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Knowledge of drivers’ mobility patterns is useful for enabling context-aware intelligent vehicle functionality, such as route
suggestions, cabin preconditioning, and power management for electric vehicles. Such patterns are often described in terms of the
Points of Interest (PoIs) visited by an individual. However, existing PoI extraction methods are general purpose and typically rely
on detecting periods of lowmobility, meaning that when they are applied to vehicle data, they often extract a large number of false
PoIs (for example, incorrectly extracting PoIs due to stopping in tra"c), reducing their usefulness. To reduce the number of false
PoIs that are extracted, we propose using features derived from vehicle signals, such as the selected gear and status of doors, to
classify candidate PoIs and #lter out those that are irrelevant. In this paper, we (i) present Activity-based Vehicle PoI Extraction
(AVPE), a wrapper method around existing PoI extraction methods, that utilizes a postclustering classi#cation stage to #lter out
false PoIs, (ii) evaluate the bene#ts of AVPE compared to three state-of-the-art general purpose PoI extraction algorithms, and (iii)
demonstrate the e$ectiveness of AVPE when applied to real-world driving data.

1. Introduction

Point of Interest (PoI) extraction is useful for automatically
discovering locations that are relevant to a user for a given
application. For example, PoIs can provide an under-
standing of a person’s daily routine, their frequently visited
locations, and the type of journeys they undertake. With this
knowledge, intelligent systems can be designed to customize
a vehicle for a given trip, for example, altering the climate
control or tailoring the media settings. Previous work on PoI
extraction typically uses periods of low movement to detect
PoIs, in applications such as detecting mobility patterns in a
city [1, 2] or animal migration patterns [3]. When applied to
vehicle applications, where low movement does not nec-
essarily imply that a vehicle has stopped for a speci#c
purpose of interest, this can lead to the generation of false
PoIs. For vehicle applications, a PoI is considered to be a
location where the vehicle has stopped for an intended
purpose, whether that be to park, drop o$ a passenger, or
visit a drive-through service.

!e aim of AVPE is to #nd representative locations
within a user’s trajectories, with a focus on ensuring that all
of the identi#ed locations are correct, rather than necessarily
being complete. !us, AVPE aims to remove noise in the
form of erroneous PoIs, even if this is at the cost of reducing
the number of correct PoIs. For applications such as cus-
tomer segmentation [4] or categorizing usage in a vehicle
context [5], the presence of noise can signi#cantly skew the
results. Since previous general purpose PoI extraction
methods rely on detecting periods of low mobility, in vehicle
applications, where drivers are likely to encounter tra"c,
this can cause signi#cant problems. For such applications, it
is more important to have an aggressive approach to noise
reduction, rather than ensuring that the complete set of true
PoIs is extracted.

!e scope of this work is to create a methodology for
identifying representative locations in vehicular trajectories,
using basic data available from the vehicle data bus. By using
basic on-board data, which is common across vehicles,
AVPE can be applied to di$erent vehicles without requiring
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additional sensors or external data, the latter of which may
not be available in some geographic regions.

In this paper, we (i) present Activity-based Vehicle PoI
Extraction (AVPE), a wrapper around existing PoI extrac-
tion methods that uses a postclustering classi#cation stage to
#lter out false PoIs from the extraction process, (ii) evaluate
AVPE against three state-of-the-art general purpose PoI
extraction algorithms, and (iii) demonstrate its e$ectiveness
when applied to real-world driving data. !is paper extends
our previous work in [6] by formalizing the AVPE method,
considering Random Forest classi#cation, in addition to
Support Vector Machines, and evaluating AVPE with the
Clustering-Based Stops and Moves of Trajectories (CB-
SMoT) clustering algorithm [7], in addition to the Spatio-
Temporal Activities (STA) [8] and Gradient-based Visit
Extractor (GVE) [9] algorithms. Additionally, we have in-
corporated feature selection into AVPE, using the Kneedle
algorithm [10] instead of relying on a manual user-de#ned
process as used in [6]. We analyze the performance of AVPE
using the CB-SMoT, STA, and GVE clustering algorithms
for vehicle trajectory data and evaluate the method on both
scripted and unscripted real-world driving data.

!is paper is organized as follows. Section 2 reviews
related work, and Section 3 presents AVPE, our proposed
wrapper method for PoI extraction. In Section 4, we describe
our experimental methodology, introduce our datasets, and
detail the process followed to collect them. Section 5 presents
the results of applying CB-SMoT, STA, GVE, and AVPE on
vehicle data and provides a direct comparison between the
e$ectiveness of each method. Finally, Section 6 concludes
the paper.

2. Related Work

!e process of PoI extraction typically starts with a GPS
trajectory, which is a temporally ordered sequence of in-
stances, where each instance has a timestamp, latitude, and
longitude. A PoI is typically de#ned as a group of instances
in a trajectory that exhibits little or nomovement, implying a
period of lowmobility, in which an individual remains in the
same location [7–9]. Given this de#nition, Palma et al. [7],
Bamis and Savvides [8], and!omason et al. [9] assume that
all periods of low mobility are meaningful, which is not
necessarily the case for vehicle data, where areas of low
movement exist that are not relevant to a user, such as
waiting in tra"c.!is results in existing general purpose PoI
extraction algorithms generating multiple false PoIs when
applied to vehicle data.

PoI extraction is normally used as a preprocessing step
prior to another form of analysis or prediction. Many ap-
plications, such as destination prediction, rely on robust PoI
extraction to provide acceptable performance [11–14]. PoI
extraction can also be used to identify semantically relevant
places for users and to highlight public attractions. For
example, Keles et al. use a Bayesian approach that considers
the duration of the stationary period, the day of the week,
and the arrival time to predict the category of a PoI [15].
Similarly, inferring the activity performed at a given PoI is
investigated by Furletti et al. [16], by linking PoIs to

amenities using semantic data such as a users’ maximum
walking distance between a vehicle parking location and
their intended destination, and the opening hours of fa-
cilities located near the PoI. Furletti et al. assume that it is not
always possible to park directly at the intended location and
so rely on a user-provided maximum walking distance as a
threshold for the PoIs to consider. Semantically relevant
places such as a user’s home or work can also be considered
when developing location-aware applications [11, 17].

Extracting PoIs is becoming increasingly important for
location-aware applications, and several techniques have
been applied to this problem, the most common being
clustering. Multiple clustering algorithms exist that can be
applied to PoI extraction, typically using density-based
approaches [18]. Additionally, some clustering algorithms
have been proposed speci#cally for PoI extraction, namely,
CB-SMoT [7], STA [8], and GVE [9], which represent the
current state-of-the-art.

DBSCAN is a widely used density-based clustering al-
gorithm that has the advantage of not requiring the number
of clusters to be speci#ed in advance, which is useful for PoI
extraction, since this is typically unknown [18]. Another
advantage of DBSCAN over other general purpose clustering
algorithms, such as k-means [19], is that it can cope with
clusters of di$erent shapes. DBSCAN uses two parameters, ϵ
and minpts, that, respectively, determine the absolute
distance used to calculate the neighborhood of an instance,
and the minimum number of instances that a cluster should
contain. DJ-Cluster extends DBSCAN by considering use-
fulness, in addition to accuracy, where the usefulness metric
describes the proportion of extracted PoIs that are mean-
ingful to the user [20, 21]. !is requires users to con#rm
whether the discovered PoIs are correct and to rate their
importance on a 5-point scale. In the standard formulation
of DJ-Cluster, all PoIs that are rated 4 or above are con-
sidered to be meaningful. DJ-Cluster also reduces the
computational complexity, when compared to DBSCAN, by
adopting a density-joinable approach. DJ-Cluster joins any
two clusters that have identical instances in the neighbor-
hoods of both clusters, rather than performing an outward
neighborhood search on each instance in the resulting
neighborhood. D-Star extends DJ-Cluster, using a sliding
window to create the neighborhood, allowing the algorithm
to work online [22]. D-Star identi#es duration-joinable
clusters instead of the density-joinable approach used in DJ-
Cluster. !is joins clusters together based on their duration
overlap, which can handle missing instances within a PoI.
ST_DBSCAN also extends DBSCAN, considering nonspa-
tial, spatial, and temporal aspects to generate clusters [23].

!e Clustering-Based Stops and Moves of Trajectories
(CB-SMoT) algorithm [7] calculates a distance threshold, ϵ,
over each trajectory, in contrast to DBSCAN, which uses the
same value for all trajectories. Using the mean and standard
deviation of the distances between consecutive instances
allows a normal distribution to be created, and ϵ is set to be
equal to the inverse cumulative probability of the distri-
bution. Recalculating the distance threshold over each tra-
jectory is bene#cial, since it is di"cult to provide a suitable
threshold without knowing the properties of every trajectory
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in advance. CB-SMoT also allows areas of known PoIs to be
input, so that identi#ed stops can be categorized into both
known and unknown PoIs. Density-based approaches are
computationally expensive, making them less desirable for
use in resource constrained applications. However, since
CB-SMoTwas designed for trajectory data and recalculates a
suitable distance threshold without the need for advance
knowledge of trajectories, it is included in this paper for
comparison.

Techniques such as Spatio-Temporal Activities (STA) [8]
and the Gradient-based Visit Extractor (GVE) [9] use a
bu$er containing a number of previous instances in the
trajectory, which is used to consider the distance from the
current instance. Both STA and GVE iterate through the
instances in the trajectory, adding these instances into the
current cluster. If the distance exceeds a prede#ned
threshold, then the candidate instance is considered to be
moving away from the location and consequently ends the
current cluster. STA uses a static distance threshold, in
comparison to GVE, which uses a gradient-based threshold
considering the current length of the bu$er. Once the
distance exceeds the threshold, and the current cluster ends,
both STA and GVE assess whether the current cluster is
retained or discarded. STA retains the current cluster if the
bu$er is full, while GVE does not require the bu$er to be full
and only discards a cluster in cases where there is no time
di$erence between the #rst and last instances in the cluster.

