Principa component analysis (PCA) is a statistical multivariate data analysis tool which attempts to find the natural
coordinate axes for the multidimensional dataset. It is the representation of the higher-dimensional data into lower-
dimensional orthogonal axes such that it is highly decorrelated. This representation can be considered as the
transformation of the origina datainto a new vector space where the basis vectors are actualy alinear combination
of the original data vectors.

PCA can be briefly described as the projection of the multivariate data on the orthogonal axes which are in fact the
eigenvectors of the covariance matrix of the original data. Thus the new basis set for data is derived from the



origina data vectors. The amount of variance preserved by the projected data in a certain principal component
(eigenvector) direction can be relaed to the eigenval ue corresponding to that direction.

2.2. Independent component analysis (ICA)

Independent component analysis (ICA) extends the concept of traditional multivariate data analysis techniques
(principal component anaysis, factor andysis, and projection pursuit) to determine the hidden components in the
data. Unlike PCA, it does not merely attempt to find a decorrd ated lower-dimensional representation for the data but
also attempts to discover statistically independent components. Although originally developed for blind source
separation tasks in the signal processing area, ICA has recently found applications in diverse areas of multivariate
data analysis, dimensiondity reduction®, brain imaging®, feature extraction, image classification, and target
recognition'. Because of its huge potentia, it has been receiving contributions from a broad research community.

In the case of ICA, the data variables are assumed to be alinear mixture of unknown latent variables and the mixing
system is aso unknown. Thus the goa is to provide a mathematical estimate for an unmixing matrix. In the
following, we formulate the ICA problem in a blind-source separation context and take it further to dimensionality
reduction case. Let us assume that the data variable y; is made up of a linear combination of the independent latent
variables x; . Mathematicaly™, for two such variables:
Y1721 %1185, 0
Y= X taznX;
where the coefficientsa;;’s are unknown. The goal is to estimate these coefficients for the determination
of x,and x2, given y; and y, . In matrix notation, the above equation can be written as:
Y = AX 2
where A isthe mixing matrix made up of a;; coefficients. From the above equation, we know that X can be evaluated
as:
X =Wy 3)
whereW is the inverse of the mixing matrix A and is called the unmixing matrix. The above equation is formulated

as the ICA model where the objective is to provide an estimate for W such that components in X are maximally
independent. In a more elaborative fashion, we can writeit as:

X1 Y1
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where the number of variablesin X is dependent on the number of available coefficientsin W . In this context, the
utilization of the ICA model for dimensionaity reduction is to choose the unmixing matrix W limiting the number
of X; components, to say 3 or 4, but in such away that X contains as much information about the dataY as possible.

It is the estimation of the unmixing matrixW which crestes the main difference between different versions of ICA,
which employ different criteria with the unique objective to bring as much information as possible in the extracted
individual components. The following sections briefly describe this for FastICA and FlexICA, the subject of our
current discussion.

To implement the ICA for multivariate data analysis, we need to satisfy a number of assumptions'®:

(i).  the components should be mutually independent,

(ii).  the number of data dimensions (or variables, in other words) must be egqual to or greater than the hidden

independent components, and

(iif).  theindependent components should have a nongaussian distribution (which isthe key to independence).
These arein fact not strict assumptions. In case any of these is not present, an approximation of the unmixing matrix
can be obtained. Robila® also illustrates that it is normally safe to consider the above assumptions satisfied for
hyperspectral imagery data before performing an ICA operation. From the above, the independence restriction is the
key to dimensionality reduction. The more independent the components the less mutual information they contain and
the more successful one can be in eiminating the redundancy resulting in dimensionality reduction.



As expressed earlier, ICA can aso be seen as an enhancement to PCA and factor analysis (FA). In FA, we assume
that the data is of Gaussian nature and the extracted factors need to be merely decorrelated to become independent.
In redity, the data often does not follow the Gaussianity restriction. Instead, many rea-world datasets have
supergaussian or subgaussian density function™. This makes the situation relatively more complex. The ICA
proceeds from this stage with the assumption that the data has honguassian structure. A number of measures can be
used to estimate the nongaussianity of the extracted components. Each modification of ICA may employ a different
measure for this purpose. This measure is sometimes called a contrast function. The following sections briefly
present this for the FastICA and the FlexICA variants.

