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Abstract. In recent years a range of techniques such as trust, rep-
utation and social norms have been used to support cooperation. At-
tention has tended to focus on situations where a degree of reci-
procity, either direct or indirect, exists between agents, and existing
techniques typically rely on such reciprocity to engender coopera-
tive behaviour. Increasingly, environments are emerging where large
numbers of agents interact without ongoing repeat interactions, in
which there is little or no reciprocity. In this paper, we propose a
mechanism to support cooperation without requiring reciprocity. Our
approach supplements tag-based cooperation with an assessment of
neighbourhood context to cope with cheaters. Using a simple peer-
to-peer scenario we show how cooperative behaviour is favoured, and
the effect of cheating agents is reduced.

1 Introduction

A range of techniques including trust, reputation and social norms
have been used to establish and maintain cooperation in multi-agent
systems. Many successful approaches have been developed for a
number of environments. However, the increased use of large dis-
tributed systems such as peer-to-peer (P2P) networks, and the emer-
gence of ubiquitous computing environments, mean that enabling
and maintaining cooperation remains an important question. Such
environments typically contain a large number of agents that must
cooperate, but the environment characteristics are such that repeat
interactions between agents may be rare. Many of the common
approaches for supporting cooperation in multi-agent systems, al-
though helpful, are not a complete solution, since little may be known
about potential interaction partners and there is a relatively low like-
lihood of any subsequent interactions with the same partner. In this
paper we propose a mechanism, that combines ideas from biology
and the social sciences, to support cooperation in such environments.
Our approach is an extension of the tag-based mechanism proposed
by Riolo, Cohen and Axelrod (RCA) [14]. The approach we propose
in this paper is related to that we describe in [6], in which an alterna-
tive extension to RCA’s approach is considered.

Most existing approaches to cooperation are based on reciprocity,
namely the notion that repeated encounters imply that any altruistic
or selfish act performed by an agent may eventually be returned by
the recipient. Direct reciprocity is the simplest, and most common,
approach where two agents have repeat interactions in which there is
the opportunity to “cooperate” or “defect”. The iterated “prisoner’s
dilemma” is a quintessential example of such a setting. In large scale
systems, such as P2P networks, interactions between a given pair
of agents are infrequent and often single-shot, and so there is mini-
mal direct reciprocity present. An alternative is indirect reciprocity,
where a third party is involved in repeat interactions. Agents are un-
likely to have direct repeat interactions, but are likely to interact with
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others whose behaviour with third parties they have previously ob-
served. Nowak and Sigmund characterise direct reciprocity through
the principle of “You scratch my back, and I’ll scratch yours”. Sim-
ilarly, indirect reciprocity is characterised as “You scratch my back,
and I’ll scratch someone else’s” or “I scratch your back and someone
else will scratch mine” [11]. In some circumstances, however, even
indirect reciprocity might be limited, and we may need to enable co-
operation without reliance on reciprocity of any form, for example if
there is no memory of past encounters [14].

Trust and reputation are the most common approaches to support-
ing cooperation in multi-agent systems [9, 12, 13]. However, such
techniques are based on the notion of reciprocity and so are of limited
use in situations where reciprocity is lacking. In this paper we extend
RCA’s tag-based mechanism [14], to provide a model for establish-
ing and maintaining cooperation that does not assume reciprocity,
and is suitable for situations where repeat interactions are rare. In
the following section we introduce the theoretical approaches upon
which our model is based, along with the promising initial results
obtained by others. The model itself is introduced in Section 3. Our
experimental setting, in the form of a simple P2P system, and se-
lected experimental results are discussed in Section 4, and Section 5
concludes the paper.

2 Related Work

Indirect reciprocity is not an novel idea: biologists and social sci-
entists have long considered cooperation in environments where the
individuals concerned may not directly meet again, but where co-
operative strategies are favoured [1, 3, 10]. Furthermore, theoretical
models of cooperation exist that do not require any reciprocity, but
instead are based on the recognition of cultural artifacts, such as the
“green beard effect” and “kin” recognition [2, 4]. Promising results
have recently been obtained using “tags” [8] as cultural artifacts to
enable cooperation without reciprocity [14], which in has in turn led
to a technique to improve cooperation in P2P networks [7]. Existing
work on tags, however, has given only limited consideration to the
existence of “cheaters” in the population, and it is this issue that we
address in this paper.