A number of techniques use static time and distance
thresholds, including the works of Kang et al. [24] and Fu
et al. [25]. However, these techniques have been shown to
exhibit poor performance when there is even a limited
amount of noise in the data [8]. STA and GVE overcome this
issue by using averaging #lters to compare subsequent in-
stances [26]. Chen et al. also employ static thresholds on taxi
trajectory data, where GPS readings are sampled every 15
seconds [27]. Event durations in more general vehicle data
typically vary between a few seconds (for a drop-o$) to
several minutes (for a drive-through service), and so the
approach adopted by Chen et al. is prone to missing entire
events. Bhattacharya et al. use a bucketing technique with
time and distance to infer speed (and acceleration) [28].
!ey consider two di$erent types of location, a point-based
PoI such as an o"ce, where the users’ movement is negli-
gible, and an extended PoI, such as a market, where the user
will move slowly. More recently, Bhattacharya et al. con-
sidered a line segment-based approach that uses kernel
density estimation as part of a two-phase process [29].
However, these speed and direction-based algorithms are
not suited to extracting PoIs from vehicle trajectories, be-
cause they require a list of surrounding PoIs, which may not
be available.

PoIs can vary in duration and shape, and there is no
single approach or parameter con#guration that is appro-
priate for all application domains. For example, a clustering
algorithm with parameters trained on walking trajectories
may be able to identify when a person travelling on foot is at
a PoI; however, it may not be e$ective at detecting a PoI
within vehicular trajectories, such as when a vehicle is at a
drive-through service. Moreover, existing clustering

algorithms typically generate large numbers of false PoIs for
vehicle data in environments that contain road infrastruc-
ture and tra"c, and therefore, such techniques do not give
an accurate representation of a user’s PoIs [7–9].

Our hypothesis in this paper is that existing clustering
algorithms are not suitable on their own to extract useful
PoIs from vehicle trajectories. We propose that adding a
classi#cation wrapper around existing PoI extraction
methods will signi#cantly improve their e$ectiveness when
applied to vehicle data. In other application domains, ac-
tivity classi#cation has been used for many tasks ranging
from detecting daily household activities [30–34] to spe-
cialized models predicting sports moves [35, 36]. Our
proposed wrapper method, AVPE, introduces the notion of
activity classi#cation for vehicles. We apply techniques from
existing activity classi#cation approaches, such as the use of
acceleration data [37] and sensor fusion [38], to vehicle
activity classi#cation.

3. Activity-BasedVehiclePoIExtraction (AVPE)

In this paper, we present Activity-based Vehicle PoI Ex-
traction (AVPE), a novel wrapper method that uses a
classi#cation stage to #lter out false PoIs that are extracted by
existing clustering algorithms when applied to vehicle data.
In our context, PoIs are de#ned as instances where the
vehicle has stopped for a speci#c task (such as picking up a
passenger or using a drive-through service), and they should
be distinguished from false PoIs (such as waiting in tra"c or
stopping at a barrier). AVPE is a wrapper around existing
clustering algorithms, which cluster periods of low mobility
from historical trajectory data, generating a set of candidate
PoIs. In this paper, we consider CB-SMoT, STA, and GVE as
base clustering algorithms. Since vehicles frequently stop for
reasons that do not represent PoIs, these three clustering
methods return a large number of false PoIs when applied to
vehicle trajectories. !e AVPE wrapper method aims to
reduce the number of false PoIs, accepting that this may be at
the cost of missing some of the true PoIs. !us, the overall
aim of AVPE is to ensure that any identi#ed locations are
correct and that there is no noise, rather than aiming for
completeness. Prior to applying AVPE, trajectory data is
preprocessed using CB-SMoT, STA, or GVE, and a time
threshold is used to merge distinct clusters that are close to
each other in time. Using the resulting clusters, and features
extracted from vehicle signals, AVPE then classi#es the
activity of the vehicle into one of several prede#ned activity
types, where some activity types (positive labels) represent
true PoIs and others (negative labels) represent the common
types of false PoI extracted by the clustering methods. AVPE
is, therefore, able to determine whether a candidate PoI is
relevant or not. !e approach of de#ning of labels, and the
separation into positive and negative labels, corresponding
to true and false PoIs, respectively, is fundamental to AVPE.
Similarly, well-de#ned transitions between labels are re-
quired to ensure consistency. While we provide an example
set of labels and transitions in this paper (see Section 4.1),
our focus is on the AVPEmethod, rather than on a particular
set of labels. !e vehicle signals can include binary (e.g.,
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engine on/o$), categorical (e.g., indicator status), and nu-
merical (e.g., steering wheel angle) values. !e signals from
the vehicle are expanded into features, comprising the
minimum, maximum, range, and average for each of the
vehicle signals computed for each cluster, in addition to the
time above average, standard deviation, and #rst derivative
for all numerical signals, and the delta for speci#c binary
signals.

An overview of AVPE is given in Figure 1. AVPE uses a
combination of vehicle signals and GPS data, and we de#ne
an instance xj at time j to be a tuple xj ! 〈lat, long, V〉
containing a latitude, lat, longitude, long, and a vector of
vehicle signal values, V. AVPE is retrospective in that it is
used after journeys have been completed. While it is possible
to adapt AVPE to use a naive time-based clustering ap-
proach to classify vehicle activity in real-time, this is not
considered further in this paper.

AVPE requires training on a labelled set of data before it
can be used on unseen trajectories. We assume that a set of
labels, D, is de#ned, where the positive labels, D+ ⊂ D, are
activities that are of interest and correspond to true PoIs, and
negative labels, D∖D+, correspond to false PoIs that should
be #ltered out. Labelling is performed on each instance
individually. To label the training data, the vehicle signals
and both the activity labels and transition de#nitions are
used to assign a label for each instance. At the start of
training AVPE the training data, Ttrain, is input, and the
trajectories are clustered, with adjacent clusters up to λ
seconds apart being merged together.!ese clusters are then
used to train a classi#er, ψ.!e training algorithm iteratively
increases the number of features selected by the feature
selection algorithm and performs cross validation to obtain
the area under the curve (AUC) [39]. If the current AUC is
greater than the previously seen one, the record of the best
classi#er and feature set combination is updated accord-
ingly. !e best overall performing classi#er and feature set
that have been identi#ed are output by the training algo-
rithm. Algorithms 1 and 2 describe the preprocessing stage
of AVPE (including the postclustering merging of clusters)
and the vehicle feature extraction, respectively, with Table 1
de#ning the notation used within this paper. Algorithm 3
details the training process of AVPE, while the deployment
version of AVPE, which is used to classify new trajectories, is
described in Algorithm 4. !e deployment algorithm takes
#ve inputs: (i) the set of trajectories from which to extract
PoIs, (ii) a threshold for merging clusters that are close
together in time, (iii) a pretrained classi#er (created using
Algorithm 3), (iv) the feature set required by the pretrained
classi#er, and (v) the choice of clustering algorithm with
pretrained parameters.

3.1. Base Clustering of Trajectories. AVPE begins with a
preprocessing stage, as de#ned in Algorithm 1.!is starts by
generating clusters from each GPS trajectory, using only
spatial and temporal information. !is is achieved by in-
putting the data into an existing clustering algorithm,
preferably an algorithm that discards outliers instances,
since these will not be PoIs. Even though the clustering stage

only uses spatial and temporal data, the vehicle data exists
within each instance and so is available for use in the later
stages of AVPE. In this paper, we consider CB-SMoT [7],
STA [8], and GVE [9] as representative clustering
algorithms.

Clustering algorithms typically have parameters that can
signi#cantly alter the output that is generated. In this paper,
to optimize the parameters for each clustering algorithm, we
perform simulated annealing [40] using the training set. To
compare the performance of a given parameter combina-
tion, we aim to maximize the number of nondriving in-
stances that are clustered, while minimizing the number of
driving instances that are clustered. !is performance is
quanti#ed using the Sørensen-Dice coe"cient (set overlap)
metric [41, 42], de#ned as

QS ! 2|A∩B|
|A| +|B|, (1)

where QS is the quotient of similarity, A is the set of in-
stances in a ground truth cluster, and B is the set of instances
in an extracted cluster. !is metric is limited by the equal
weighting given to all instances and may be viewed as
simplistic. Other metrics, such as that proposed by Ward
et al. [43], de#ne speci#c error types, enabling each kind of
error to be individually weighted. However, a previous work
has shown that using a set overlap results in clustering
parameters being identi#ed by simulated annealing that give
a higher overall classi#cation performance [6].

3.2. PostclusterMerging. Due to the nature of the trajectories
and the vehicle activities, multiple clusters can be generated
that are part of the same event, for example, drive-through
and tra"c events. Such events can include short periods of
movement, causing a new cluster to be started. Fragmented
clusters will cause a drop in classi#cation performance due
to the aggregated vehicle signals used in AVPE being cal-
culated over periods of time, which do not re%ect the whole
activity. Figure 2 shows an example scenario, in which road
tra"c causes a vehicle to stop 3 times, with short periods of
slow movement between the stops (the slight di$erences in
latitude and longitude at each stop are due to GPS jitter).!e

GPS data

Vehicle signals

Cluster GPS points, removing
non-stationary points

Use features to classify
the activity performed

within each cluster

Select features by using
feature selection

Generate features by
aggregating vehicle
signals over cluster

Existing clustering methods

Preprocessing

Discard false PoIs using
the predicted activity for

each cluster

Figure 1: Overview of AVPE.
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overall output should be a single tra"c activity; however, all
three clustering algorithms considered in this paper have the
potential to separate this tra"c event into 3 separate clusters,
especially if the GPS coordinates contain inaccuracies or
noise.

To rectify this, we propose merging clusters that are
within a de#ned temporal threshold of each other as part of

the preprocessing stage of AVPE. We de#ne a merge
threshold, λ, to be the minimum number of seconds that is
needed to separate consecutive clusters. In Algorithm 1, we
compare the time of the #rst instance in cluster ci

m and the
time of the last instance in cluster ci

m−1. If the di$erence in
time between these two instances is less than λ, then ci

m−1 and
ci

m will be merged. Clusters are merged by concatenating the

Table 1: Notations used in this paper.