2.2.1. FastICA

The FastICA'? agorithm utilizes the concepts of entropy and negentropy from information theory to measure the
nongaussianity of data variables. By using the maximum entropy approximation for differentia entropy, it
introduces its own family of contrast functions and explains that it may perform better than the kurtosis contrast
function in certain situations. These contrast functions provide a measure of gaussianity and thus, indirectly, a
measure for mutua information contained in the components. This assists in extracting components which are as
independent as possible. It then uses simple fixed-point agorithms, as compared to gradient-descent methods in
conventional estimation approaches, for the optimization of contrast functionsin afast and reliable way. This makes
it acomputationdly highly efficient algorithm.

The above description is not meant to provide a detailed introduction to the FastICA algorithm, but it is rether a
bird’s eye view of the method. Further details can be seen in Hyvérinen™.

2.2.2. FlexICA

Most ICA agorithms implicitly assume a particular form for the marginal probability densities of the individual
components. On the other hand, FlexICA*® uses generalised exponentials to model the marginal densities enabling it
to extract heavy and/or light tailed components. It determines an optima ICA matrix from the space of decorrelating
matrices with the objective of maximizing the likelihood of the data. This is the key to the flexibility of the
algorithm to adequately model the marginal densities.

From here, we learn that this algorithm performs particularly well when data has heavy or light tailed density. We
also know that kurtosis is a measure of light-/heavy-tailedness of the data density function. Thus the god hereisto
utilize and exploit these facts.

2.3. Moving forward

From the above, we notice tha ICA is quite sensitive to kurtosis which is a fourth-order statistic. Thisgives usaclue
that we can exploit the ICA procedure by maximizing/minimizing the kurtosis value for the observed data. We
employ asimple preprocessing trick to do thisin the next section to achieve better performance in segmentation.

At this stage, before proceeding to the next section of segmentation, we must avoid a likely confusion. When we say
that the components must have a nonguassian structure, the kurtosis which is a measure of gaussianity (or
nongaussianity, in other words) should be associated to these extracted independent components rather than to the
origina data cube. But we are employing the preprocessing procedure to the original data rether than these
components for the maximization of kurtosis statistic vaue. This is because of the fact that separability of the
origina data from normal data distribution is actually a measure of separability of extracted components from
normal distribution™.

3. SEGMENTATION

At a microscopic level, human colon tissue cells can be characterised as having four constituent parts: nuclei,
cytoplasm, lamina propria, and lumen. According to the NCI's (National Cancer Institute) dictionary of cancer
related medica terms, these congtituent parts are defined as: (i) Nuclei: the core central part of a cell, containing
DNA, which controlsits growth, (ii) Cytoplasm: the fluid inside a cell but outside the cell's nucleus. Most chemical
reactionsin a cell take place in the cytoplasm, (iii) Lamina propria: atype of connective tissue found under the thin
layer of tissues covering a mucous membrane, and (iv) Lumen: the cavity or channd within atube or tubular organ
such as ablood vessel or the intestine.



After the dimensionality reduction phase, the task ahead is to perform segmentation, the process of dividing the
tissue image into cell constituent parts: nudlei, cytoplasm, lamina propria, and lumen. Thisis an intermedi ate process
performed before the classification which operates on the segmentation labels. We experimented with two dightly
different methods of segmenting the hyperspectral image data into its cell-constituent parts, which are: (1) spatial
analysis: by exploiting the spatia relationships between these parts, and (2) spectral analysis. the exploitation of
spectral characteristics.

3.1. Spatial analysis: Wavelet based segmentation

In this section, we present an image segmentation agorithm for hyperspectral imagery which is a variation of the
conventiona wavelet based texture analysis technique. We do not claim it to be the best method for hyperspectral
image segmentation but it is quite simple and elegant and has an established foundation. The sole purpose of this
practiceis to exploit the spatial characteristicsin the image rather than the spectral features.

