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Abstract. Establishing cooperation and protecting individuals from self-
ish or malicious behaviour are key goals in open multi-agent systems. In-
complete information regarding potential interaction partners can under-
mine mechanisms such as trust and reputation, particularly in lightweight
systems designed for individuals with significant resource constraints. In
this paper, we (i) propose extending low cost reputation mechanisms
with gossiping algorithms, (ii) introduce four simple aggregation strate-
gies for incorporating gossiped information, and (iii) evaluate our model
on a variety of synthetic and real-world topologies. We show that (i)
gossiping can significantly reduce the potentially detrimental influence
of incomplete information and network structure on lightweight reputa-
tion mechanisms, (ii) using the most recently received gossip to make
decisions results in up to a 25% reduction in selfishness, and (iii) gossip-
ing is particularly effective at aiding agents with little or no interaction
history, such as when first entering a system.

1 Introduction

The emergence of decentralised open Multi-Agent Systems (MAS) has required
the development of mechanisms that bias interactions towards cooperative in-
dividuals, in order to protect agents from selfish behaviour and increase the
aggregate welfare of the population. Distributed systems such as BitTorrent or
mobile networks demonstrate the potential for emergent marketplaces in which
participating individuals cannot rely on a centralised authority to enforce com-
pliance to cooperative norms.

Typical approaches to achieving cooperation without centralised control in-
volve trust and reputation mechanisms, that use observations and individual
experience to aid decision making. Reputation relies on indirect reciprocity,
in which a cooperative agent can expect its behaviour to be subsequently re-
warded by a third party. Many reputation mechanisms (e.g. [12, 21]) are highly
robust but incur large overheads, rendering them unsuitable to domains with
constrained computational resources.

A variety of low-cost solutions have been proposed but their accuracy can be
reduced by environmental factors. In this paper, we empirically analyse when ef-
ficacy is reduced and demonstrate a low cost solution (i.e. gossiping) to support
reputation in such situations. Specifically, we show that incomplete informa-
tion, where an agent knows only a sub-set of the available information about a



potential partner, can result in inaccurate reputation assessments that reduce
cooperation, and that the underlying network structure significantly influences
emergent behaviour based on indirect reciprocity (Section 5). We propose gos-
siping as a low cost solution, and introduce four alternative aggregation rules
(Sections 2.3 and 3.2). We show that gossiping can reduce selfishness in the
population by up to 25%, and is particularly effective on real-world network
topologies (Section 5.1).

2 Background

While many reputation mechanisms have been proposed, they rarely fully ad-
dress the challenges posed by decentralised MAS marketplaces. We focus on
image scoring, which illustrates the problems that reputation mechanisms can
suffer in challenging MAS domains. In this section we discuss the factors un-
derlying mechanism efficacy, introduce the image scoring approach, and discuss
gossiping algorithms as a low-cost extension to reputation.

2.1 Reputation, incomplete information, and network topology

Trust and reputation are established mechanisms for supporting cooperative be-
haviour in distributed and open MAS [4]. Such domains are characterised by het-
erogeneous agent ownership, lack of centralised authority, complex social network
structures, and a low probability of repeat interactions between agents. Limited
computational resources reduce the applicability of robust multi-dimensional
mechanisms (e.g. FIRE [12] or ReGreT [21]). Low-cost solutions relying on ob-
servation of agent behaviour are feasible (e.g. [19]), but can be destabilised by
incomplete information.

The underlying network structure that constrains agent interactions also
influences the performance of the system. The networks in real-world open
MAS are typically complex, exhibiting scale-free node degree distributions or
logarithmically-bounded path lengths between nodes (i.e. small-world proper-
ties). Recent research has identified further structural properties currently not
modelled by synthetic network generation algorithms (e.g. scale-free edge em-
beddedness distributions [24]). A wide variety of research has demonstrated the
impact of underlying network structure (e.g. [5, 11]), but the implications of net-
work topology on reputation has not been extensively investigated. In this paper,
we use a combination of synthetic and real-world networks to demonstrate that
the underlying structure has a vast influence on reputation mechanism efficacy.

2.2 Image scoring

We adopt a simplified model of reputation called image scoring, first introduced
by Nowak and Sigmund (N&S) [17]. Agents maintain a set of reputation as-
sessments (image scores) of others based on observation of interactions, and use



these to determine whether to cooperate or not. Image scoring promotes co-
operation without requiring reciprocity in the form of subsequent interactions
between the same individuals [18]. It has low overheads making it applicable to
open decentralised systems.

We consider image scoring in the donation scenario introduced by N&S [17],
in which agents are randomly paired for interactions as donor (the agent who is
assessed on their behaviour in the interaction) or recipient. The donor, based on
its perception of the recipient’s image score, chooses either to confer a benefit
on the recipient at personal cost, or do nothing. For the purposes of discussion,
we refer to the former as cooperation and the latter as defection. A subset of the
participants’ neighbours observe the donor’s choice, and adjust their perception
of the donor’s image score depending on the action chosen. After a number of
interactions, the best performing strategies are reproduced.