Notation Description
T ! t1, . . . , tn{ } !e set of n trajectories
ti ! [x1, . . . , x|ti |] !e ith trajectory within T, a strictly ordered sequence of |ti| instances
V !e set of vehicle signals
Vj !e values of the vehicle signals at time j
xj ! 〈lat, long, V〉 An instance xj is a latitude and longitude position, lat, long, and the values V of vehicle signals at time j
VR

a,b A matrix of the real-valued signals in V for the time interval from a to b, i.e., (Va, Va+1, . . . , Vb)
VN

a,b A matrix of the categorical (nominal) signals in V for the time interval from a to b
VB

a,b A matrix of the binary signals in V for the time interval from a to b
si

a,b ! [xa, . . . , xb]⊆ ti A strictly ordered subsequence of instances xj|a≤ j≤ b{ } in trajectory ti
C !e set of clusters extracted from all trajectories in T

ci
m ! si

a,b ! [xa, . . . , xb]⊆ ti
!e mth cluster of trajectory ti, de#ned as a strictly ordered subsequence of instances xj|a≤ j≤ b{ }, where a is

the #rst instance and b is the last instance temporally
time(xj) A function that returns the time j of the instance xj
head(ci

m) A function that returns the #rst instance in cluster ci
m

last(ci
m) A function that returns the last instance in cluster ci

m
delete(ci

m) A function that deletes the cluster ci
m

split(C, k) A function that returns an array of training and validation clusters for a given number of folds, k
truth(ci

m) A function that returns the ground truth classi#cation label for ci
m

score(TP, FP,TN, FN) A function that returns the AUC
filter(ω, F) A function that returns the feature values in F for the features that are present in feature set ω⊕ !e ⊕ operator is used to denote the concatenation of two sequences
F !e set of features that can be extracted from V
D !e set of possible classi#cation labels
D+ !e set of positive classi#cation labels, D+ ⊆D
ψ A pretrained classi#er
ω !e feature set used in the classi#er ψ
ϕ A prediction from the classi#er ψ

inputs: T, the set of n trajectories, t1, . . . , tn{ }
λ, the merge threshold
cluster, the chosen clustering algorithm, with pretrained parameters
output: C, a set of preprocessed clusters

(1) C ! cluster(T)
(2) if λ> 0 then

//merge adjacent clusters up to λ seconds apart
(3) for ti ∈ T do
(4) for ci

m ∈ C do
//calculate time di$erence between current and previous cluster

(5) q ! time(head(ci
m))

(6) p ! time(last(ci
m−1))

(7) if (q − p)< λ then
//append all instances from start of previous cluster to end of current cluster

(8) ci
m−1 ! ci

m−1⊕si
p+1,q−1⊕ci

m
(9) delete(ci

m)
(10) end
(11) end
(12) end
(13) end
(14) return C

ALGORITHM 1: Preprocess (cluster,T, λ)—preprocessing stage of AVPE.

Mobile Information Systems 5



sequence of instances in the previous cluster, the current
cluster, and any instances that are temporally between them.
!is helps reduce fragmented clusters (as illustrated in
Figure 2), aiding the classi#cation stage.

3.3. Signal Aggregation and Classi%cation. !e training stage
of AVPE, as detailed in Algorithm 3, takes a set of training
trajectories, Ttrain, and a merge threshold, λ, along with the
chosen methods for clustering, feature selection and clas-
si#cation, the Kneedle algorithm [10], and the number of
folds to use for cross validation, k.!e output of the training
stage is a trained classi#er, ψ∗, and the feature set used in the
classi#er, ω∗. !e training algorithm #rst preprocesses the
training trajectories (using Algorithm 1), assigning instances
to clusters and merging nearby clusters together. With in-
stances now assigned to clusters, the majority class (>50%)
of the instances within each cluster determines the class label
to be applied. Should amajority class containing greater than
50% of the instances do not exist, then the cluster is
discarded.

With preprocessing being complete, the AVPE training
algorithm uses an incremental search to #nd the best per-
forming feature set, starting from training a classi#er using a
single feature, up to using all the available features. We adopt
k-fold cross validation in the training stage to help reduce
the bias. For each fold, we split the training data into a
training and validation set, by assigning journeys to k
partitions, where a single partition is used as the validation
set (see line 3 in Algorithm 3). Features are then extracted for
each cluster, as shown in Algorithm 2. Time and location are
present in the data for each instance, but these signals are not
used for the classi#cation stage in AVPE, since they have
already been used for clustering. !e features extracted
comprise the minimum, maximum, range, and average for
each signal, along with the time above average, standard
deviation, and #rst derivative for each numerical signal
calculated over each cluster. Additionally, binary signals can

also include a delta feature, which shows the relative change
between the start and end of each cluster. For each cluster
that is input, each of the signal vectors is concatenated to
form a matrix, which is then input to element-wise oper-
ations (such as max, min, and mean in Algorithm 2) to
calculate the aggregated value over the rows in the matrix.
!e calculated features for all clusters in the training set (in
the current fold,Ctrain[k′]) are input into the chosen feature
selection algorithm (such as Minimal Redundancy Maximal
Relevance [44] or Principal Component Analysis [45]),
along with the number of features to select.!is will return a
feature set to be used in the classi#cation method. Feature
selection is needed, since, by generating multiple statistical
properties for each signal (e.g., the minimum, range, and
average), there is potential for overlap between features,
where multiple features can provide similar and redundant
information. Additionally, we do not want to prejudge
which features perform best, and di$erent datasets for which
AVPE might be applied may have di$erent vehicle signals
and features available. A classi#er is then trained, using the
chosen classi#cation method and the feature set output by
the feature selection algorithm. Using this newly created
classi#er, we iterate over each cluster in the validation set,
using the chosen feature set to predict one of the activity
labels. !e prediction is compared to the ground truth for
each label, and the count of true positives or false positives is
incremented as appropriate. Once predictions have been
made for all clusters in the validation set, the AUC is cal-
culated and stored.!is is repeated until all the features have
been included in the feature set, and the resulting AUC
values are input into the Kneedle algorithm [10], to identify
the knee point of the curve. !e knee point determines the
feature set to use in AVPE, and the training stage returns the
corresponding classi#er and feature set. Alternative stopping
criteria can be used for more robust feature selection, but
since the feature selection method itself is not the focus of
this paper, this simple approach was used.

3.4. Deployment. !e deployment stage of AVPE is detailed
in Algorithm 4. Data is collected from the vehicle in a
batched manner, with AVPE being run on batches of tra-
jectories as they become available (i.e., there is a bu$er in
which trajectories are stored, and once the bu$er is full, the
trajectories are processed, and the bu$er is reset). !e
classi#er resulting from the training stage (Algorithm 3) and
the feature set used in this classi#er are input to the de-
ployment stage, along with the merge threshold, λ, and the
chosen method for clustering, as used in the training stage.
!e trajectories in the bu$er,T, that are to be processed are
also input.!e preprocessing stage is identical to that used in
the training stage of AVPE. After the trajectories have been
preprocessed, and clusters have been created, the deploy-
ment stage of AVPE iterates through each cluster, calcu-
lating the feature values. !ese feature values are #ltered
according to the feature set used by the classi#er and input
into the classi#er. A prediction for the cluster is given, and if
this prediction is in the set of positive labels, D+, then the
cluster is added to the return set.!is process is repeated for
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Without post-clustering
merge (i.e. λ = 0)

Result: 3 individual
clusters, with some
points not assigned 

With post-clustering
merge (i.e. λ > 0 for a

suitable value of λ)

Result: All points
assigned to a single

cluster

Key

Instance xj with latitude and longitude and vehicle signals
No colour fill represents no cluster, and individual fill

colours represent unique clusters

Figure 2: Example of a fragmented tra"c event, and how post-
cluster merging can mitigate this.
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input: ci
m, the kth cluster of trajectory ti

output: F, a set of features calculated over all vehicle signals in cluster ci
m

//get start and end time of cluster
(1) a ! time(head(ci

m))
(2) b ! time(last(ci

m))
//calculate features using element-wise operations over matrices
//calculate di$erent features for real-valued, categoric and binary types

(3) F ! F∪ max(VR
a,b)∪ min(VR

a,b)∪mean(VR
a,b)∪ range(VR

a,b)
(4) F ! F∪ stdev(VR

a,b)∪ firstderivative(VR
a,b)∪ timeabvmean(VR

a,b)
(5) F ! F∪ max(VN

a,b)∪ min(VN
a,b)∪mean(VN

a,b)∪ range(VN
a,b)

(6) F ! F∪ max(VB
a,b)∪ min(VB

a,b)∪mean(VB
a,b)∪ range(VB

a,b)
//calculate element-wise delta operation over speci#c binary signals

(7) F ! F∪ delta(VB
a,b whereVB ∈ deltaSignals)

(8) return F

ALGORITHM 2: Features (ci
m)—extracting features for a cluster.

inputs: Ttrain, a set of n training trajectories, t1, . . . , tn{ }
λ, the merge threshold
cluster, the chosen clustering algorithm, with pretrained parameters
selection, the chosen feature selection algorithm
classificationMethod, the chosen classi#cation method
kneedle, the Kneedle algorithm [10].
k, the number of folds to use for cross validation
output: ψ∗, a trained classi#er
ω∗, the feature set used in the classi#er ψ∗

(1) Ctrain,Cvalidation, ψ∗,ω∗,AUC !
(2) C ! preprocess(cluster,Ttrain, λ)

//split training and validation data
(3) Ctrain,Cvalidation ! split(C, k)
(4) for Fnum ∈ count(1, |F|) do
(5) TP, FP,TN, FN !
(6) for k′ ∈ count(1, k) do

//calculate features for each cluster (see Algorithm 2)
(7) for ci

m ∈ Ctrain[k′] do
(8) F ! F∪ features(ci

m)
(9) end

//select features and train classi#er
(10) ω ! selection(Fnum, F)
(11) ψ ! train(classificationMethod, filter(ω, F))
(12) for ci

m ∈ Cvalidation[k′] do
(13) ϕ ! ψ(filter(ω, features(ci

m)))
//compare the prediction to ground truth for each label

(15) for d ∈ D do
(16) if ϕ ! d∧ϕ ! truth(ci

m) then TP[d]+ ! 1
(17) if ϕ ! d∧ϕ≠ truth(ci

m) then FP[d]+ ! 1
(18) if ϕ≠d∧ϕ ! truth(ci

m) then TN[d]+ ! 1
(19) if ϕ≠d∧ϕ≠ truth(ci

m) then FN[d]+ ! 1
(20) end
(21) end

end
//store the classi#er, feature set and AUC

(22) ψ∗[Fnum] ! ψ
(23) ω∗[Fnum] ! ω
(24) AUC[Fnum] ! score(TP, FP,TN, FN)
(25) end

//use the Kneedle algorithm to determine the number of features
(26) F∗num ! kneedle(AUC)
(27) return ψ∗[F∗num], ω∗[F∗num]

ALGORITHM 3: Activity-based vehicle PoI extraction (AVPE)—training stage.
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all clusters obtained from the trajectories in the bu$er, and
the set of clusters that are considered to be relevant is
returned.

4. Experimental Methodology

In order to demonstrate and evaluate AVPE, we de#ne a set
of activity labels and transitions and select a set of vehicle
signals to be used. In this section, we detail the imple-
mentation speci#cs of AVPE as evaluated in this paper,
including the parameter values, data collection methodol-
ogy, and attributes of the datasets used.

