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ABSTRACT

Locally planar structures, formed by sweeping edges of ob-
jects, are commonly found in video sequences and convey
most of the useful information. In this paper, the issue of effi-
cient representation of such structures is addressed. We pro-
pose a novel representation tool which uses basis functions,
termed asplanelets, resembling planar structures and having
compact support in space-time and spatiotemporal frequency.
The representation is translation invariant, offers good direc-
tional selectivity, and can be computed efficiently. We show
that the new representation, while being fast, produces video
denoising results which compare favourably to one of the best
known methods.

1. INTRODUCTION

Wavelets have gained significant popularity as a signal anal-
ysis and processing tool over the last decade or so. This is
largely due to their ability to provide a localised, sparse rep-
resentation of a signal (or image) which is inherently mul-
tiresolution in nature and can deal with point singularities. It
should come as no surprise that wavelet-based solutions to
many problems in the analysis and processing of video se-
quences have been proposed. These include denoising, cod-
ing, and motion compensation [1]. However, the performance
of such algorithms is severely restricted due to the following
observation. While the wavelet transform in higher dimen-
sions can be conveniently computed separably, separability
also seriously limits the ability of wavelets to efficiently rep-
resent higher dimensional features (such as lines in images or
planes in3D image volumes). For2D images, non-separable
representations such as ridgelets [2] and curvelets [3] have
recently been developed, motivated by the same observation.
Ridgelets have also been shown to be optimal for represent-
ing functions with linear singularities. Furthermore, the lack
of frequency selectivity remains an elusive problem with most
techniques operating in the wavelet domain.

In this paper, we present a novel representation designed
specifically for efficiently representing3D functions with pla-
nar singularities. Locally planar structures, such as moving
luminance edges, are commonly found in video sequences
and often convey most of the information. The new rep-
resentation, termed as theplaneletbasis, has a combination
of scale, translation, and directional characteristics which are

well matched to the locally planar surfaces of interest in many
applications. Extraction of such planar features may be useful
in various applications, such as video denoising, video cod-
ing, geometry estimation [4] and tracking of objects in video
sequences. The planelet representation offers translation in-
variance, good directional selectivity, and yet can be com-
puted efficiently. The computational complexity of a planelet
transform isO(n), wheren is the number of points in analy-
sis window. In its current form, the representation provides a
non-orthogonal basis and is redundant by less than14%.

In the next section, the new basis is briefly described. The
ability of planelets to extract planar surfaces is demonstrated
in Section 3. Experimental results for restoring video se-
quences in very noisy environments show the superiority of
our representation over the state-of-the-art method of denois-
ing. The paper concludes with some remarks about the cur-
rent work and directions for future work.

2. REPRESENTATION WITH PLANELETS

A prototypical planelet function in1D is of the following
form

fξ,ω,a(x) = g(
x− ξ

a
) exp[−j

ω(x− ξ)
a

] (1)

whereξ, ω anda are respectively the location, frequency and
scale parameters of the function. The functiong(.) is a win-
dow function, chosen alongwith the sampling interval to en-
sure invertibility of the discrete form of the transform. In2D,
the planelet basis can be regarded as a modification of the
complex wavelet bases proposed in [5, 6], which show both
translation invariance and directional selectivity, and may be
used as an alternative to the ridgelet representation. In3D,
the basis comprises of the set of Cartesian products overξ, ω
at each scalea. That the continuous transform defined by (1)
is invertible follows directly from the observation that it is
simply the multiresolution Fourier transform (MFT) [5].