Riolo, Cohen and Axelrod describe a tag-based approach to coop-
eration in which an agent’s decision to cooperate is based on whether
an arbitrary “tag” associated with it is sufficiently similar to that as-
sociated with the potential recipient [14]. In RCA’s model each agent
i is initially randomly assigned a tag τi and a tolerance level Ti with
a uniform distribution from [0, 1]. An agent A will donate to a po-
tential recipient B if B’s tag is within A’s tolerance threshold TA,
namely |τA − τB| ≤ TA. Thus, agents with a high tolerance will
donate to others with a wide range of tags, while those with a low
tolerance only donate to others with very similar tags [14]. When an
agent donates it pays a cost c, and the recipient receives a benefit



b (it is assumed that b > c). RCA have performed simulations in
which each agent acts as a potential donor in P interaction parings,
after which the population of agents is reproduced in proportion to
their relative scores. Each offspring’s tag and tolerance is subject to
a potential mutation, such that with some small probability a new
(randomly selected) tag is received or the tolerance is mutated by the
addition of Gaussian noise (with mean 0 and a small standard devi-
ation). RCA found that a high cooperation rate can be achieved with
this simple model, in which no reciprocity is required. Their results
show oscillations in which a cooperative population is established,
only to be invaded by a mutant whose tag is similar (and so receives
donations) but with low tolerance (and so does not donate). Such
mutants initially do well and take over the population, lowering the
overall rate of cooperation. Eventually, the mutant tag becomes the
most common and cooperation again becomes the norm [14].

RCA’s approach is an effective mechanism for achieving coop-
eration without relying on reciprocity, but their model relies on an
assumption that no cheaters are present in the population. A cheat-
ing agent is one that accepts donations, but will not donate to others,
even if the “rules” of the system dictate that it should. Thus, a cheater
in RCA’s scenario would accept donations, but never donate to oth-
ers regardless of tag similarity. We assume that cheaters follow the
usual rules of reproduction in terms of offspring characteristics (e.g.
tag and tolerance), but that their offspring will also be cheaters.

Hales and Edmonds (HE) apply RCA’s approach in the context of
a P2P network, with two important changes [7]. The first change is
to adopt RCA’s “learning interpretation” of the reproduction phase,
such that each agent compares itself to another and adopts the other’s
tag and tolerance if the other’s score is higher (again subject to po-
tential mutations) [14]. The second change is that HE interpret a tag
as an agent’s set of neighbours in the P2P network. Thus, adopting
another agent’s tag is equivalent to re-wiring the P2P network such
the other agent’s connections are adopted [7]. Again, there is a small
probability of mutation, which is interpreted as replacing a randomly
selected neighbour with another node in the network. Simulations
performed by HE have shown this approach to be very promising in
situations where agents are able to re-wire the network, and in which
there are no cheaters. In this paper, motivated by HE’s promising re-
sults, we focus on achieving cooperation in the presence of cheaters,
without permitting agents to re-wire their network neighbourhoods.
Our approach is based on RCA’s model, and HE’s application of
it (minus re-wiring), supplemented by a mechanism to cope with
cheaters.

3 Extending Tags through Context Assessment

In this paper we use a P2P network as an illustrative scenario, and
although we intend our approach to be fairly generic, our discus-
sion will focus on a P2P setting. We consider a network of nodes, or
agents, in which each agent has a fixed number n of connections to
neighbours. The network topology is assumed to be fixed, and we do
not permit agents to re-wire their network connections. Furthermore,
unlike RCA and HE we assume that a proportion of the population
will be cheaters, meaning that they will take all the benefits offered to
them but will always refuse to act cooperatively towards others. For
simplicity, we adopt the “donation scenario” used by RCA in which
each agent is chosen to act as a potential donor with a number of
neighbours. If the agent donates it incurs a cost c and the recipient
receives a benefit b, otherwise both agents receive nothing. We use
RCA’s parameter values of b = 1 and c = 0.1. (These values are in
turn adopted from Nowak and Sigmund, and the addition of a cost of

0.1 is to avoid negative payoffs [10].) It should be noted that although
this is an artificial scenario, it could be extended in the manner of HE
to more realistic P2P applications such as file sharing [7].