2.3 Gossiping

Gossiping algorithms, initially introduced by Frieze and Grimmet [9], perform
data aggregation and spreading in distributed systems. Loosely modelled on the
dynamics of human gossip, they are effective at spreading information, and have
low space and time complexity and minimal bandwidth requirements compared
to alternative spreading mechanisms [8, 13]. They have previously been applied
to constrained trust and reputation problems [1, 20, 26], and can efficiently ag-
gregate trust values without complex underlying data structures.

Given the low overheads, gossiping is an attractive solution to the problems
arising from local perception of information by agents. Sommerfeld et al. [23]
show that gossiping is an effective substitute for direct observation in human in-
teractions. Sommerfeld et al.’s subsequent work [22] demonstrates that gossip is
robust to the propagation of inaccurate information, and they conclude that hu-
mans use a majority rule: if the majority of gossips are positive, then individuals
form a positive opinion of the subject. The low overheads, high robustness to in-
accurate information, and ability to efficiently spread and aggregate information
in decentralised domains make gossiping highly applicable to MAS.

3 Incorporating gossiping into image scoring

3.1 Image scoring model

We adopt the setup used by N&S as follows: each agent i is associated with a
strategy ki, chosen uniformly at random in the range [−5, 6]. Each agent main-
tains image scores Ii for each agent i it has observed interacting. Image scores are
initialised at 0 and constrained to the range [−5, 5]. Each round m pairs of agents
are randomly chosen from a population of n agents, with one being designated
as the donor and the other as the recipient. If the donor’s strategy is less than
or equal to its perception of the image score of the recipient, kdonor ≤ Irecipient,
then it confers a benefit b on the recipient at a cost c to itself (b = 1, c = 0.1).



An agent assumes an image score of 0 if it has no data on the recipient. If the
donor donates (cooperates), then observers of the interaction increment their
perception of the donor’s image score (the recipient’s image score remains the
same). If the donor does not cooperate, the perceived image score of the donor
as held by the observers is decremented. An agent’s strategy ki thus represents
the degree of selfishness of potential interaction partners that the agent is willing
to cooperate with.

N&S consider both complete and partial observability of interactions. In the
partial observability setting, N&S allow 10 randomly chosen agents to observe
each interaction. Our formulation differs from N&S in that we consider an un-
derlying network topology that constrains interactions. We model partial ob-
servability using a parameter, o, in the range [0, 1], as the probability of each
neighbour observing an interaction. If Ni denotes the set of neighbours for a
given agent i, then, on average, o× |Ndonor ∪Nrecipient| observers are randomly
selected for each interaction. We assume that interactions are observed with-
out noise. The parameters n = 100 and o = 0.1 with a completely connected
topology are equivalent to the original setup of N&S. Observability, in static
connection topologies as investigated in this paper, can be viewed as a simple
abstract model of resource constraints, or hardware or communications failure.

After m interactions offspring are generated proportionally to agents’ final
payoffs. If agent i has fitness fi, where fi is equal to its net benefit (the sum
of the costs incurred and benefits received), then F is the net population benefit
such that F =

∑n
i=0 fi. An agent i will produce n×fi

F offspring. The offspring’s
strategy is an exact copy of its parent’s, with a small probability µ of mutation,
such that the strategy is set to a random value (we adopt the value of µ = 0.001
used by N&S). N&S found that strategies do not converge to a single value except
for o = 1 and µ = 0, but instead go through cycles as selfish agents become
dominated by conditionally cooperative agents (called discriminators by N&S),
who only help other cooperative individuals. These agents are then superseded
by unconditionally cooperative agents (called altruists), who are subsequently
invaded by selfish agents (called defectors).

N&S characterise the strategy space as: k ≤ 0 denotes cooperation, since
agents will interact with most other agents, and k > 0 denotes defection (called
selfish by N&S). We further divide the cooperative strategy space into uncondi-
tionally cooperative (−5 ≤ k ≤ −2) and conditionally cooperative (−2 < k ≤ 0).
We describe interaction choices as follows. Interactions in which an agent coop-
erated based on its perceived image score of the recipient, when it should have
defected based on the actual image score, or vice-versa, are misclassified interac-
tions. An interaction is called incorrect cooperation if an agent cooperates when
it should have defected, and an incorrect defection is where an agent defects
when it should have cooperated. Incorrect defections are undesirable since they
reduce the donor’s image score, leading to fewer subsequent donations to the
donor. Incorrect cooperations are undesirable since they allow selfish agents to
gain higher payoff, and increase their chance of reproduction. In our simulations
we maintain the absolute value of an agent’s image score, to allow calculation



of misclassified interactions, and this includes any incorrect cooperations or de-
fections, i.e. it is the result of an agent’s actual actions rather than how they
should have acted given complete information.