The discrete planelet transform (DPT), however, is signifi-
cantly different from that described in [5]. It is a combination
of two well known image transforms: the Laplacian pyra-
mid [7] and the windowed Fourier transform (WFT). In some
ways, it is similar to a3D extension of the octave band Gabor
representation proposed in [8], but avoids some of the more
unpleasant numerical properties of the Gabor functions. The
DPT of a video sequencex, in vector form, at scalem is given



by

X̂m = Fn(I −Gm,m+1Gm+1,m)xm (2)

whereX̂m denotes the DPT at scalem, Fn is the WFT oper-
ator with window sizen × n × n, I is the identity operator,
xm is the Gaussian pyramid representation ofx at levelm

xm =
m−1∏

0

Gl+1,lx (3)

and Gm,m+1, Gm+1,m are the raising and lowering opera-
tors associated with transitions between levels in the Gaussian
pyramid. Invertibility follows directly from equations (2) and
(3):

Theorem 1 The representation defined by equation (2) is in-
vertible.

Proof

First we note that the WFT operatorFn has an inverse, which
can be denoted byF−1

n . Secondly, we know from Burt and
Adelson that the Laplacian pyramid is invertible, since, triv-
ially,

xm = xm −Gm,m+1xm+1 + Gm,m+1xm+1 (4)

and the proof is completed by induction onm.
Importantly, although both the pyramid and WFT operators

are Cartesian separable, the closeness of the Burt and Adel-
son filter to a Gaussian function gives the pyramid virtually
isotropic behaviour, which can be exploited well by the high
frequency resolution of a Fourier basis. The planelet basis
functions resemble planar structures and have compact sup-
port in both space-time and spatiotemporal frequency.

3. PLANAR FEATURE EXTRACTION

Planelets provide an ideal tool for representing local planes in
a video sequence (or an image volume, in general) due to their
ability to localise planar surfaces which correspond to lines in
the Fourier domain. The presence of planar surface in a local
analysis window can be inferred by computing the eigenval-
ues of the local inertia tensor in the window and analysing
them. The parameters for orientation of the local planar sur-
face and translation from centre of the window can also be
estimated by analysing the most significant coefficients in the
locality. Consider a video sequence synthesised by moving
the centre of a circle on a sinusoidal wave in the time direc-
tion. Nonlinear approximations of this sequence using only
0.07% of the wavelet and planelet coefficients are shown in
Fig. 1(a) and 1(b), respectively. It is clear from this example
that the planelet approximation of a video sequence contain-
ing locally planar surfaces can result in a smaller approxi-
mation error as compared to that using wavelets. Planelets,
therefore, can also be used for a piecewise planar approxima-
tion of a video sequence. Moreover, the approximation can be
made to be adaptive to the local scale of the planar surfaces.

(a)

(b)

Fig. 1. Nonlinear approximation of a video sequence contain-
ing a moving circle using (a) wavelets (b) planelets

4. EXPERIMENTAL RESULTS

The ability of planelets to capture locally planar structures
can be demonstrated in various applications, one of which is
video denoising. In video sequences acquired in extremely
noisy situations, it can be assumed that the coefficients which
are relatively small in magnitude most likely correspond to
the noise. This leads to a simple thresholding strategy in the
planelet domain, which is akin to wavelet shrinkage method
commonly used for denoising2D images. Since the pres-
ence of additive Gaussian white noise means that almost all
the planelet coefficients are affected by it, soft thresholding
would provide an estimation of the original uncorrupted video
sequence. The choice of threshold is crucial to the perfor-
mance of a transform domain denoising algorithm [9]. We
use either or both of the following thresholds:(1) a modifica-
tion of the universal threshold proposed by Donoho and John-
stone [10];θi = L(σ)

√
2 log ni, whereni denotes the num-

ber of coefficients at leveli of the planelet decomposition,σ
is the noise variance, andL(σ) is a suitably chosen function
of σ, and(2) theSUREshrink(or simplySURE) threshold [1].
A translation invariant (TI) version of the planelet denoising
was also implemented for a fair comparison with the transla-
tion invariant wavelet (TIW) denoising [11] in its3D form.