Our approach is founded upon RCA’s tag-based technique, but we
incorporate a simple mechanism to combat cheaters in which agents
assess their current context, in terms of their neighbours’ donation
behaviour, as part of the decision to donate. Each agent i is initially
assigned an arbitrary tag τi and tolerance Ti with uniform distribu-
tion from [0, 1]2. As in RCA’s model, an agent A will donate to a
potential recipient B if B’s tag is within a certain threshold of its
own. To demonstrate the impact of cheaters, initially suppose that
this threshold corresponds to A’s tolerance (as per RCA’s model),
meaning that if |τA − τB| ≤ TA then A will donate to B. Later, we
will expand this interpretation to include A’s assessment of its cur-
rent context. RCA’s learning interpretation of reproduction is adopted
(i.e. that used by HE) such that after a fixed number P of interaction
pairings an agent compares itself to another selected at random. If
the other agent is more successful than itself then the other’s de-
tails (its tag and tolerance) are copied, meaning that the other agent
reproduces, otherwise no change is made. If the parent agent is a
cheater, then its offspring will also be a cheater, regardless of its other
characteristics. After reproduction there is a potential mutation of the
offspring’s tag and tolerance, with probabilities mτ and mT respec-
tively.

In common with RCA we find that a relatively stable donation rate
(i.e. cooperation) over a large number of generations is established
for appropriate parameters, provided that cheaters are not introduced
into the population. Figure 1 shows the dynamics of the donation
rate for a configuration that mirrors RCA’s setting. Specifically, we
use the parameter values mτ = mT = 0.01 and P = 3. Note
that in our P2P setting an agent has a restricted set of neighbours
(in this case n = 49 where the network size N = 100) whereas in
RCA’s approach an agent has all others in the population as “neigh-
bours” in this sense. Our values differ from those used by RCA in
that the probability of tag mutation and tolerance mutation are lower
(RCA use mτ = mT = 0.1). Using these parameters the form of
our results matches those obtained by RCA in [14]. If we use RCA’s
parameter values for mτ and mT we get a significantly lower dona-
tion rate than in their simulations. The reasons for this are unclear,
and require future investigation. However, Edmonds and Hales no-
tice similar differences from RCA’s results, and suggest that bias in
reproducing agents with equal scores and automatic donation to “tag
clones” in RCA’s simulation are potential contributory causes [5].

Figure 1 shows that RCA’s model (parameter values aside) allows
cooperation to be established in the absence of cheaters. Unfortu-
nately, when cheaters are introduced cooperation soon disappears.
Figure 2 shows the effect of creating a population where a proportion
of agents act as cheaters, who accept donations from others but never
donate (regardless of tag similarity). Where there are no cheaters (the
upper dotted line) cooperation is established as before. Introducing
5% of the population as cheaters reduces the donation rate (the solid
line) and allowing 10% of agents to be cheaters (the dashed line)
leads to minimal cooperation (with under 10% of interactions being
cooperative). Without modification, therefore, RCA’s approach soon
fails to provide cooperation in the presence of cheaters, with even
relatively small proportions of cheaters significantly reducing the av-
erage donate rate.

2 More strictly we allow tolerance to have a lower bound of−10
−6 to address

Roberts and Sherratt’s concerns that RCA’s approach forces agents with
identical tags to always cooperate [15]. The results discussed in this paper
permit this small negative tolerance.
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Figure 1. Donation rate with no cheaters using RCA’s approach.

To cope with the presence of cheaters we extend RCA’s approach
such that the decision to donate is related to the context in which
an agent is situated, in addition to its tolerance. Each agent has a
fixed set of n connections to its neighbours, and we assume that these
neighbours are able to observe the agent’s donation behaviour. This
observation assumption is realistic in many real-world settings. For
example, in a file sharing system nodes can observe whether other
nodes’ downloads have completed, or in a communication network
nodes can detect whether packets have been forwarded. Using the
observations of its neighbours’ donation behaviour, an agent is able
to assess the context in which it is situated, with respect to how coop-
erative its neighbours are (i.e. how often they donate). Agents have a
fixed length memory, in which they records the last l donation inter-
actions observed for each of their neighbours. Where the neighbour
donated to another agent a value of +1 is recorded, and where it re-
fused to donate a value of 0 is recorded. The memory operates as a
FIFO queue, such that new entries are appended until the maximum
capacity of l is reached, at which point the oldest entry is removed
from the head of the queue to allow the new entry to be appended.
Based on the set of observations across all neighbours an agent can
estimate the current context. Note that this memory is fairly sparse,
since the number of interactions is relatively small compared to the
number of agents, and so the overhead incurred is fairly small.