4.1. Activity Labelling and Transition Formulation. As de-
scribed earlier in Section 3, the activity types and the
transitions between these types are fundamental to AVPE.
!e set of labels and transitions provided in this paper is
illustrative to enable our evaluation; however, the e$ec-
tiveness of the speci#c de#nitions is dependent on the
context, and they can be tailored depending on the appli-
cation. For the PoI extraction task, we de#ne 8 activity labels,
guided by our industry partner in this work, when deter-
mining the activities of interest. Although introducing 8
labels increases complexity when compared to using binary
classi#cation (i.e., simply identifying true and false PoIs),
classifying PoIs according to a more speci#c set of activities
may be valuable in developing subsequent applications.!is
more nuanced set of classes may also help in understanding
the reason why a given PoI was extracted, since a key
motivation behind AVPE is that it can be used as a pre-
processing step for applications such as destination pre-
diction and categorizing vehicle usage. !e class labels used
in this paper are as follows, where (+ve) denotes that the
instance should be considered as representing a PoI, i.e., a
member of D+, and (–ve) denotes that the instance should be
considered as irrelevant for the purposes of PoI extraction,
i.e., in D∖D+.

(1) Drive-through (+ve): an event that includes mul-
tiple stops and instances of slow movement, where
the stops are for the driver to interact with a service.

(2) Drop-o! (+ve): an event in which the vehicle stops
to allow passengers to exit.

(3) Parked (+ve): a stationary period in which the ve-
hicle is not driving, and this is the intent of the driver.

(4) Pick-up (+ve): an event in which the vehicle stops to
allow passengers to enter.

(5) Barrier (–ve): an event in which the vehicle has to
stop for the driver to interact in order to proceed past
a closed barrier (such as a toll booth or parking
barrier).

(6) Driving (–ve): normal driving in free %owing tra"c.
(7) Manoeuvre (–ve): a period that involves slow

movements with the possibility of stationary periods,
high direction change, and reverse travel.

(8) Tra"c (–ve): where the vehicle has to move slowly as
a consequence of external factors (such as round-
abouts, tra"c lights, congestion, or accidents).

We classify manoeuvre and barrier as negative labels, since,
although theymay indicate leaving or arriving at a PoI, theywill
always be adjacent to a positive label. We de#ne separate labels
for drop-o$ and pick-up as this can aid further applications
that use the labelling, such as destination prediction.

In order to carry out the classi#cation task, an accurate
and consistent ground-truth labelling must be applied to the
data. However, de#ning where the boundaries exist for each
activity requires identi#cation of the exact instance, in which
transitions occur [30, 46]. Quantitative bounds were created
to formalize the start and end instances for each label,
alongside qualitative criteria (e.g., a drop-o$ event must
include a passenger exiting the vehicle). We have de#ned a
set of transitions for this paper, which can be used by other
researchers in future investigations into PoI extraction.
Examples of the transitions from the Driving activity to the

inputs: T, a set of n trajectories in the bu$er, t1, . . . , tn{ }
λ, the merge threshold
ψ, the pre-trained classi#er
ω, the feature set used in the classi#er ψ
cluster, the chosen clustering algorithm, with pretrained parameters
output: ϕ ∈ D+, a set of clusters that are considered to be relevant

(1) C ! preprocess(cluster,T, λ)
(2) for ci

m ∈ C do
//calculate features for the cluster from the vehicle signal values, features () is de#ned in Algorithm 2
//select feature values from the feature set and obtain prediction from classi#er

(3) ϕ ! ψ(filter(ω, features(ci
m)))

//if the prediction is in the set of positive labels, add the cluster to our return set
(4) if ϕ ∈ D+ then
(5) C′ ! C′ ∪ ci

m
(6) end
(7) end

//return a set of clusters that are considered to be relevant
(8) return C′

ALGORITHM 4: Activity-based vehicle PoI extraction (AVPE)—deployment stage.
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other activities are shown in Table 2. Due to space limita-
tions, we do not include the full set of transitions in this
paper, but they are available at https://www.dcs.warwick.ac.
uk/led.!e use of such transition de#nitions ensures that the
labelling process is reproducible and consistent across
datasets. AVPE is agnostic to the set of labels used, and to use
a di$erent set of labels simply requires labelling of the
ground truth according to the labels, and an appropriate set
of transitions to be de#ned between the labels.

Table 3 shows the 22 vehicle signals that were used for
activity classi#cation. In this paper, the signals from the
vehicle are expanded into the features described in Section 3
(minimum, maximum, range, etc.) resulting in a total of 99
features.!e seatbelt status signals are the only binary signals
for which a delta feature is generated. !ese signals were
selected using domain expertise and guidance from our in-
dustry partner on common activities within a vehicle and how
they relate to the available vehicle signals. For example,
knowledge of the seatbelt and door status is key indicator of
whether a passenger is entering or exiting the vehicle, and
therefore, they are useful in identifying the current activity.
Similarly, the lock status can be used as an indicator of a
change of occupancy in the vehicle. Signals such as engine and
stop-start status indicate whether the vehicle is stopping for a
period of time, helping distinguish between manoeuvre and
Parked events for example. Gear position, vehicle speed, and
steering wheel angle can further provide insight into the
vehicle’s current activity. External data, such as tra"c data
from Application Programming Interfaces (APIs), and ad-
ditional inertial measurements units could aid predictive
performance; however, the aim of this paper is to use sensors
that are already on the vehicle and are common across
multiple vehicles, a motivation given by our industry partner.
Additional sensors add cost to a vehicle, and tra"c data APIs
rely on data connectivity, which may not be available in some
regions, and therefore, these are not considered in this paper.

4.2.ExperimentalParameters. To use theAVPE algorithm,we
are required to instantiate the algorithm with a number of
parameters, including the set of activity labels (D), a value for
themerge threshold (λ), a classi#cation algorithm, and a feature

selection algorithm. !e activity labels used are de#ned in the
previous subsection, and we investigate a range of merge
thresholds (λ), namely, 0, 5, 10, and 20 seconds. We consider
the Random Forest and Support Vector Machine (SVM)
classi#cation algorithms, since Random Forest classi#ers have
previously been used for transportation mode recognition
[47–50], and SVMs have previously been shown to be e$ective
for activity prediction [30, 51, 52].When training the classi#ers,
we used a value of k ! 10, for the k-fold cross validation. For
simplicity, both classi#ers use the default parameters in the
library implementation used (we used the Weka library
implementations of the Random Forest and SVM classi#ers
[53]), since tuning the classi#cation is not the focus of this
paper, and we found the default values to have reasonable
performance. We used Minimal Redundancy Maximal Rele-
vance (mRMR) for feature selection, since it has been shown to
provide a compact subset of features that improves classi#ca-
tion accuracy on both discrete and continuous data [44]. Both
the classi#er and feature selectionmethods can be replaced with
alternatives if required (such as Bayesian Inference [54] or
Principle Component Analysis [45], respectively), since our
approach is agnostic with respect to the methods used.

4.3. Data Collection. In order to evaluate AVPE, we de#ned
a data collection methodology and collected two datasets,
namely, a scripted scenario dataset and a pattern-of-life
dataset (the full scripted scenario dataset is available online
at https://www.dcs.warwick.ac.uk/led. For privacy reasons,
we are not able to publish it). !e scripted scenario dataset
comprises speci#c routes and activities (such as a pick-up)
and certain locations. Each route follows a speci#ed set of
instructions and is repeated multiple times. !is dataset has
been made public for others to utilize in further research on
vehicle PoI extraction and contains both GPS data and
vehicle signals. !e scenario dataset is used to train the
classi#er and evaluate the performance of AVPE. For our
evaluation in this paper, the dataset is separated into training
and testing sets over the journeys, with 65 journeys (5
routes) in the training set and 52 journeys (4 routes) in the
test set. Cross validation occurs within the training set only
(by separating it into training and validation sets), meaning

Table 2: Transition table from the driving activity to the next activity.

Next activity Criteria

Barrier When the vehicle #rst reaches the barrier, without any vehicle between itself and the barrier, and the vehicle speed #rst falls
below 1 km/h

Drive-
through When the #rst toll booth (or order point) is reached and the vehicle speed #rst falls below 1 km/h

Drop-o$ When the vehicle speed #rst falls below 1 km/h and a door to the vehicle is opened. Manual veri#cation that a passenger is
exiting the vehicle is required (from dashcam or seatbelt signals).!e vehicle cannot be turned o$ for this label to be true

Manoeuvre When the vehicle speed #rst falls below 1 km/h or reverse gear is selected. Manual veri#cation that this is due to a
manoeuvre is required

Parked When the vehicle speed #rst falls below 1 km/h and the vehicle stops. !e gear does not have to be in park, but manual
veri#cation that the stop is not due to a pick-up, drop-o$ or tra"c is required

Pick-up When the vehicle speed #rst falls below 1 km/h and a door to the vehicle is opened. Manual veri#cation that a passenger is
entering the vehicle is required (from dashcam or seatbelt signals).!e vehicle cannot be turned o$ for this label to be true

Tra"c When the vehicle speed #rst falls below 5 km/h as a consequence of encountering congestion or road infrastructure that
causes either 5 km/h not to be reached within 10 seconds or the vehicle speed to fall below 1 km/h within 10 seconds
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that all of the journeys in the test set are unseen, meeting the
out-of-sample principle. !e pattern-of-life dataset com-
prises journeys and activities undertaken, though an indi-
vidual was using their own personal vehicle.!e pattern-of-
life dataset contains 76 journeys from 2 individuals, and all
of the journeys are used for testing, since the classi#er is
trained on the scenario data, to demonstrate that AVPE is
applicable to unscripted driving data.

