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ABSTRACT well matched to the locally planar surfaces of interest in many

. eg)plications. Extraction of such planar features may be useful
Locally planar structures, formed by sweeping edges of ob-"_" o . e .
In various applications, such as video denoising, video cod-

jects, are commonly found in video sequences and conveé/ eometry estimation [4] and tracking of objects in video
most of the useful information. In this paper, the issue of effid 9 y 9 )

cient representation of such structures is addressed. We é%luences. The planelet representation offers translation in-

. ) . . variance, good directional selectivity, and yet can be com-
pose a hovel representation tool which uses basis functions

termed aglanelets resembling planar structures and havi uted efficiently. The computational complexity of a planelet

compact support in space-time and spatiotemporal fre uencansform isO(n), wheren is the number of points in analy-
P PP P P P q s@{'window. In its current form, the representation provides a

The representation is translation invariant, offers good direnco-n_Ortho onal basis and is redundant by less 1H&f
tional selectivity, and can be computed efficiently. We show th 9 t section. th basis i byfl d ived. Th
that the new representation, while being fast, produces vid 5” € next section, the hew basis 1S brietly described. 1he

denoising results which compare favourably to one of the b& {Iity of planelets to extract planar surfaces is demonstrated
known methods In Section 3. Experimental results for restoring video se-

guences in very noisy environments show the superiority of
our representation over the state-of-the-art method of denois-
1. INTRODUCTION ing. The paper concludes with some remarks about the cur-

) o ) . rent work and directions for future work.
Wavelets have gained significant popularity as a signal anal-

ysis and processing tool over the last decade or so. This is
largely due to their ability to provide a localised, sparse rep- 2. REPRESENTATION WITH PLANELETS
resentation of a signal (or image) which is inherently mul- ) o ] .
tiresolution in nature and can deal with point singularities. 4 Prototypical planelet function inD is of the following
should come as no surprise that wavelet-based solutiondof
many problems in the analysis and processing of video se- fewa(z) = g(x — 5) exp[—jM] 1)
guences have been proposed. These include denoising, cod- a a
ing, and motion compensation [1]. However, the performaneferes, w anda are respectively the location, frequency and
of such algorithms is severely restricted due to the followirsgale parameters of the function. The functign) is a win-
observation. While the wavelet transform in higher dimedeow function, chosen alongwith the sampling interval to en-
sions can be conveniently computed separably, separabgitye invertibility of the discrete form of the transform.2D,
also seriously limits the ability of wavelets to efficiently repthe planelet basis can be regarded as a modification of the
resent higher dimensional features (such as lines in imagesamplex wavelet bases proposed in [5, 6], which show both
planes i3D image volumes). FatD images, non-separabldranslation invariance and directional selectivity, and may be
representations such as ridgelets [2] and curvelets [3] haged as an alternative to the ridgelet representatior8Din
recently been developed, motivated by the same observatibr.basis comprises of the set of Cartesian productséuer
Ridgelets have also been shown to be optimal for represegiteach scale. That the continuous transform defined by (1)
ing functions with linear singularities. Furthermore, the ladk invertible follows directly from the observation that it is
of frequency selectivity remains an elusive problem with magmply the multiresolution Fourier transform (MFT) [5].
techniques operating in the wavelet domain. The discrete planelet transform (DPT), however, is signifi-
In this paper, we present a novel representation desigieadtly different from that described in [5]. It is a combination
specifically for efficiently representir8p functions with pla- of two well known image transforms: the Laplacian pyra-
nar singularities. Locally planar structures, such as movimid [7] and the windowed Fourier transform (WFT). In some
luminance edges, are commonly found in video sequeneesys, it is similar to 8D extension of the octave band Gabor
and often convey most of the information. The new repepresentation proposed in [8], but avoids some of the more
resentation, termed as tianeletbasis, has a combinationunpleasant numerical properties of the Gabor functions. The
of scale, translation, and directional characteristics which &BT of a video sequence in vector form, at scale: is given




by
Xm - fn(I - Gm,m-‘rle-‘rl,m)xm (2)

whereX,,, denotes the DPT at scale, F,, is the WFT oper-
ator with window sizen x n x n, I is the identity operator,
T, 1S the Gaussian pyramid representation: @it levelm

m—1

T = H Gy 3)
0

and G, m+1, Gmy1.m are the raising and lowering opera- Y x
tors associated with transitions between levels in the Gaussian (a)
pyramid. Invertibility follows directly from equations (2) and

(3):

Theorem 1 The representation defined by equation (2) is in-
vertible.