In order to assess its current context an agent considers each of
its neighbours in turn, and taking them together builds an assessment
of how cooperative its context is (in terms of donations). The contri-
bution to the context cn of neighbour n is simply the proportion of
observed interactions in which the neighbour donated, given by:

cn =

{
∑ln

j=1
oj

n

ln
if ln > 0

0 otherwise
(1)

where oj
n represents the j’th observation of n, and ln is the number of

observations of n’s donation behaviour (ln < l). By considering the
donation behaviour of each of its n neighbours, an agent can assess
its current context CA as follows:

CA =

∑n

i=1
cn

n
(2)

An agent can now consider its context when deciding whether or
not to donate. Our assumption is that an agent is more likely to do-
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Figure 2. The effect of cheaters on donation rate with RCA’s approach.

nate if in a cooperative context. This is related to the notion of in-
direct reciprocity in that agents “expect” that by donating they are
likely to receive a donation from some other (observing) agent in the
future. However, because the number of interactions is small com-
pared to the number of agents, this is a weak notion of indirect reci-
procity. Specifically, we do not assume that a donor will have directly
observed a recipient’s past behaviour, but only that donors are able
to make a general assessment of their current context. The notion of
context is incorporated into the model by adapting the decision to do-
nate, such that both tolerance and context are considered. To ensure
that an agent has sufficient observations on which to base its assess-
ment we introduce a minimum observations threshold σ. If the total
number of observations exceeds σ then context is incorporated into
the donation decision, otherwise RCA’s standard approach is used.
Thus, if

∑n

i=1
ln ≥ σ then context is incorporated into the donation

decision, while if
∑n

i=1
ln < σ tolerance alone is used as per RCA’s

approach. Assuming that there are sufficient observations, then an
agent A will donate to B if:

|τA − τB | ≤ (1 − γ).TA + γ.CA (3)

where TA is A’s tolerance and CA its assessment of the current con-
text. The parameter γ allows us to tune the model. A value of γ = 0
means that the model is identical to RCA’s approach, while a value
of γ = 1 implies that the decision to donate is based solely on the
agent’s assessment of its context, with tolerance having no bearing.
Values between 0 and 1 allow both tolerance and context to influence
the donation decision.

Our approach differs from typical approaches to achieving coop-
eration through trust and reputation, since there is less reliance on the
existence of specific observations. Trust and reputation mechanisms
typically assume that, taken together, a group of agents will have suf-
ficient information about an individual’s past behaviour to estimate
its reputation [9, 13]. Such information is not guaranteed in a P2P set-
ting, and so we use a general assessment of an agent’s context, rather
than attempting to assess an individual’s cooperative nature. Our ex-
perimental results show that using this approach we can still achieve
a significant improvement in cooperation. (Although certainly, if suf-
ficient information was available to use a more standard reputation
mechanism, then it would be likely to perform better.)

The second area in which we consider an alternative to RCA’s ap-
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Figure 3. Donation rate using “standard” reproduction.

proach is with respect to reproduction. In RCA’s model, after a cer-
tain number of interactions an agent will compare itself to another
at random. If the other agent is more successful then its tag and tol-
erance values are copied (subject to minor mutations), i.e. the suc-
cessful agent reproduces. In addition to replacing tolerance in the
decision to donate by a combination of tolerance and context, we
also consider using context for reproduction. If on comparison with
another agent the other is more successful, its tag is copied, as is its
assessment of its context. For the resulting offspring, the decision to
donate becomes a consideration of a combination of its current con-
text and its parent’s context. Thus, offspring A will donate to B if:

|τA − τB| ≤ (1 − ϑ).Cparent(A) + ϑ.CA (4)

where Cparent(A) refers to A’s parent’s assessment of its context (at
time of reproduction), and ϑ is a tuning parameter that allows us to
determine the influence of the current and parent’s context assess-
ments. If ϑ is 1 then only the current context assessment is con-
sidered, while a value of 0 means that only the parent’s context is
considered.

