THE UNIVERSITY OF

WAW/ICK Adaptive Wavelet Restoration of Noisy Video Sequences

Nasir Rajpoot Zhen Yao Roland Wilson

Department of Computer Science, University of Warwick, Coventry, UK
emails: {nasir,yao,rgw  }@dcs.warwick.ac.uk

The3D DWPT can be computed by applying above equations separably in all
three directions to get the FWP decomposition up to the coarsest resolution TIW 3D-Hard| WP3D Planelet-SURE [4] TIWP 3D
of subbands. The best basis can be select&@{MlogN) time, whereN de-

[ Overview }

Our approach to the problem of denoising video sequences assumes thaE‘OteS the number of samples (frame resolution times the number of frames)

any pre-dominant spatiotemporal structures present in a video sequence caff! the video sequence. O(N+13N) |O(NlogN) O(n) O(NlogN +I3N)
be captured even in the presence of noise, provided an appropriate analysis

tool is used. We employ adaptid® wavelet packet transform to representa 2 Modified BayesShrink Thresholding

video sequence, and use an optimal threshold (which requires no prior knowl- A modified BayesShrink [3] method is used to compute the optimal value of TaBLE 1. Computational complexity of the tested algorithms

edge of the noise variance) to kill coefficients that may be more influenced threshold adaptively for each subband. Threslgltbr a subband of length
by noise. The results are quite promising, in terms of both SNR and visual N in anL-level WP decomposition is given by

quality.

Motivation: The case for thresholding in spatiotemporal adaptive wavelet , N andn respéctively denote sequence size and planelet window sizé pe@mibtes length of
domain is supported by the fact that certain errors in motion estimation can 6, = /IogN /L o the wavelet filter.

be overcome by including the temporal direction in the realm of wavelet do- \/max(crﬁ— 02,0)

main.

Introduction: It is often desirable to remove noise from video sequences wherea? is the subband variance, aod is the noise variance. B2 is not

captured in noisy environments or corrupted by noise during transmission, in known, a robust median estimate for noise standard deviatisrobtained 20

broadcast and surveillance applications to name only a few. Noise removal s follows

by thresholding in the wavelet domain, a method also known ag/évelet i .. . Median(Y])

shrinkage has become increasingly popular in recent years. Regardless of 0=E{Z}, Gi=

. . 0.6745
which thresholding method is employed for denoising the signal, the algo-

rithm is fast and offers the advantage that both compression and restorationyhereg, c 5, Y, ¢ {7}, set of all HHH bands in the decomposition tree, and
of a signal can be achieved simultaneously. the meanZ is taken only on the smaller half of the sortEdexcluding the

Contributions: We present a novel algorithm based on Bikeextension of smallest value.
translation invariant denoising using an adaptive wavelet packet representa-

SNR (dB)

16.5 — A\'¢ % —— TIw3D—Hard —

tion of restoration of noisy video sequences. The novelty of the algorithm 3 |nhverse3D Wavelet Packet Transform - ~ wrap

—k— Planelet—SURE
——— TIWP3D
16 L

lies in: The transform is invertible if the geometry 8D basis used in forward DWPT s~ ss s e es__7s 73 ss s 93 96
(a) extending the adaptive wavelet packet representation to include the tempo-s known and appropriate dual filtefh, }, {Gn} are used on the synthesis side.
ral direction, and >3

(a) Miss America

(b) applying a modified threshold to the transform coefficients,

resulting in significant gains over the state-of-the-art denoising techniques
(please see the results section). [ Experimental Results J

SNR (dB)

[ Method j The above algorithm was tested against a number of other algorithms for
restoration of several standard video sequences, three of which are included

here:Miss AmericaHall, andFootball, all at a resolution 0128. The video 1.5 ———wabrar

Thewavelet thresholdingapproach works in three steps: taking the discrete a4 ,ences were corrupted with additive white Gaussian noise, with the SNR T — Dlapelersune

wayelet tra_nsform o_f a noisy signal, thresholding the_ wavelet co_ef_flmen_ts, and ¢ the noisy sequences beifdB, 5dB, and10dB. Comparative SNR curves 185 50 s 7o s 56 50
taking the inverse discrete wavelet transform to estimate the original signal.

for individual frames for the test sequences are provided in Figure 1. (b) Hall

15

Comparative results for following algorithms are provided. translation-
invariant (Tl) hard thresholding IBD wavelet domainTIW 3D), 3D wavelet
packet WP3D) with modified BayesShrin3] as described in the previous

1. Discrete3D Wavelet Packet Transform section, non-separable planelet [4] domain thresholding using SUREShrink
The discrete wavelet packet transform (DWPT) dffasignalx of lengthN method, and T8D wavelet packet (TIWBD) with the modifiedBayesShrink g
can be computed as follows For comparison purposes, computational complexity for each of the algo- %

rithms considered is also provided in Table 1.
Wond| = ng—ZI Wng-1k | =0,1,...,N279—-1 _ _ . .
Discussion:Our experimental results show that the proposed algorithm out-

Wantdl = Zh"—z' Wna-1k | =0,1,...,N2"0 1 performs the state-of-the-art in terms of both SNR and visual quality. In terms | - = wese ")
Wool = X 1=0,1,...,N—-1 of computational complexity, the planelet algorithm of [4] is the least com- P E— —
_ _ _ putationally expensive, whereas the Tl implementation3»fwvavelet and Frame namber
whered =1,2,...,J—11s the scale index, witd = log, N, n and| respec- 3D WP are towards the more expensive side with TRBFbeing the most (c) Football
tively denote the frequency and position indicé8,} and 1gn} correspond expensive due to the additional one-off cost of best basis selection. -
to the lowpass and highpass filters respectively for a two-channel filter bank. FIGURE 1. Frame-by-frame denoising results
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FIGURE 2. Visual denoising results

[ Summary J

Conclusions:

e Our results show that adaptive wavelet packet8nare well suited to
represent pre-dominant spatiotemporal structures in video sequences, ¢
In the presence of noise.

Future Directions:
e Simultaneous coding and denoising of video sequences
e Solution for high computational/memory complexity
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