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Overview

Our approach to the problem of denoising video sequences assumes that
any pre-dominant spatiotemporal structures present in a video sequence can
be captured even in the presence of noise, provided an appropriate analysis
tool is used. We employ adaptive3D wavelet packet transform to represent a
video sequence, and use an optimal threshold (which requires no prior knowl-
edge of the noise variance) to kill coefficients that may be more influenced
by noise. The results are quite promising, in terms of both SNR and visual
quality.

Motivation : The case for thresholding in spatiotemporal adaptive wavelet
domain is supported by the fact that certain errors in motion estimation can
be overcome by including the temporal direction in the realm of wavelet do-
main.

Introduction : It is often desirable to remove noise from video sequences
captured in noisy environments or corrupted by noise during transmission, in
broadcast and surveillance applications to name only a few. Noise removal
by thresholding in the wavelet domain, a method also known as thewavelet
shrinkage, has become increasingly popular in recent years. Regardless of
which thresholding method is employed for denoising the signal, the algo-
rithm is fast and offers the advantage that both compression and restoration
of a signal can be achieved simultaneously.

Contributions: We present a novel algorithm based on the3D extension of
translation invariant denoising using an adaptive wavelet packet representa-
tion of restoration of noisy video sequences. The novelty of the algorithm
lies in:

(a) extending the adaptive wavelet packet representation to include the tempo-
ral direction, and

(b) applying a modified threshold to the transform coefficients,

resulting in significant gains over the state-of-the-art denoising techniques
(please see the results section).
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Method

Thewavelet thresholdingapproach works in three steps: taking the discrete
wavelet transform of a noisy signal, thresholding the wavelet coefficients, and
taking the inverse discrete wavelet transform to estimate the original signal.

1. Discrete3D Wavelet Packet Transform:
The discrete wavelet packet transform (DWPT) of a1D signalx of lengthN
can be computed as follows

w2n,d,l = ∑
k

gk−2l wn,d−1,k l = 0,1, . . . ,N2−d−1

w2n+1,d,l = ∑
k

hk−2l wn,d−1,k l = 0,1, . . . ,N2−d−1

w0,0,l = xl l = 0,1, . . . ,N−1

whered = 1,2, . . . ,J−1 is the scale index, withJ = log2N, n andl respec-
tively denote the frequency and position indices,{hn} and{gn} correspond
to the lowpass and highpass filters respectively for a two-channel filter bank.

The3D DWPT can be computed by applying above equations separably in all
three directions to get the FWP decomposition up to the coarsest resolution
of subbands. The best basis can be selected inO(N logN) time, whereN de-
notes the number of samples (frame resolution times the number of frames)
in the video sequence.

2. Modified BayesShrink Thresholding:
A modified BayesShrink [3] method is used to compute the optimal value of
threshold adaptively for each subband. Thresholdθb for a subband of length
N in anL-level WP decomposition is given by

θb =
√

logN/L


 σ2

√
max(σ2

b−σ2,0)




whereσ2
b is the subband variance, andσ2 is the noise variance. Ifσ2 is not

known, a robust median estimate for noise standard deviationσ̂ is obtained
as follows

σ̂ = E{Σ̂}, σ̂i =
Median(|Yi|)

0.6745

whereσ̂i ∈ Σ̂, Yi ∈ {Y }, set of all HHH bands in the decomposition tree, and
the meanE is taken only on the smaller half of the sortedΣ̂ excluding the
smallest value.

3. Inverse3D Wavelet Packet Transform:
The transform is invertible if the geometry of3D basis used in forward DWPT
is known and appropriate dual filters{h̃n}, {g̃n} are used on the synthesis side.
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Experimental Results

The above algorithm was tested against a number of other algorithms for
restoration of several standard video sequences, three of which are included
here:Miss America, Hall, andFootball, all at a resolution of1283. The video
sequences were corrupted with additive white Gaussian noise, with the SNR
of the noisy sequences being0dB, 5dB, and10dB. Comparative SNR curves
for individual frames for the test sequences are provided in Figure 1.

Comparative results for following algorithms are provided. translation-
invariant (TI) hard thresholding in3D wavelet domain (TIW 3D), 3D wavelet
packet (WP3D) with modifiedBayesShrink[3] as described in the previous
section, non-separable planelet [4] domain thresholding using SUREShrink
method, and TI3D wavelet packet (TIWP3D) with the modifiedBayesShrink.
For comparison purposes, computational complexity for each of the algo-
rithms considered is also provided in Table 1.

Discussion:Our experimental results show that the proposed algorithm out-
performs the state-of-the-art in terms of both SNR and visual quality. In terms
of computational complexity, the planelet algorithm of [4] is the least com-
putationally expensive, whereas the TI implementations of3D wavelet and
3D WP are towards the more expensive side with TIWP3D being the most
expensive due to the additional one-off cost of best basis selection.

TIW 3D-Hard WP3D Planelet-SURE [4] TIWP 3D

O(N+ l3N) O(N logN) O(n) O(N logN+ l3N)

TABLE 1. Computational complexity of the tested algorithms

N andn respectively denote sequence size and planelet window size, andl denotes length of

the wavelet filter.
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FIGURE 1. Frame-by-frame denoising results

(a) Original (a) Noisy (0dB) (a) TIWP3D (18.9dB)

(a) Original (a) Noisy (10dB) (a) TIWP3D (21.3dB)

(a) Original (a) Noisy (5dB) (a) TIWP3D (14.3dB)

FIGURE 2. Visual denoising results
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Summary

Conclusions:

•Our results show that adaptive wavelet packets in3D are well suited to
represent pre-dominant spatiotemporal structures in video sequences, even
in the presence of noise.

Future Directions:

• Simultaneous coding and denoising of video sequences

• Solution for high computational/memory complexity
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