For the scenario dataset, a set of 9 prede#ned routes were
used with 2 di$erent vehicles, with slight variations in routes
between the vehicles. !e #rst vehicle was a 2-door 4-seater
convertible SUV, and the second was a 5-door 5-seater estate
car. Each route was repeated 8 times in the #rst vehicle and 5
times in the second vehicle. !is resulted in a dataset con-
taining 117 journeys and 153, 698 instances, totaling over 1,
190 kilometers travelled and around 44 hours of data. Journey
times were varied between peak daytime (07:00–10:00 and 16:
00–19:00), nighttime (23:00–05:00), and o$-peak daytime.!e
routes include sections of major and minor roads, with the
shortest route lasting around 6 minutes on average, and the
longest route around 40 minutes. !e distribution of the
journey durations and distances in the scripted scenario dataset
is summarized in Table 4. Open air and multistorey car parks
were used at shopping centers, railway stations, and a uni-
versity campus, along with roadside parking. Other road
structures included in the routes are drive-through services and
barrier-controlled private roads.!ese routes ensure that data
from a diverse set of road types and tra"c conditions were
collected. In all journeys, the vehicle contained a driver and
passenger, with some journeys having 2 passengers. !e front
passenger seat was always used, and the rear passenger could sit
in either outer seat. Not all routes contained every event type,
and the frequency of events varied as can be seen in Figure 3,
which shows the distribution of events within the dataset.!e
duration of a single event is dependent on the type of event, as
shown in Figure 4, with the majority of events being around 20
seconds on average. Since there are di$erences in the event
durations, the distribution of instances per event type di$ers
slightly from the frequency distribution of event types, as can
be seen in Figure 5 (when compared to Figure 3). Pattern-of-
life data was also collected, with participants using the vehicles
as part of their daily routine. Vehicle signals were collected for
every journey in the data collection period, and grouped by

participant ID. In this paper, to evaluate AVPE, we use 4 weeks
of data from 2 di$erent participants (1 week for each partic-
ipant and vehicle combination) for our analysis. !e pattern-
of-life dataset contains 76 journeys and 101, 063 instances,
totaling over 1, 215 kilometers and around 28 hours of driving.
!ere were no scripted routes in this dataset; however, the
routes still contain a mix of major and minor roads. !e
shortest journey lasted just over 3 minutes, and the longest
journey took just over 100 minutes. !e distribution of the
journey durations and distances in the pattern-of-life dataset is
summarized in Table 5. !ere were no requirements on any
journey in the pattern-of-life dataset to have any passengers or
contain speci#c activity types. A Vector GL2000 logger was
used to record GPS data and signals from the vehicle Con-
troller Area Network (CAN) bus. GPS data was recorded at
1Hz, while CAN signals were broadcast to the logger and were
generally recorded at a higher rate but were downsampled to
1Hz as per the GPS data. We selected 22 vehicle signals that
were considered relevant for predicting activities. !e signals
are a mix of binary, categorical, and real-valued attributes, as
described in Section 3 and listed in Table 3. Every second, the
last observed value for each of the CAN signals is used. Values
older than 3 seconds for CAN signals and 60 seconds for GPS
signals are discarded, and instances with missing values are
removed from the dataset. In order to label the ground truth,
we used dashcam footage to manually identify which activity is
being performed for each instance.

5. Results

In this section, we #rst discuss the results of the state-of-the-
art clustering algorithms, namely, CB-SMoT [7], STA [8],
and GVE [9] when applied to our scenario dataset. Fol-
lowing this, we present the results of the activity classi#-
cation stage and analyze the performance of AVPE as a
whole.

5.1.BaseClusteringofTrajectories. In this analysis, we use the
parameters for each of the selected clustering algorithms that
produced the highest set overlap. GVE [9] produces the
highest number of instances, along with the most clusters.
STA [8] gives the fewest clusters, and CB-SMoT [7] returns

Table 3: Vehicle signals used for activity classi#cation.

Signal Type
Boot status (open/closed) Binary
Door status (open/closed) [driver, passenger, rear right, rear left] Binary
Combined seatbelt status Categorical
Engine (on/o$) Binary
Gear position Categorical
Indicator status Categorical
Lock status Categorical
Roof position Categorical
Seatbelt status (buckled/unbuckled) [driver, passenger, rear right, rear left] Binary
Steering wheel angle Numerical
Stop-start status Categorical
Vehicle speed Numerical
Window position [driver, passenger, rear right, rear left] Categorical
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the fewest instances. When investigating these results fur-
ther, we #nd some interesting properties, as discussed below.

GVE missed 28 clusters (or events), of which 2 were
labelled pick-up and 26 parked. All of the missed clusters
were less than 48 seconds in duration, with the highest
durations being the pick-up labels.!e parked labels that are
not recorded are 2–13 seconds in duration, with the majority
being located in multistory car parks with weak GPS signal,
therefore showing false readings with a wide range of
movement between consecutive instances.!e other missed
parked clusters all have a short duration, and this is likely to
be a factor in the cause of these missed clusters. !e missed
pick-up events are 20–48 seconds in duration and occur
directly after long parked events. !e slight increase in
movement compared to that of the parked events appears to
prevent these pick-ups from being captured. Similarly to
GVE, 31 clusters are missed by STA, 29 of which are parked
events. !e remaining missed clusters are 2 pick-up events,
which are the same ones discussed above for GVE. !e
missed parked events are between 2 and 14 seconds in

duration, and a similar combination of cluster length and
GPS inaccuracy causes them to be missed. CB-SMoTmisses
30 events in total, of which 26 are parked clusters, which
varied in length between 4 and 15 seconds. Additionally, 2
drive-through events, lasting over 5 minutes, and 2 drop-o$s
were missed. Due to a di$erent distance threshold being
calculated for each trajectory, CB-SMoT is more sensitive to
small movements. Similar trends to GVE and STA are also
evident, where poor GPS reception gives the impression of
high movement. Unlike the other clustering algorithms, CB-
SMoT discards all clusters for two complete journeys. !is
behavior is not bene#cial to PoI extraction, as multiple true
PoIs are lost. CB-SMoT separates the input data into indi-
vidual trajectories, where a distance threshold is calculated
for each trajectory using the inverse cumulative probability.
!e distribution is created using the mean and standard
deviation of the distances between consecutive instances.
Both discarded journeys included a long wait at a drive-
through service in addition to 2 drop-o$ events.!is caused
the mean of the distances to be low, whilst keeping a rel-
atively high standard deviation. Using the best performing

Table 4: Summary of route durations and distances in the scripted scenario dataset.

Route
Duration (s) Distance (m)

Minimum Maximum Average Total Minimum Maximum Average Total
1 1558 3112 2433 31626 17686 30167 24219 314850
2 697 1139 917 11917 4860 6117 5318 69132
3 409 772 574 7458 3763 8760 5035 65459
4 706 1720 1077 14004 4766 4933 4832 62820
5 1620 2496 1996 25946 16219 27789 20775 270071
6 1031 2211 1451 18865 8412 8811 8496 110446
7 1621 2716 1967 25570 10815 14024 12082 157061
8 1046 1744 1348 17529 8731 8954 8869 115302
9 291 506 378 4908 1781 2116 1950 25349

291 3112 1349 157823 1781 30167 10175 1190490
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Figure 3: Distribution of the labels in the dataset, with the driving
label (1248 events) omitted to aid readability.
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Figure 4: Average duration of events per label.
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parameters with this distribution caused a negative distance
threshold to be generated, which resulted in no events being
extracted for the two journeys.

When increasing the merge threshold, the number of false
PoIs greatly decreases. !is is due to combining fragmented
clusters around true PoIs. However, as the number of false PoIs
decreases, intuitively, the number of merged clusters also in-
creases. !erefore, having a large merge threshold may not be
bene#cial, since this can distort the aggregated values in the
cluster and reduce the number of true PoI extractions. Table 6
summarizes the performance of each clustering algorithm with
0-, 5-, 10-, and 20-second merge thresholds. !ere is a slight
increase in false PoIs as the merge threshold in increased, since
merging can combine multiple true PoIs resulting in a loss of
precision. GVE is the favored algorithm of the three consid-
ered, since the priority in selecting a clustering algorithm is to
minimize the number of false PoIs, and since we cannot re-
cover them in the further stages of AVPE.!e bene#cial impact
of merging clusters is most evident for GVE when using a 5-
second merge threshold. Merging clusters within 5 seconds of
each other reduces the number of false PoIs by 27.3%, without
any further increase in false PoIs. Given that CB-SMoT dis-
carded 2 entire journeys, it is unlikely to be the best algorithm
to use for the clustering stage; however, for completeness, we
consider all three clustering algorithms in our evaluation of
AVPE.

5.2. Activity Classi%cation and PoI Filtering. For our eval-
uation, we use the clustered scenario data from the best
performing parameters for each of the clustering algorithms
discussed above. For classi#cation, we compare the use of
Random Forest and SVM classi#ers both using mRMR
feature selection, as detailed in Section 3. Minimizing the
number of features used is important as this will (i) avoid
over#tting to the training data, (ii) increase the generality
and simplicity of the classi#er, and (iii) require less data to be
collected and processed on the vehicle. With these factors in
mind, it is important to consider the trade-o$ between the
number of features and performance bene#ts. We used 10-
fold cross validation on the training data to determine a
suitable number of features to select when applying classi-
#cation to the test data, using the Kneedle algorithm [10] as
shown in Algorithm 3. !e number of features selected
varied between 11 and 30 for the Random Forest, and 6–34
for the SVM classi#ers.!e mean and standard deviation for
the number of features were 15.8 and 6.0 for the Random
Forest, and 16.0 and 7.5 for the SVM classi#ers, respectively.
Using Random Forest and CB-SMoT, the number of features
increased as the merge threshold increased, while no such
pattern exists for GVE and STA, in which both required
fewer features than CB-SMoT. In contrast, the SVM clas-
si#er used the most features with CB-SMoT at λ ! 5 and
λ ! 10. Similarly, a higher number of features are used for
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Figure 5: Proportion of the total instances per label, with the driving label (74%) omitted to aid readability.

Table 5: Summary of durations and distances in the pattern-of-life dataset per participant.

Participant
Duration (s) Distance (m)

Minimum Maximum Average Total Minimum Maximum Average Total
A 487 2948 1621 45387 1424 35930 22562 631735
B 189 6005 1162 55772 446 95626 12169 584102

189 6005 1392 101159 446 95626 17366 1215837
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both GVE and STA when using 5- and 10-second merge
thresholds.