Wavelets are specia mathematical functions used to represent a signal/image matched to its resolution and scale.
Unlike a conventional Fourier transform, which utilizes sines and cosines of varying amplitude and frequency asits
basis functions, the wavelet transform makes use of these scalable wavelet functions. A variety of such functions
exists and a well suitable wavelet can be selected specific to an application depending upon the signal/image
characteristics to be represented. Wavelet theory is based on strong mathematical foundations and it employs
established tools including pyramidal image processing, subband coding, and quadrature mirror filtering. One of the
most striking and powerful applications of wavelet theory is the possibility of multiresolution analysis, shown by
Mallat in 1987. Multiresolution anaysis technique allows us to exploit the signal/image characteristics, matched to a
paticular scale, which might go undetected in other analysis techniques™. This capability of multiresolution
processing paved the way to successful anaysis of various kinds of texture.

Scale has been characterized by experts as one of the most important aspect of texture description. Wavel et theory
offers intrinsic capability for multiresolutional anaysis, and thus provides an opportunity for analyzing a wide
variety of textures. A conventional method for wavelet based texture analysis™ is to discard the DC subband (as it
often hampers the analysis procedure) and do some kind of preprocessing (low-pass Gaussian, €etc.), on rest of the
subbands, before constructing the feature images for performing the texture segmentation. In this process, the level
of wavelet subband decomposition and the sel ection of the wavel e filters play a very important role.

Before describing the method, we would like to state what the input to this method is. In the previous section, we
have aready discussed a couple of dimensionality reduction approaches. This method is linked to the PCA routine
for dimensiondity reduction. It is not very uncommon in hyperspectral colon tissue imagery to have 80% or even
more variance concentrated in the data projected in the first principal component direction (this observation is based
on experimental results with image data cubes). Our results (Figure 1) with waveet based image segmentation
method depict that the projected data in the first principal component direction has sufficient spatial information to
segment the cell image into constituent parts.

Assuming that each of the constituent parts of the colon tissue cdls is a distinct type of texture which may be
described by multiresolutional analysis procedure, we experimented with the conventional wavelet based texture
analysis technique on this projected data. Results indicated that this is perhaps not a suitable segmentation method
for our problem. It led us to make some minor modifications to the above conventional method for achieving
reasonable segmentation results. The ssimple changes made are the use of the DC subband and avoidance of the
preprocessing step for the construction of feature images to accomplish the segmentation process.

The rationale behind this change is that the preprocessing stage (smoothing, etc.) in conventional wavelet texture
analysis method |oses the necessary discriminant information. Also, the discarded DC subband contains i mportant
gray value intensity approximation to the origina input image. Therefore, inclusion of the DC subband feature
image and avoiding the preprocessing stage actualy permits the clustering dgorithm to observe the intensity
variation in the features and assign the |abel s based on these differences. Although the experimentation with wavel et
decomposition level and selection of wavel et filtersis not exhaustive, early attempts show that a decomposition level
2 and using daubechies-8 filters perform well for hyperspectra colon tissue segmentation.

As mentioned earlier, this segmentation method is not claimed to be a universal solution. It is suitable only when the
data projected in the first principal component direction contains 80% or more of the total variance. This is
necessary to perform segmentation based only on the spatia relationship between different regions in the image
scene.



3.2. Spectral analysis: ICA based segmentation

An aternative for the segmentation of hyperspectral data is by doing a spectral analysis. This approach is in
correspondence with the spectral signature (or spectrum) of each point on the face of the data cube. In practice, we
rarely perform a spectral andysis on the original image cube. Rather, we transform it into lower dimensions to
remove the spectral redundancy which may hamper the segmentation procedure.

In this section, we describe how dtatistically independent components extracted through ICA are used for
segmentation. We show that improved segmentation results are obtained when FexICA operation is preceded by
high-emphasis filtering as a preprocessing step.

The only a priori information required to extract the independent components, and thus transform the image data
cube into lower dimensions, is the number of independent components or regions (or in other words, cell-constituent
parts) in the image scene. This is exactly equa to the number of extracted components and it is the new dimension
for the transformed image cube. Since a colon cell image consists of four different types of regions, the new
dimension of the image cubeis 4, reduced from the original depth of 20.

3.2.1. Segmentation without preprocessing

Experimenta results, without preprocessing on the original image cube before the ICA operation, using a K-means
clustering agorithm on the extracted components are shown (Figure 2). A closer look at the results revedls the
under-segmentation artifacts. This may be due to the reason that the components returned by the ICA are not
discriminant enough.