4 Results and Discussion

We have performed a number of simulations to investigate the effec-
tiveness of our model, the influence of the tuning parameters (γ and
ϑ), and the alternative reproduction mechanisms. Our simulations are
built using the PeerSim P2P simulator3. We have experimented with
various networks sizes, neighbourhood sizes and parameter values.
Our simulations typically ran for 1500 generations, although longer
simulations have been undertaken to check for long term stability.
In this section we discuss the main findings based on our results. In
the previous section, Figures 1 and 2 show how the donation rate
evolves and oscillates over generations in a single simulation run. In
this section, however, we average the donation rate over the whole
simulation (1500 generations), and further take an average over 10
runs of the simulation. This allows us to compare donation rates for
different configurations, without having to consider the inherent os-
cillations that the tag-based approach produces.

The initial tag and tolerance assigned to an agent in the simu-
lation results presented here are randomly selected uniformly from
3 http://peersim.sourceforge.net/
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Figure 4. Donation rate using “context-based” reproduction.

[0, 1]. We have also followed RCA and explored high initial tolerance
(T = 0.5) and low initial tolerance (T = 0.005) settings. Our results
mirror those found by RCA in that other than for short transients the
end results are not substantially different from using a random initial
tolerance [14].

The main characteristics that determine the donation rate in our
model are the tuning parameters γ and ϑ for the ‘standard’ reproduc-
tion and ‘context-based’ reproduction approaches respectively. Fig-
ures 3 and 4 show how the donation rate is affected by the propor-
tion of cheaters for standard reproduction and context-based repro-
duction, for varying values of the tuning parameters. The results are
based on a network size N = 100 with each agent having n = 49
neighbours, a minimum observation threshold of σ = 3, and a his-
tory window size of l = 5. The standard deviation of the donation
rate in all settings shown in these results is fairly low (below 0.05),
showing that the donation rate achieved is fairly consistent.

As expected, higher proportions of cheaters significantly reduce
the donation rate achieved using both reproduction approaches. Fig-
ure 3 allows us to compare the effectiveness of using context in the
donation decision in comparison to RCA’s approach. Where the tun-
ing parameter γ is set to 0 our model is identical to RCA’s, and as the
proportion of cheaters rises from 0% to 50% the donation rate drops
from around 0.35 to 0.15. It is clear from Figure 3 that increasing
the influence of context in the donation decision, by increasing the
tuning parameter γ, improves the donation rate. This improvement is
most significant at low cheater proportions, but remains even at high
cheater rates. Comparing Figure 4 and Figure 3 we note that using
context-based reproduction also gives an improvement over RCA’s
unmodified approach. Again, the improvement is most pronounced
at low to medium cheater proportions (below 40%). However, for
high proportions of cheaters (50%) using context-based reproduction
actually gives a worse performance than RCA’s mechanism regard-
less of the tuning parameter ϑ. This effect can be better observed
if we consider the donation rate for standard reproduction versus
context-based reproduction for the extremes of the tuning parame-
ters, as shown in Figure 5.

It is clear from Figure 5 that we can improve on the donation rate
achieved by RCA’s unmodified approach (standard reproduction with
γ = 0), shown by the solid line, for all settings of cheater propor-
tion. The best results are obtained using our modification for consid-
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Figure 5. Donation rate for the tuning parameter extremes of both
reproduction methods.

ering context in the donation decision rather than tolerance (tuning
parameter γ = 1), but using RCA’s standard reproduction method,
shown by the upper dashed line. Context-based reproduction focus-
ing on the parent’s context (ϑ = 0), the short-dashed line, instead
of standard reproduction gives a slight reduction in performance for
less than 20% cheaters, a very small increase for 20–40%, and a very
signifcant decrease (much worse than RCA) for above 40% cheaters.
Context-based reproduction where the current context is considered
rather than the parent’s context, shown as the dotted line in Figure 5,
performs better than RCA, but worse than our other configurations,
for cheater rates of around 0–25%. For rates above 25% it performs
worse than all the other approaches.