Proof

First we note that the WFT operat®t, has an inverse, which
can be denoted by, !. Secondly, we know from Burt and
Adelson that the Laplacian pyramid is invertible, since, triv-

ially, (b)

T = T = Gnmt1Zm41 + Gmmt1Zme1 (4) Fig. 1. Nonlinear approximation of a video sequence contain-

ing a moving circle usingd) wavelets ) planelets
and the proof is completed by induction on d d o o) p

Importantly, although both the pyramid and WFT operators
are Cartesian separable, the closeness of the Burt and Adel- 4. EXPERIMENTAL RESULTS
son filter to a Gaussian function gives the pyramid virtually

isotropic behaviour, which can be exploited well by the h'gﬂwe ability of planelets to capture locally planar structures

frequency resolution of a Fourier basis. The planelet basis . ; S S
) can be demonstrated in various applications, one of which is
functions resemble planar structures and have compact su

port in both space-time and spatiotemporal frequency. Heo denoising. In video sequences acquired in extremely

noisy situations, it can be assumed that the coefficients which
are relatively small in magnitude most likely correspond to

3. PLANAR FEATURE EXTRACTION the noise. This leads to a simple thresholding strategy in the
planelet domain, which is akin to wavelet shrinkage method

Planelets provide an ideal tool for representing local planes@mmonly used for denoisingD images. Since the pres-
avideo sequence (or an image volume, in general) due to ti§&ige of additive Gaussian white noise means that almost all
ability to localise planar surfaces which correspond to linestite planelet coefficients are affected by it, soft thresholding
the Fourier domain. The presence of planar surface in a lo¢@uld provide an estimation of the original uncorrupted video
analysis window can be inferred by computing the eigenvaeguence. The choice of threshold is crucial to the perfor-
ues of the local inertia tensor in the window and analysifigance of a transform domain denoising algorithm [9]. We
them. The parameters for orientation of the local planar stf€ either or both of the following threshold4) a modifica-
face and translation from centre of the window can also #en of the universal threshold proposed by Donoho and John-
estimated by analysing the most significant coefficients in t§@ne [10];0; = L(o)+/21log n;, wheren; denotes the num-
locality. Consider a video sequence synthesised by movlpy of coefficients at level of the planelet decomposition,

the centre of a circle on a sinusoidal wave in the time dirég-the noise variance, ant{s) is a suitably chosen function
tion. Nonlinear approximations of this sequence using orfjo, and(2) the SUREshrinKor simply SURE threshold [1].
0.07% of the wavelet and planelet coefficients are shown fhtranslation invariant (T1) version of the planelet denoising
Fig. 1(@) and 1p), respectively. It is clear from this examplavas also implemented for a fair comparison with the transla-
that the planelet approximation of a video sequence contdifn invariant wavelet (TIW) denoising [11] in i&D form.

ing locally planar surfaces can result in a smaller approxi-The algorithms described above for video denoising were
mation error as compared to that using wavelets. Planelégsted on four standard video sequences reduced to a reso-
therefore, can also be used for a piecewise planar approxitnéien of 1283: Miss America Football, Hall, and Tennis

tion of a video sequence. Moreover, the approximation canfge image data was corrupted with additive Gaussian noise,
made to be adaptive to the local scale of the planar surfacesid adaptive thresholding was applied to the transform coef-



ficients of the noisy sequence representedifevel planelet tained by using a very small fraction of transform coefficients

domain using al6® window. Experimental results for thein the planelet domain. The ability of planelets to extract pla-

planelet denoising and th&D TIW denoising [11] of the nar features from a video sequence makes them an attractive

noisy sequences with signal-to-noise-ratio (SNR) valuestobl for analysis in various applications. For instance, decent

0dB, 5dB, 10dB, and15dB are presented in Table 1. Theestoration of video sequences captured in extreme noise is

function £(o) was chosen to b€(o) = alog;, o + b where possible by thresholding of the planelet coefficients. The ef-

a,beR anddb = 2a. A value ofa = 0.46 was chosen empiri- fects of oversampling and use of tapered windows remain to

cally using least squares fitting. It can be observed from thémeinvestigated. Although the discrete planelet transform can

results that the Tl planelet denoising gives better performarmecomputed efficiently, its redundancy and high storage re-

than the3D TIW denoising in terms of both visual quality andjuirements may be of concern in some applications. Future

SNR gain. Denoising using Tl planelet representation wittork will address these issues and a further investigation into

SUREthreshold generally outperforms the other two metthe usefulness of planelets in a wide range of video analysis

ods. Selected frames, for each of these sequences, restapptications.

by planelet denoising are shown in Fig. 2. Two types of ar-
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Fig. 2. Denoising results for four standard video sequences
(a) Frame# 90 oMiss Americab) Noisy (SNR%dB) (c) TIW (SNR=17.9dB) (d) TI-Planelets (SNR+8.1dB)
(e) Frame# 60 ofootball (f) Noisy (SNR=+5dB) (g) TIW (SNR=13.1dB) (h) TI-Planelets (SNR+3.8dB)
(i) Frame# 106 oHall (j) Noisy (SNR=0dB) (k) TIW (SNR=18.5dB) (I) TI-Planelets (SNR20.8dB)

(m) Frame# 57 offennis(n) Noisy (SNR=15dB) (o) TIW (SNR=21.7dB) (p) TI-Planelets (SNR21.4dB)