3.2.2. Segmentation with preprocessing

In order to reduce the under-segmentation artifacts seen in Figure 2, a preprocessing operation of high-emphasis
filtering is performed on the origina hyperspectral image cube before the ICA operation.

As described previoudly, one of the assumptions to perform ICA on higher-dimensiond data is the nongaussi anity
measure.  The fourth-order statistic kurtosis is a classic measure for the quantification of nongaussianity. We aso
know that the FlexICA agorithm® is particularly good at separating |eptokurtic (supergaussian; heavy-tailed) or
platykurtic (subgaussian; light-tailed) sources. It is aso well known that the sample kurtosis is a measure of the
heavy- / light-tailedness relative to the norma distribution.

The objective of the preprocessing stage is to bring the distribution of the data to heavy-tailedness. Experiments
indicate that the high-emphasis filtering as a preprocessing step forces the distribution towards heavy-tailedness.
Figure 4 shows this for the 4-bands of the original image cube. This brings to the front the underlying fact behind the
improved segmentation resultsin the FlexICA case when preceded by the high-emphasis filtering process.

Although the usual purpose of high-emphasis filtering is to restore the edges from a blurred image (image
enhancement), our experiments show that it can be successfully utilized to change the distribution of the data to
supergaussian (leptokurtic). There exist a variety of methods in the literature to emphasize the high-frequency details
in an image; we adopted the following version:

G(x ) =F(xy)~-D*F(xy) (5
where F (x, y) isthe original image and [1?F (x, y) is the Laplacian for this image.

Results from Figure 3 al'so demonstrate that the FlexICA case performs better than the wavelet based segmentation
method.

4. CLASSIFICATION

The final phase of our hyperspectra colon tissue cell classification algorithm is the discrimination between normal
and malignant sections in a tissue. This evauation is performed on the segmentation labels obtained from the
previous stage. The objective is to utilize the information from the segmentation labels in such a way that a
reasonable amount of accuracy is achieved for the discrimination. One can do this by training a classifier with some
known examples and simulating the trained classifier on unknown test samples to evaluate the performance of
discrimination. We experimented with two ways of extracting meaningful features from the segmentation labels:
multiscal e statistical features and multiscale morphol ogical features.



A two-class supervised classification problem is usually formulated in the following way: Givenn training pairs
(<xi >,vi) where <xi >=(Xiy,Xi,,...,Xi,,) isaninput feature vector, and yi 0{-1+1} isthetarget |abel; the task of
the discriminant function is to learn the patternsin the training pairs in such away that, at alater stage, it can predict
areliableyi for agiven unknown xi .

The extracted features are fed to a classifier for initial training and later smulation. The classifier used is Support
Vector Machines (SVM) for its known advantages™ over the traditional neural networks for many pattern
recognition problems. This is particularly the case when the number of features in an input sample vector is very
high, which is the situation in our agorithm. The SYM belongs to alarge class of learning algorithms called kernel
machines which transform input feature space into higher-dimensional space for computational and learning

simplicity purposes, such that arelatively optimal decision boundary can be found y; (W' x; +b) >1,0i , where W is
a vector normal to the boundary. Thisis basicaly done through the use of a kernel trick K (X, y) =< @(X), (/y) >by

employing kernel functions (for example: linear, Gaussan, polynomid, etc.), which normally transform the input
feature space to a higher-dimensional space for the determination of alinear decision function.

4.1. Featureextraction

The purpose of a feature extraction task in pattern recognition problems is to generate features which can assist in
distinguishing between two or more classes. Thus the goal is to extract features which are as discriminant as
possible. This surely facilitates the classification procedure. For this purpose, different kinds of features can be
exploited. A study of the related literature suggests following different categories: spatial, statistical®’, geometrica™,
color'4, and histogram™ features.

In this study, we experimented with statistical and morphologica categories of features. These were extracted at
multiple resolutions for the exploitation of both local and global characteristics.

4.1.1. Multiscalefeatures

A close and careful anaysis of the problem suggests that the spatial features at a single scale may not suffice for the
discrimination between norma and malignant tissue sections, which leads to the investigation of other kind of
multiscal e features — statistical, morphological, etc. We decided to use multiscale features starting from patch sized
16x16 up to 256x256. This enables us to exploit local as well as global characteristics surrounding a patch at 5
levels for a 16x16 sized patch: 16x16, 32x32, 64x64, 128x128, and 256x256. These multiscale features are
concatenated to form a single feature vector corresponding to a 16x16 sized patch. The aim, in both cases, is to
extract the best possible information about the location and shape of cell regions in each patch.