From the results presented so far we can conclude that our mod-
ification to include context in the donation decision does give a sig-
nificant improvement over RCA’s approach. Using context-based re-
production focusing on the parent’s context gives little advantage in
low–medium cheater proportions (for ϑ = 0) and performs worse
than standard reproduction for high cheater proportions (or where
the current context is emphasised with ϑ = 1).

The effect of different history window sizes (l) on the donation
rate is given in Figure 6. Note that for these results the number of
pairings between reproduction cycles P was increased accordingly.
It can be seen that effect of window size on donation rate is mini-
mal for both reproduction methods (both tuning parameters are set to
1). There is a very small increase in donation rate when larger histo-
ries are considered, but the improvement is negligible. Furthermore,
the memory overhead of maintaining longer observation histories for
each neighbour is likely to outweigh the small improvement in dona-
tions for most settings.

We also consider the effect of an agent’s neighbourhood size on
the donation rate. Figure 7 shows the donation rate for both repro-
duction methods (with tuning parameters γ = ϑ = 1) in a popula-
tion of 10% cheaters. Neighbourhood size is shown as the percentage
of the total nodes in the network N that are in an agent’s neighbour-
hood, i.e. n/N × 100. In this case the network size was restricted
to 100 for efficiency of simulation, but we have obtained selected
corresponding results for large networks of up to 2500 nodes (the
current practical limit of our simulator’s capabilities). It is clear that
regardless of network size, using standard reproduction with con-
text in the donation decision again outperforms the use of context in
both the donation decision and reproduction. Higher donation rates
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Figure 6. Donation rate for varying history window sizes.
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Figure 7. Donation rate for varying neighbourhood sizes.

are generally achieved for larger neighbourhood sizes. For the stan-
dard reproduction approach donation rate improves with neighbour-
hood size up to 60% (i.e. an agent has 60% of the network as neigh-
bours), after which there is a slight decline in performance. It should
be noted, however, that large neighbourhoods (e.g. above 40%) are
likely to be impractical in most real-world systems, due to the large
numbers of agents involved, and so the results for below 40% are
the most relevant to real-world applications. For the context-based
reproduction approach we also see a significant increase in donation
rate as the neighbourhood is initially expanded. This increase again
reduced for medium to large neighbourhoods, resulting in a slight de-
cline for very large sizes. Figure 7 also shows the standard deviation
of the runs used to obtain the donation rates. For the standard repro-
duction approach the standard deviation is fairly low and consistent
(around 0.05). However, using context-based reproduction gives an
inconsistent standard deviation (in the range of 0.05–0.2), illustrat-
ing the instability of this approach in comparison to using standard
reproduction.



5 Conclusions

In this paper we have described a mechanism for establishing coop-
eration amongst agents without a reliance on reciprocity. Building
on RCA’s tag-based approach we have shown how incorporating an
assessment of an agent’s current context into the donation decision
improves the donation rate. Context assessment is dependent on the
extent of the interaction history recorded and on the neighbourhood
size. Our results show that the history window size has minimal im-
pact on donation rate, while increasing neighbourhood size does in-
crease donation rate (at least for practical neighbourhood sizes below
approximately 40%). We also considered an alternative to RCA’s re-
production method, in which a parent’s context was inherited by its
offspring and subsequently used in donation decisions. Our results
demonstrate that this alternative reproduction method was not effec-
tive. Overall, our simulations show that augmenting RCA’s approach
with context assessment for the donation decision is successful, and
gives a significant increase in cooperation (of over 30% in some set-
tings), but that RCA’s standard method for reproduction is the most
effective.

There are several areas of ongoing work. Primarily, we aim to ex-
plore a more sophisticated mechanism for assessing context, and to
consider alternative methods for enabling offspring to use their par-
ent’s context assessment in the donation decision. Our aim is to in-
vestigate whether the donation rate can be further improved, without
relying on reciprocity. Further in the future we will explore incor-
porating a simple trust model to exploit the limited reciprocity that
exists, even in the kind of large scale environment we consider. Fi-
nally, we aim to simulate our approach in a more realistic P2P setting,
such as the file-sharing example used by HE [7].
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