Once classi#ers are trained with the selected number of
features, we apply them to the test set. Table 7 details the
accuracy and AUC achieved for each combination on the
test set. We consider AUC as our main performance metric
as, unlike accuracy, AUC is not biased towards class im-
balance. !e confusion matrices in Figures 6 and 7 show a
breakdown of the per-class accuracy for the Random Forest
and SVM classi#ers, respectively. It can be seen that STA
does not cope well with drop-o$ and pick-up events, with a
high misclassi#cation rate between them. However, this is
due to STA generally using fewer features, and therefore, the
informative seatbelt features are not present.When using the
SVM classi#er, we can see that the drop-o$ and pick-up
accuracy is much higher when combined with CB-SMoT or
GVE clustering, when using λ values of 5 and 10. Addi-
tionally, a high misclassi#cation rate between barrier and
drive-through events can be seen; however, this is not un-
expected given the similarity of these activities. From the
confusion matrices, it is also apparent that the Random
Forest classi#er incorrectly predicts the tra"c class at a
much higher frequency than the SVM classi#er. Although
the AUC values when using the Random Forest classi#er are
generally higher than those when using the SVM classi#er,
the confusion matrices show that the SVM classi#er appears
to be better over all classes. Table 7 shows that the pre-
dictions using GVE clustering give the highest accuracy and
AUC with both classi#ers. Using the Random Forest clas-
si#er, GVE with no merging gives the highest AUC, whereas
when using the SVM classi#er, GVE with a 5-second merge
achieves the highest AUC. We, therefore, take GVE with λ !
0 and GVE with λ ! 5 as the highest performing combi-
nations for the Random Forest and SVM classi#ers, re-
spectively. We use these combinations on unscripted
pattern-of-life data later in this section to evaluate the ap-
plicability of AVPE to real-world data.

Table 8 lists the features that appear in the top 10, and
their respective frequencies as selected by mRMR, over all
base clustering methods and merge thresholds. !e most
prominent signals that appear are the vehicle speed, current
selected gear, and the passenger door status. For the vehicle
speed signal, the average feature is always in the top 10, with

other combinations using the maximum, minimum, stan-
dard deviation, and time above average features.!e feature
for the average of the currently selected gear is always
present in the top 10 across all combinations, with no other
features derived from this signal appearing.!e same applies
to the passenger door status, with all combinations including
the average feature within the top 10, in addition to some
combinations using the minimum and range features.
Features for the steering wheel angle signal are seen in the
top 10 in all but the GVE and λ ! 0 combination. !e
majority of combinations use the standard deviation feature
of the steering wheel angle; however, some combinations
also use the maximum, range, and time above average
features. !e average of combined seatbelt count signal is
used in all combinations except for CB-SMoT with λ ! 5 or
λ ! 10. Other signals with features within the top 10 are the
indicator status, the engine running status, the stop start
status, the passenger seatbelt status, the driver window
position, and the central locking status. Figure 8 shows the
improvement that AVPE gives over the three existing state-
of-the-art algorithms alone. We de#ne the percentage re-
duction as

reductionα ! 100 − #P∗α
#Pα

, (2)
where #P∗α is the number of PoIs output by AVPE, #Pα is the
number of PoIs output by the base clustering method, and α
is the type of PoI to count (i.e., false or missed).!e removal
of false PoIs comes at the cost of increasing the number of
missed true PoIs. While it is important to consider the
reduction in true PoIs, the overall aim of AVPE is to provide
a correct set of identi#ed locations, rather than a complete
set, and therefore, a reduction in true PoIs is acceptable.

When using the Random Forest classi#er (see
Figure 8(a)), with GVE and λ ! 0, we see that 99.0% of false
PoIs are removed, while losing 37.8% of true PoIs compared
to the base algorithm. Using STA and λ ! 5 removes 98.2%
of false PoIs at a cost of losing 40.4% of true PoIs. Finally,
using CB-SMoT with λ ! 0 removes 94.3% of false PoIs,
being the lowest reduction of the three clustering methods,
with 35.5% of true PoIs being lost.

Figure 8(b) shows the same metrics for the SVM clas-
si#er. We see similarities to using the Random Forest

Table 6: Summary of the performance of the clustering algorithms.

Algorithm Merge threshold, λ (s) # Clusters # Missed PoIs # False PoIs
CB-SMoT 0 896 30 578
CB-SMoT 5 705 32 412
CB-SMoT 10 638 32 362
CB-SMoT 20 560 36 293
GVE 0 1089 28 795
GVE 5 857 28 578
GVE 10 716 28 441
GVE 20 599 31 327
STA 0 845 31 569
STA 5 794 31 520
STA 10 696 32 425
STA 20 590 32 319
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classi#er, with GVE removing the most false PoIs, followed
by STA and CB-SMoT. In general, the amount of false PoIs
removed is lower, along with a reduced loss of true PoIs,
apart from the case of CB-SMoT. Overall, the reduction of
false PoIs is achieved to a reasonably high extent when using
both Random Forest and SVM classi#ers.

5.3. ApplyingAVPE to Pattern-of-LifeData. We apply AVPE
to unscripted pattern-of-life data to investigate its generality
and evaluate its e$ectiveness when applied to data from
normal day-to-day driving, which may not exhibit the same
patterns as the scenario routes. Additionally, we compare the
performance of AVPE on the two di$erent vehicles used.
!e classi#er was trained using the scenario data, with a
SVM as the classi#cation method (since, in general, it
outperformed Random Forest with the scenario data) and
mRMR feature selection, as detailed in Section 3. !e input
clusters were generated using GVE with λ ! 5, and both
vehicles are used in the training and testing sets.

Participant A had 37 ground truth PoIs that were obtained
in Vehicle 1. Of these, 24 were correctly extracted by AVPE,
along with 7 false PoIs, and there were 13 missed PoIs. !e
missing PoIs were all parked events, while the false PoIs were
barrier, manoeuvre, and tra"c events. When using Vehicle 2,
Participant A had 27 ground truth PoIs, with AVPE resulting
in 3 false PoIs and 11 missed PoIs. !e false PoIs were
comprised of slow manoeuvre and tra"c events. Once again,
all missed PoIs were parked events, of which 3 were due to
missing data as a result of poor GPS signal.

Based on the Vehicle 1 data for Participant B, 61 ground
truth PoIs were identi#ed. Using AVPE, there were 40

correct PoIs extracted.!ere was only a single false PoI, but
21 PoIs were missed in the process, 19 of which were parked
events along with a single drop-o$ and a single pick-up
event. In the case of Vehicle 2, 50 ground truth PoIs were
identi#ed for Participant B. After applying AVPE, 38 correct
PoIs were extracted, along with 5 false PoIs. !ere were 2
false PoIs at a barrier, in which the stop-start queuing nature
has similar qualities to a drive-through, 2 when performing
slow manoeuvres, and another in tra"c. !erefore, 12 PoIs
were missed, 11 of which were parked events with a single
drop-o$ event.

!e results are summarized in Figure 9(a), which shows
that AVPE with a SVM classi#er and GVE (λ ! 5) provides
reasonable accuracy on pattern-of-life data. !e number of
false PoI extractions is very low, indicating that the classi#er
removes false PoIs with high accuracy. However, the number
of missing PoIs is larger than expected, especially since the
majority are parked events. Overall, it is clear that AVPE
continues to provide a signi#cant reduction in false PoIs,
which is the aim of the method. Figure 9(b) illustrates this,
with over 94.9% of false PoIs removed in the pattern-of-life
dataset. !is does come at a cost, however, with 22.4%–
40.7% of PoIs missed from the output. !ese results are
comparable to the performance seen in the scenario data (see
Figure 8), showing the applicability of the method to un-
scripted driving.

To gain a deeper understanding of the decrease in perfor-
mance, we consider the detail behind each missed event. !e
most common error, accounting for most of the missed PoIs, is
the cluster size being too large. In multiple instances, a ma-
noeuvre precedes the parked event, and a single cluster covers

Table 7: Classi#cation results, where ∗ denotes the highest performing parameter combination, in terms of AUC, for each clustering
algorithm and classi#er combination.

Classi#er Algorithm Merge threshold, λ (s) # features Accuracy AUC
Random forest∗ CB-SMoT 0 14 0.775 0.969
Random forest CB-SMoT 5 15 0.718 0.955
Random forest CB-SMoT 10 22 0.776 0.964
Random forest CB-SMoT 20 30 0.717 0.956
Random forest∗ GVE 0 23 0.810 0.978
Random forest GVE 5 11 0.739 0.964
Random forest GVE 10 12 0.737 0.957
Random forest GVE 20 16 0.779 0.972
Random forest STA 0 11 0.687 0.950
Random forest∗ STA 5 13 0.766 0.971
Random forest STA 10 12 0.765 0.961
Random forest STA 20 11 0.698 0.940
SVM CB-SMoT 0 8 0.746 0.931
SVM CB-SMoT 5 22 0.770 0.933
SVM∗ CB-SMoT 10 34 0.780 0.933
SVM CB-SMoT 20 16 0.695 0.925
SVM GVE 0 12 0.812 0.949
SVM∗ GVE 5 21 0.864 0.959
SVM GVE 10 20 0.828 0.947
SVM GVE 20 16 0.803 0.952
SVM STA 0 11 0.740 0.930
SVM∗ STA 5 13 0.792 0.949
SVM STA 10 13 0.789 0.943
SVM STA 20 6 0.728 0.918
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themajority of both. Due to the presence of features indicating a
manoeuvre, such as the use of reverse gear and large steering
movement, these clusters are classi#ed as a manoeuvre event.
!e length of the manoeuvre event in the cluster is generally
longer than the duration of the parked event; hence, the features
(such as averages) are biased towards the qualities of a ma-
noeuvre. Other variations include slow driving, drop-o$, and
tra"c events, which are similar in nature, with 46 out of 57
(80.7%) missed PoIs being due to this type of error. A lack of
GPS signal a$ected 8 (14.0%) of the missed PoIs. Due to the lack
of any available GPS coordinates, data withmissing instances are
discarded before clustering.!e #nal 3 errors (5.3%) are due to
the GVE clustering algorithm not identifying the PoI as an area
of low spatial movement and subsequently not generating a
cluster. !ese could also be a result of GPS inaccuracies, giving
the impression of greater movement.

5.4. Discussion. !e misclassi#cation that exists between
drop-o$ and pick-up activities is partly caused by the cluster
starting too late or ending too early, resulting in informative

signals, such as the change in seatbelt status, being lost. Some
investigation into extending the clusters for a given duration
prior to the #rst instance was conducted; however, this was
found to decrease the classi#cation performance. It is
possible that extending the cluster for all vehicle signals
increases the di"culty in predicting the correct activity,
since, for example, the average speed of the vehicle will
increase dramatically if the cluster is extended prior to
stopping. Additionally, the feature selection method could
be failing to select informative features when these are
calculated over extended clusters, since the vehicle signals
now contain values from prior to the activity of focus.
Further investigation of cluster expansion, using a lookback
and lookahead, may help address this issue.