4.1.1.1. Satistical features

The shape and location of the regions in a patch can be estimated by descriptive statistics. The dtatistical tools
utilized for this purpose can be divided into three magjor categories. Each of these may vary regarding their
sensitivity to the outliers and asymmetry.
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iii.  Measure of normdity — kurtosis , Skewness

These total up to 12 features for a single scale patch. Since features are collected at multiple scales, the feature
vector for each 16x16 patch becomes 60-dimensiona. These feature vectors are further utilized for training and
simulation purposes.

4.1.1.2. Morphological features

The estimation of shape and location of regions in an image can be assisted by the use of morphological features.
With regions belonging to normal or malignant cells having specific geometric shapes, the morphological features
may prove better than statistical features which are sensitive only to the variability of data values. Out of many
available attributes, we opted for nine diverse attributes which are: (i) area: the number of on (with value 1) pixels
in a region, (ii) eccentricity: the eccentricity of the elipse that has the same second-moment as the region. The
eccentricity is the ratio of the distance between the foci of the elipse and its mgjor axis length., (iii) equivalent
diameter: diameter of acircle with the same area as the region, (iv) Euler number: equal to the number of objectsin
the region minus the number of holes in those objects, (v) extent: the proportion of the pixels in the bounding box
that are also in the region, (vi) orientation: the angle (in degrees) between the x-axis and the mgjor axis of the dlipse
that has the same second-moment as the region, (vii) solidity: the proportion of the pixelsin the convex hull that are
aso in the region, (viii) major axis length: the length (in pixels) of the major axis of the ellipse that has the same
second-moment as the region, and (ix) minor axis length: the length (in pixels) of the minor axis of the elipse that
has the same second-moment as the region.

We extracted these features for each of the separate labelsin a patch. Since there are four labels (constituent parts),
each feature vector for a single scale patch becomes 36-dimensional. Thus, the full feature vector containing
multiscale morphologica features corresponding to a 16x16 sized patch isin 180-dimensions. Thisisthe cause of a
huge computational burden for feature extraction and classifier training and/or simulation.

4.2. Classifier training & simulation

After the feature extraction stage, the task ahead isto utilize themin afruitful way. This section describes the detail s
of thetraining and ssimulation of the SVM by the exploitation of these features.

The ICA based technique was performed with the 11 available hyperspectral image cubes to obtain the segmented
images, which were further utilized for extracting the features. With an elementary patch of dimensions 16x16 in a
1024x1024 segmented image, the total number of patches sum up to 45,056. We distributed this data into two sets:
the training set (size 30,000) and the test set (size 15,056). Both the training and testing data was manually |abel ed;
in order to assist in supervised training as well as to assess the performance of simulation.

We opted for a 3-fold cross vaidation technique which further divides the training data into 3 sets and uses them
iteratively for the selection of favorable parameters for the kernel function. In the beginning, both linear and
Gaussian kernel functions were tried but, later on, Gaussian function was chosen because of its superior
performance.

Before a formal presentation of the results, we would like to briefly discuss an important issue faced during the
training and simulation stages. Initial attempts with the classifier simulation indicated the classification accuracy of
over 90% for the training data. But this accuracy rate drastically falls to near 70% or even less for the ssmulation of
unknown test data. Thisis not the case if we accomplish a simple step of preprocessing (scaling) on the training and
test inputs by forcing the attribute values between a fixed range: for example, -1 and +1. A similar approach is
employed by Hsu et a.? in their study which also suggests that a Gaussian kernel is preferable over other well-
known kernel functions.



5. EXPERIMENTAL RESULTS

This section presents results only for the case when a preprocessing (scaling) step has aready been performed on the
training and test data. The results given here are the simulation outputs for unknown data, where the size of training
or testing data may vary in each case. Given in Table 1 are the comparative results for linear and Gaussian kernel
functions. It is worth noting here that both of these results are corresponding to a limited amount of datasets,
obtai ned during the early experimentation phase, and not on the whole 45,056 observations.