The algorithms described above for video denoising were
tested on four standard video sequences reduced to a reso-
lution of 1283: Miss America, Football, Hall, and Tennis.
The image data was corrupted with additive Gaussian noise,
and adaptive thresholding was applied to the transform coef-



ficients of the noisy sequence represented in a3-level planelet
domain using a163 window. Experimental results for the
planelet denoising and the3D TIW denoising [11] of the
noisy sequences with signal-to-noise-ratio (SNR) values of
0dB, 5dB, 10dB, and15dB are presented in Table 1. The
functionL(σ) was chosen to beL(σ) = a log10 σ + b where
a, b∈< andb = 2a. A value ofa = 0.46 was chosen empiri-
cally using least squares fitting. It can be observed from these
results that the TI planelet denoising gives better performance
than the3D TIW denoising in terms of both visual quality and
SNR gain. Denoising using TI planelet representation with
SUREthreshold generally outperforms the other two meth-
ods. Selected frames, for each of these sequences, restored
by planelet denoising are shown in Fig. 2. Two types of ar-
tifacts were observed from non-TI results: blocking artifacts
due to the use of a163 window, andfake textureswhich some-
times persist within these windows, due to suppression of a
significant amount of high frequency energy. The TI planelet
denoising proves to be effective in removing both these kind
of artifacts, and is particularly good in reconstructing some of
the details that were smoothed out with the TIW method.

The computational complexity of our algorithm isO(n) as
compared toO (N log2(N)) for TIW denoising, wheren and
N respectively denote the size of analysis window and the
size of video sequence (resolution of each frame times the
number of frames). While being faster by orders of magni-
tude, our algorithm still compares favourably to the3D TIW
for all our experiments.

Video Noisy TIW Planelets (dB)
Sequence (dB) (dB) θi SURE TI-SURE

0 17.9 17.1 17.3 18.1
Miss 5 19.5 19.0 19.6 20.4

America 10 21.5 20.8 21.5 22.4
15 23.9 23.2 23.5 24.7
0 11.9 11.7 12.1 12.5

Football 5 13.1 12.8 13.2 13.8
10 15.0 14.4 14.7 15.6
15 18.0 16.6 16.6 18.5
0 15.5 14.5 14.8 15.9

Hall 5 16.6 16.7 17.2 18.2
10 18.5 19.2 19.6 20.8
15 20.6 21.7 21.8 23.9
0 14.7 14.8 14.6 15.7

Tennis 5 16.6 16.5 16.7 17.6
10 19.0 18.2 18.4 19.3
15 21.7 19.9 20.1 21.4

Table 1. SNR (in dB) values for four standard video sequence

5. CONCLUSIONS

In this paper, planelets were proposed as an efficient represen-
tation tool for3D functions with planar singularities. Such
singularities are commonly found in video sequences in the
form of moving luminance edges. It was shown that a piece-
wise planar approximation of a video sequence can be ob-

tained by using a very small fraction of transform coefficients
in the planelet domain. The ability of planelets to extract pla-
nar features from a video sequence makes them an attractive
tool for analysis in various applications. For instance, decent
restoration of video sequences captured in extreme noise is
possible by thresholding of the planelet coefficients. The ef-
fects of oversampling and use of tapered windows remain to
be investigated. Although the discrete planelet transform can
be computed efficiently, its redundancy and high storage re-
quirements may be of concern in some applications. Future
work will address these issues and a further investigation into
the usefulness of planelets in a wide range of video analysis
applications.
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Fig. 2. Denoising results for four standard video sequences

(a) Frame# 90 ofMiss America(b) Noisy (SNR=0dB) (c) TIW (SNR=17.9dB) (d) TI-Planelets (SNR=18.1dB)

(e) Frame# 60 ofFootball (f) Noisy (SNR=5dB) (g) TIW (SNR=13.1dB) (h) TI-Planelets (SNR=13.8dB)

(i) Frame# 106 ofHall (j) Noisy (SNR=10dB) (k) TIW (SNR=18.5dB) (l) TI-Planelets (SNR=20.8dB)

(m) Frame# 57 ofTennis(n) Noisy (SNR=15dB) (o) TIW (SNR=21.7dB) (p) TI-Planelets (SNR=21.4dB)