Intuitively, we might expect to see improved numerical
performance if we consider activity classi#cation as a binary
problem, rather than having the 8 class labels used in this
paper. An important motivation for AVPE is to be useful for
applications such as destination prediction or driver pro-
#ling, and the vehicle activities used in this paper are de#ned

Park Driv Traf Pick Drop Barr Mano D!r
0.52 0.00 0.17 0.05 0.00 0.00 0.26 0.00
0.09 0.68 0.00 0.05 0.00 0.00 0.14 0.05
0.01 0.01 0.95 0.01 0.00 0.00 0.01 0.01
0.14 0.00 0.08 0.78 0.00 0.00 0.00 0.00
0.00 0.00 0.21 0.26 0.53 0.00 0.00 0.00
0.00 0.06 0.06 0.00 0.00 0.33 0.17 0.39
0.14 0.03 0.02 0.02 0.00 0.00 0.79 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.88

(a)

Park Driv Traf Pick Drop Barr Mano D!r
0.77 0.00 0.16 0.00 0.00 0.00 0.07 0.00
0.01 0.93 0.06 0.00 0.00 0.00 0.00 0.00
0.00 0.04 0.94 0.01 0.00 0.01 0.01 0.00
0.00 0.00 0.19 0.51 0.31 0.00 0.00 0.00
0.00 0.00 0.21 0.18 0.61 0.00 0.00 0.00
0.05 0.05 0.67 0.00 0.00 0.19 0.00 0.05
0.12 0.03 0.35 0.00 0.00 0.00 0.49 0.00
0.09 0.00 0.39 0.00 0.00 0.26 0.00 0.26

(b)

Park Driv Traf Pick Drop Barr Mano D!r
0.45 0.02 0.05 0.15 0.00 0.00 0.33 0.00
0.00 0.54 0.40 0.00 0.00 0.00 0.05 0.00
0.00 0.06 0.92 0.00 0.00 0.00 0.01 0.00
0.07 0.00 0.12 0.38 0.43 0.00 0.00 0.00
0.03 0.01 0.18 0.32 0.45 0.00 0.00 0.00
0.00 0.04 0.54 0.00 0.00 0.00 0.17 0.25
0.15 0.02 0.04 0.03 0.00 0.00 0.76 0.00
0.53 0.00 0.37 0.00 0.00 0.05 0.05 0.00

(c)
Park Driv Traf Pick Drop Barr Mano D!r
0.59 0.00 0.12 0.07 0.00 0.00 0.22 0.00
0.15 0.70 0.10 0.00 0.00 0.00 0.00 0.05
0.00 0.01 0.94 0.04 0.00 0.00 0.02 0.00
0.06 0.03 0.03 0.83 0.03 0.00 0.03 0.00
0.00 0.00 0.05 0.65 0.30 0.00 0.00 0.00
0.00 0.06 0.35 0.00 0.00 0.29 0.24 0.06
0.16 0.02 0.00 0.05 0.00 0.00 0.77 0.00
0.17 0.00 0.42 0.00 0.00 0.00 0.08 0.33

(d)

Park Driv Traf Pick Drop Barr Mano D!r
0.64 0.02 0.11 0.00 0.00 0.00 0.23 0.00
0.00 0.89 0.09 0.00 0.00 0.00 0.02 0.00
0.01 0.04 0.93 0.00 0.00 0.00 0.01 0.00
0.00 0.02 0.34 0.29 0.33 0.00 0.02 0.00
0.03 0.00 0.41 0.18 0.38 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.14 0.05 0.21 0.00 0.00 0.00 0.58 0.03
0.00 0.00 0.29 0.00 0.00 0.21 0.43 0.07

(e)

Park Driv Traf Pick Drop Barr Mano D!r
0.53 0.04 0.05 0.07 0.00 0.00 0.31 0.00
0.00 0.77 0.15 0.00 0.00 0.00 0.05 0.02
0.00 0.02 0.96 0.01 0.00 0.00 0.00 0.00
0.02 0.00 0.10 0.55 0.32 0.00 0.02 0.00
0.03 0.00 0.16 0.41 0.39 0.00 0.01 0.00
0.00 0.00 0.65 0.00 0.00 0.17 0.00 0.17
0.03 0.05 0.00 0.03 0.00 0.00 0.86 0.02
0.38 0.00 0.12 0.00 0.00 0.12 0.31 0.06

(f )
Park Driv Traf Pick Drop Barr Mano D!r
0.54 0.00 0.15 0.02 0.00 0.00 0.29 0.00
0.05 0.85 0.05 0.00 0.00 0.00 0.05 0.00
0.00 0.00 0.94 0.03 0.00 0.00 0.02 0.01
0.09 0.03 0.06 0.83 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.35 0.52 0.00 0.00 0.00
0.00 0.06 0.18 0.00 0.00 0.47 0.24 0.06
0.13 0.04 0.00 0.04 0.00 0.00 0.80 0.00
0.00 0.00 0.17 0.00 0.00 0.00 0.08 0.75

(g)

Park Driv Traf Pick Drop Barr Mano D!r
0.73 0.04 0.13 0.00 0.00 0.00 0.11 0.00
0.00 0.75 0.21 0.00 0.00 0.00 0.04 0.00
0.01 0.03 0.94 0.00 0.00 0.00 0.01 0.00
0.00 0.00 0.33 0.33 0.30 0.00 0.04 0.00
0.04 0.00 0.36 0.11 0.49 0.00 0.00 0.00
0.00 0.00 0.79 0.00 0.00 0.21 0.00 0.00
0.20 0.09 0.16 0.00 0.00 0.00 0.53 0.02
0.00 0.00 0.25 0.00 0.00 0.17 0.50 0.08

(h)

Park Driv Traf Pick Drop Barr Mano D!r
0.48 0.02 0.08 0.08 0.00 0.00 0.33 0.02
0.01 0.71 0.20 0.00 0.00 0.00 0.05 0.03
0.00 0.02 0.96 0.00 0.00 0.00 0.01 0.00
0.00 0.02 0.15 0.37 0.46 0.00 0.00 0.00
0.01 0.00 0.16 0.29 0.53 0.00 0.00 0.00
0.00 0.06 0.44 0.00 0.00 0.28 0.17 0.06
0.00 0.00 0.01 0.04 0.00 0.00 0.95 0.00
0.42 0.00 0.00 0.00 0.00 0.50 0.00 0.08

(i)
Park Driv Traf Pick Drop Barr Mano D!r
0.51 0.03 0.15 0.03 0.00 0.00 0.28 0.00
0.05 0.60 0.10 0.00 0.00 0.00 0.20 0.05
0.00 0.00 0.95 0.04 0.00 0.00 0.01 0.00
0.00 0.03 0.03 0.94 0.00 0.00 0.00 0.00
0.00 0.00 0.08 0.65 0.27 0.00 0.00 0.00
0.00 0.06 0.25 0.00 0.00 0.38 0.25 0.06
0.10 0.08 0.00 0.04 0.00 0.00 0.78 0.00
0.00 0.00 0.33 0.00 0.00 0.08 0.33 0.25

(j)

Park Driv Traf Pick Drop Barr Mano D!r
0.67 0.02 0.04 0.00 0.00 0.00 0.26 0.00
0.01 0.84 0.08 0.00 0.00 0.00 0.07 0.00
0.00 0.04 0.93 0.01 0.00 0.00 0.00 0.00
0.03 0.00 0.19 0.41 0.38 0.00 0.00 0.00
0.00 0.00 0.33 0.17 0.50 0.00 0.00 0.00
0.00 0.09 0.27 0.00 0.00 0.36 0.18 0.09
0.09 0.07 0.02 0.00 0.00 0.00 0.81 0.00
0.00 0.08 0.08 0.00 0.00 0.58 0.08 0.17

(k)

Park Driv Traf Pick Drop Barr Mano D!r
0.69 0.02 0.05 0.00 0.00 0.00 0.21 0.02
0.00 0.45 0.42 0.02 0.00 0.00 0.05 0.07
0.01 0.02 0.94 0.01 0.00 0.00 0.01 0.00
0.00 0.00 0.24 0.37 0.39 0.00 0.00 0.00
0.04 0.02 0.40 0.19 0.35 0.00 0.00 0.00
0.00 0.00 0.72 0.00 0.00 0.00 0.17 0.11
0.11 0.02 0.00 0.00 0.00 0.00 0.86 0.02
0.58 0.08 0.00 0.00 0.00 0.00 0.33 0.00

(l)

Figure 6: Confusionmatrices for random forest classi#ers trained on the CB-SMoT, GVE, and STA clusters with di$erent merge thresholds.
(a) CB-SMoT (λ ! 0). (b) GVE (λ ! 0). (c) STA (λ ! 0). (d) CB-SMoT (λ ! 5). (e) GVE (λ ! 5). (f ) STA (λ ! 5) (g) CB-SMoT (λ ! 10).
(h) GVE (λ ! 10). (i) STA (λ ! 10) (j) CB-SMoT (λ ! 20). (k) GVE (λ ! 20). (l) STA (λ ! 20).
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0.62 0.02 0.19 0.02 0.02 0.00 0.12 0.00
0.09 0.77 0.00 0.05 0.00 0.00 0.09 0.00
0.00 0.01 0.96 0.00 0.01 0.00 0.01 0.01
0.00 0.03 0.11 0.83 0.03 0.00 0.00 0.00
0.00 0.00 0.05 0.81 0.14 0.00 0.00 0.00
0.00 0.11 0.11 0.00 0.00 0.17 0.17 0.44
0.17 0.02 0.02 0.02 0.00 0.00 0.78 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.88

Park Driv Traf Pick Drop Barr Mano D!r

(a)

0.71 0.04 0.04 0.03 0.00 0.00 0.17 0.00
0.01 0.96 0.01 0.00 0.00 0.00 0.01 0.00
0.01 0.07 0.90 0.01 0.00 0.00 0.01 0.00
0.02 0.00 0.14 0.29 0.56 0.00 0.00 0.00
0.04 0.00 0.16 0.18 0.61 0.00 0.00 0.00
0.05 0.10 0.52 0.00 0.00 0.00 0.00 0.33
0.12 0.05 0.02 0.02 0.00 0.00 0.78 0.00
0.13 0.09 0.09 0.00 0.00 0.43 0.00 0.26

Park Driv Traf Pick Drop Barr Mano D!r

(b)

0.65 0.00 0.00 0.13 0.00 0.00 0.22 0.00
0.03 0.67 0.24 0.00 0.00 0.00 0.05 0.01
0.01 0.04 0.94 0.00 0.00 0.00 0.00 0.00
0.03 0.02 0.15 0.33 0.47 0.00 0.00 0.00
0.00 0.00 0.18 0.32 0.49 0.00 0.00 0.00
0.33 0.04 0.42 0.00 0.00 0.00 0.00 0.21
0.06 0.01 0.01 0.03 0.00 0.01 0.88 0.00
0.16 0.05 0.00 0.00 0.00 0.79 0.00 0.00