Table 2 shows the results for simulation for the same amount of datasets, as for Table 1 [3,000 samples for training,
1,500 for testing], but exploiting the multiscale morphol ogical featuresthistime. Clearly, thereisan improvement in
classification accuracy and sensitivity. Thisled usto utilize the morphol ogical features for a comprehensive training
of SVM on alarge amount of data. Thus we trained SVM with the 3-fold cross validation technique (for a better
selection of kernel parameters), employing the Gaussian kernel function, and 30,000 training observations. The final
simulation outputs on unknown 15,056 data observations are presented in Table 3.

Table 1: Classifier output with linear & Gaussian kernels (exploitation of multiscale stetistical features)

Kernel function | Sensitivity | Specificity | Classification accuracy
Gaussan 94% 75% 86%
Linear 85% 65% 7%

Table 2: Results with multiscale morphological features (for limited data)

Sensitivity | Specificity | Classification Accuracy
99% 74% 89%

Table 3: Final simulation outputs with multiscale morphological features

Sensitivity | Specificity | Classification Accuracy

89% 85% 87%
Sensitivity is a measure to accurately classify the malignant cell category, whereas the specificity measures the
classification accuracy for benign tissues.

6. DISCUSSION & CONCLUSION

As we have stated previoudly, the wavelet technique is based on spatia pattern recognition, while the ICA method
implements spectral pattern recognition. The wavel et based technique is limited as it will produce fine results only
when the derived variable covers more than 80% of the data variance. On the other hand, an ICA based approach
utilizes al of the extracted independent components and it should be relatively more consistent and reliable than
wave et based technique.

Although we categorized the experimented segmentation techniques as belonging to either spatial or spectral
pattern recognition, we do realize that thisis not exactly correct. In the wavelet based segmentation case, the input
image is the projected data in the first principal component direction which may retain spectral characteristics. On
the other hand, we performed high-emphasis filtering before the ICA operation, which isakind of spatial processing
on the data. Therefore, this categorization merely reflects the agpparent exploitation of spatia or spectra
characteristics. Both of these can aso bejointly described as spatial-spectral analysis methods.

Results demonstrate that morphol ogical features can describe the location and shape of a cdlular region better than
the statistical case. Two important issues associated with statistical and morphological features, exploited for the
tissue cell classification, are:

@). Although the higher dimensiona size of the morphological feature vector is posing extra computational
burden, this might be the key for successful classification, as the inherent function of SVM isto transform
input feature space to higher-dimensional space to find an optimal decision boundary. Compared with the
statistical features case, thisisakind of trade off to achieve improved classification performance.

(ii). Morphological features are extracted on the basis of estimation of objects, in segmentation labels, with
geometric shapes (ellipse, circle, etc.). This is possible with a labeled image only. On the other hand,
although we get some reasonable results with statistical features, it does not make much sense to collect
dtatistical features on a segmented image as the label value varies, in our case, only from 1 to 4
(corresponding to cel constituent-parts). We anticipate that such kind of statistical features are perhaps
more appropriate in a case when an image patch/block has at least some good amount of variability to
exploit.



The segmentation of the constituent parts of cell imagery dataworksin a completely unsupervised fashion, while the
classification of cells from segmentation labd s is performed in a supervised way to benefit from human expertise.
The overall method can be used without significant human intervention, once the machineis trained on sample data.
Although classification performance figures in terms of accuracy, sensitivity, and specificity are promising, a
thorough testing of this method on a large data set remains to be investigated. We are aso working on improved
methods of feature extraction and employing efficient classifiers.
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Figures

Segmentation with modified Magnified view of top-right quadrant
wavelet based approach (wavelet based)
Figure 1: Wavelet based hyperspectral colon tissue image segmentation

"Magnified view of top-right quadrant
(FastICA) (FlexICA)
Figure 2: ICA based segmentation without preprocessing




Magrified view of right quadrant Magnified view of right quadrart
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Figure 3: ICA based segmentation with preprocessing by high-emphasis filtering
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Figure 4: Distribution plot of image cube bands
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Figure 5: Classification results with SYM trained on multiscale morphological features

(shown in contrast: brighter color represents the malignant part of the image)
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