Park Driv Traf Pick Drop Barr Mano D!r

(c)

0.66 0.02 0.07 0.05 0.00 0.00 0.20 0.00
0.05 0.85 0.00 0.00 0.00 0.00 0.05 0.05
0.00 0.01 0.93 0.04 0.00 0.01 0.02 0.00
0.06 0.03 0.09 0.83 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.22 0.65 0.00 0.00 0.00
0.06 0.06 0.18 0.00 0.00 0.47 0.00 0.24
0.25 0.04 0.00 0.00 0.04 0.00 0.68 0.00
0.17 0.00 0.33 0.00 0.00 0.00 0.08 0.42

Park Driv Traf Pick Drop Barr Mano D!r

(d)

0.86 0.08 0.02 0.00 0.00 0.00 0.05 0.00
0.02 0.92 0.03 0.00 0.00 0.00 0.02 0.01
0.00 0.04 0.95 0.00 0.00 0.00 0.00 0.00
0.00 0.02 0.03 0.74 0.21 0.00 0.00 0.00
0.03 0.03 0.18 0.08 0.68 0.00 0.00 0.00
0.00 0.00 0.53 0.00 0.00 0.32 0.00 0.16
0.12 0.04 0.01 0.00 0.00 0.00 0.83 0.00
0.07 0.07 0.00 0.00 0.00 0.50 0.00 0.36

Park Driv Traf Pick Drop Barr Mano D!r

(e)

0.69 0.05 0.02 0.04 0.00 0.00 0.20 0.00
0.02 0.89 0.02 0.00 0.00 0.00 0.04 0.02
0.00 0.03 0.96 0.01 0.00 0.00 0.00 0.00
0.05 0.03 0.13 0.42 0.37 0.00 0.00 0.00
0.03 0.00 0.14 0.39 0.44 0.00 0.00 0.00
0.13 0.04 0.39 0.00 0.00 0.17 0.00 0.26
0.07 0.02 0.00 0.02 0.00 0.00 0.87 0.01
0.25 0.00 0.00 0.00 0.00 0.31 0.00 0.44

Park Driv Traf Pick Drop Barr Mano D!r

(f )

0.66 0.02 0.10 0.02 0.00 0.00 0.20 0.00
0.05 0.90 0.05 0.00 0.00 0.00 0.00 0.00
0.01 0.01 0.94 0.03 0.00 0.00 0.02 0.00
0.03 0.03 0.17 0.77 0.00 0.00 0.00 0.00
0.02 0.00 0.12 0.08 0.75 0.00 0.02 0.00
0.06 0.06 0.18 0.00 0.00 0.41 0.24 0.06
0.33 0.02 0.00 0.02 0.00 0.00 0.64 0.00
0.17 0.00 0.08 0.00 0.00 0.00 0.08 0.67

Park Driv Traf Pick Drop Barr Mano D!r

(g)

0.87 0.05 0.00 0.00 0.00 0.00 0.07 0.00
0.01 0.86 0.06 0.00 0.00 0.00 0.06 0.02
0.00 0.03 0.96 0.00 0.00 0.00 0.00 0.00
0.00 0.09 0.11 0.61 0.20 0.00 0.00 0.00
0.05 0.04 0.24 0.13 0.55 0.00 0.00 0.00
0.00 0.00 0.36 0.00 0.00 0.36 0.00 0.29
0.18 0.05 0.02 0.00 0.00 0.00 0.75 0.00
0.08 0.08 0.00 0.00 0.00 0.50 0.00 0.33

Park Driv Traf Pick Drop Barr Mano D!r

(h)

0.63 0.06 0.00 0.10 0.00 0.00 0.21 0.00
0.04 0.87 0.05 0.00 0.00 0.00 0.00 0.04
0.01 0.01 0.96 0.00 0.00 0.00 0.00 0.00
0.04 0.00 0.19 0.26 0.52 0.00 0.00 0.00
0.00 0.00 0.22 0.19 0.59 0.00 0.00 0.00
0.06 0.11 0.39 0.00 0.00 0.28 0.00 0.17
0.04 0.04 0.00 0.04 0.00 0.00 0.89 0.00
0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.25

Park Driv Traf Pick Drop Barr Mano D!r

(i)

0.56 0.03 0.13 0.03 0.00 0.00 0.26 0.00
0.05 0.85 0.00 0.00 0.00 0.05 0.05 0.00
0.00 0.01 0.96 0.03 0.00 0.00 0.01 0.00
0.00 0.06 0.15 0.79 0.00 0.00 0.00 0.00
0.00 0.00 0.14 0.84 0.03 0.00 0.00 0.00
0.00 0.06 0.19 0.00 0.00 0.44 0.25 0.06
0.14 0.02 0.10 0.04 0.00 0.00 0.71 0.00
0.00 0.00 0.33 0.00 0.00 0.00 0.25 0.42

Park Driv Traf Pick Drop Barr Mano D!r

(j)

0.80 0.09 0.00 0.00 0.00 0.00 0.11 0.00
0.02 0.89 0.05 0.00 0.00 0.00 0.01 0.03
0.01 0.04 0.93 0.00 0.00 0.00 0.00 0.00
0.00 0.08 0.08 0.32 0.49 0.03 0.00 0.00
0.00 0.12 0.19 0.14 0.55 0.00 0.00 0.00
0.00 0.09 0.00 0.00 0.00 0.55 0.09 0.27
0.12 0.02 0.00 0.00 0.00 0.00 0.86 0.00
0.00 0.17 0.00 0.00 0.00 0.83 0.00 0.00

Park Driv Traf Pick Drop Barr Mano D!r

(k)

0.67 0.00 0.05 0.10 0.00 0.00 0.19 0.00
0.05 0.57 0.28 0.05 0.00 0.00 0.02 0.03
0.04 0.01 0.91 0.02 0.00 0.00 0.01 0.00
0.20 0.00 0.00 0.41 0.39 0.00 0.00 0.00
0.19 0.02 0.02 0.42 0.35 0.00 0.00 0.00
0.00 0.06 0.06 0.00 0.00 0.67 0.00 0.22
0.05 0.00 0.07 0.05 0.00 0.00 0.79 0.04
0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.58

Park Driv Traf Pick Drop Barr Mano D!r

(l)

Figure 7: Confusion matrices for SVM classi#ers trained on the CB-SMoT, GVE, and STA clusters with di$erent merge thresholds. (a) CB-
SMoT (λ ! 0). (b) GVE (λ ! 0). (c) STA (λ ! 0). (d) CB-SMoT (λ ! 5). (e) GVE (λ ! 5). (f ) STA (λ ! 5) (g) CB-SMoT (λ ! 10). (h) GVE
(λ ! 10). (i) STA (λ ! 10) (j) CB-SMoT (λ ! 20). (k) GVE (λ ! 20). (l) STA (λ ! 20).

Table 8: Frequency of features within the top 10 selected by mRMR for all 12 base clustering and merge threshold combinations.

Signal Feature Frequency
Gear position Average 12
Vehicle speed Average 12
Passenger door status Average 12
Combined seatbelt status Average 10
Steering wheel angle Standard deviation 9
Stop-start status Minimum 7
Driver window position Average 7
Lock status Average 7
Steering wheel angle Range 5
Steering wheel angle Time above average 4
Passenger door status Minimum 4
Passenger door status Range 4
Lock status Minimum 4
Vehicle speed Time above average 3
Engine (on/o$) Range 3
Driver window position Range 3
Indicator status Average 2
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Table 8: Continued.

Signal Feature Frequency
Steering wheel angle Maximum 2
Vehicle speed Maximum 2
Vehicle speed Minimum 2
Driver window position Maximum 2
Vehicle speed Standard deviation 1
Engine (on/o$) Minimum 1
Stop-start status Range 1
Passenger seatbelt status Delta 1
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Figure 8: Reduction in PoIs when using AVPE compared to the base clustering methods. (a) Random forest. (b) SVM.
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Figure 9: Results of the AVPE methodology applied to the pattern-of-life data, using 21 features.
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with this in mind, based on guidance from our industry
partner. Due to this, performing a binary classi#cation is not
appropriate, since an application such as destination pre-
diction can make use of the reason why a period of low
movement was classi#ed as a PoI or not (e.g., stopping in
tra"c, although not considered a PoI, could be a key in-
dicator for the next destination of the vehicle). Similarly,
combining drop-o$ and pick-up activities would lose
valuable information in the same way, since the di$erence
between these two activities can have a signi#cant impact on
which future destinations are most likely.

6. Conclusion

In this paper, we show that AVPE, our proposed wrapper
method that uses a classi#cation stage based on vehicle data to
#lter out false PoIs, improves performance over the existing
state-of-the-art clustering algorithms when extracting PoIs from
vehicle data. We compared the performance of three base
clustering algorithms, namely, CB-SMoT, STA, and GVE, and
discussed the high amount of false PoIs output. We found that
GVE with a 0-second merge threshold and a 5-second merge
threshold gave the best performance in AVPE when using a
Random Forest and SVM classi#er, respectively.

In our scenario data, we observed that 94.3%–99.0% of
false PoIs can be removed at a cost of 35.5%–40.4% of true
PoIs being lost using a Random Forest classi#er, using each
of the three clustering algorithms. Similarly, when using an
SVM classi#er with each of the three clustering algorithms,
93.6%–98.8% of false PoIs can be removed while losing
34.5%–36.6% true PoIs. !ese #gures show a reasonable
trade-o$ between reduction in false PoIs against loss of true
PoIs. When applied on an unscripted pattern-of-life dataset,
AVPE saw comparable performance to that on the scenario
data, with over 94.9% of false PoIs being removed. !is
shows that AVPE, which aims to ensure that any extracted
PoIs are correct rather than aiming for completeness, gives a
signi#cant improvement over the current state-of-the-art
clustering algorithms when used alone. !is improvement
can help assist the development of applications such as
destination prediction [55–58] and identifying ride sharing
opportunities [59, 60], which bene#t from accurate PoI data.

Future work will investigate the impact of external data,
such as Geographic information system (GIS) data, on the
classi#er to provide more context to the current sur-
roundings of the vehicle. For example, if the vehicle is
consistently near a drive-through service for the duration of
the PoI, this could be used to inform the predicted activity.

Data Availability

!e full scripted scenario dataset is available online at
https://www.dcs.warwick.ac.uk/led. For privacy reasons, the
pattern-of-life dataset is not published.
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