3.2 Gossiping mechanism

Our simple gossip mechanism spreads perceived image scores as follows: each
agent maintains a queue of received gossips, which are processed in a separate
gossip phase. After an interaction, each observer starts a gossip with probability
ogp (observer gossip probability) by sending a gossip packet to a randomly chosen
neighbour. The probability of any given agent starting a gossip thus depends
both on o, the probability it is chosen as an observer, and on ogp, the probability
that an observer starts a gossip. Each gossip packet contains the image score of
the donor, as perceived by the gossip starter, the unique ID of the donor, the
unique ID of the gossip starter, and a time to live (TTL).

Every gossipRate interactions, there is a gossip phase. Each agent in turn
updates their image scores for each agent that they have received gossips about,
and if TTL > 0 propagates the gossip with TTLt+1 = TTLt − 1 to a single
randomly chosen neighbour that does not yet have the gossip. It is assumed that
an agent can check if a neighbour has received a gossip already.

We propose four update rules for incorporating received gossip information.

1. Aggregate Average (AA): The agent replaces its perceived image score for
agent i with the average of its previous perceived score for i and the values
contained in all the received gossips concerning i.

2. Average Replace (AR): The agent replaces its perceived image score for
agent i with the average of the values contained in all received gossips con-
cerning i.

3. Majority Replace (MR): The agent replaces its perceived image score for
i with the median value contained in all received gossips concerning i. As
noted above, this is thought to approximate how humans process gossip [22].

4. Most Recent (MRec): The agent replaces its perceived image score for i with
the most recent value received concerning i.

In practical terms, an agent using one of these update rules is updating it’s
perception of the recipient’s probable strategy (i.e. selfish or not), based on the
average or majority perception (for AA, AR, and MR update rules), or simply
using the most recently received opinion with which to make a decision (i.e.
using the MRec rule).

4 Experimental setup

We model two primary situations in which incomplete information may under-
mine the efficacy of reputation: (i) when there is a very low probability of having
observed any interactions, such as when first entering a system, and (ii) when
there is a very low probability of observing a complete set of interactions. We



model (i) using a low ratio of interaction rate to population size, and (ii) using
a very high ratio of interaction rate to population size. N&S used parameters of
n = {20, 50, 100} and m = {125, 200, 300, 500, 1000}, sufficient for (i) but limited
for (ii). To investigate (ii), we consider m = {1000, 5000, 10000, 20000, 50000} for
n = 100 (i.e. a maximum ratio of m/n = 500). We use o = 0.1, µ = 0.001, b = 1
and c = 0.1. Unless otherwise stated, we use an observer gossip probability
ogp = 1.0 and gossipRate = 1. Since the diameter of the networks in our simu-
lations is typically less than 5 we use a TTL of 5. We also performed simulations
scaling the population to n = 1000 to test the effects of group size.

We situate agents on a variety of network structures. We replicate N&S’ com-
pletely connected topology, and implement random (such that each pair of nodes
is connected with probability p), scale-free and small-world synthetic networks1.
Scale-free networks are generated using the Eppstein and Wang [7] algorithm
and small-world networks using Kleinberg’s generation algorithm [14]. We fur-
ther use 8 networks sampled from the Enron email dataset and the arXiv general
relativity section collaboration network2 to corroborate our results on networks
that are structurally closer to those found in the real-world. We sampled four
sub-graphs of around 1,000 vertices from each dataset using a breadth-first search
(BFS) approach. We acknowledge that BFS can introduce structural biases into
the sampled sub-networks [10]. Many other sampling techniques (e.g. Snowball
Sampling or Forest Fire) also introduce biases [15], although unbiased techniques
have been proposed [10]. In future work we aim to investigate the use of an un-
biased sampling approach.

Our investigation focused on two main metrics: the strategy distribution for
the population and the number of misclassified interactions. The results given
are averaged over 20 runs for each configuration (giving a standard deviation
ranging from 1–14%). We used t = 10000 generations of evolution. Due to the
cyclic nature of strategies identified by N&S [17], we present results averaged
over the course of the simulation, rather than taking the final state.

5 Results and discussion

Figure 1a shows the strategy distribution with n = 100 and m = {125, 300}
(i.e. a ratio of m/n = {1.25, 3}), across a variety of synthetic networks. Figure
1b plots results from varying m on a completely-connected topology and Table
1b summarises the results for each synthetic topology class. Finally, Table 1a
shows the results from simulations with n = 1000 on scale-free and small-world
networks.

These results show significant levels of selfishness across a variety of con-
figurations. We conclude that there are three primary influences on levels of
selfishness:

1 Generated using the Java Universal Network/Graph Framework
http://jung.sourceforge.net/

2 The Enron and arXiv datasets are taken from http://snap.stanford.edu/data/
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Fig. 1: (a) Comparison of population strategy distribution for Completely Con-
nected (CC), Scale-Free (SF), Random (Ran), and Small World (SW) topologies,
using m = {125, 300} and n = 100, (b) the population strategy distribution in
a completely connected topology, and varying m.

1. Underlying network topology
Selfishness is most evident in scale-free networks (structurally closest to the
real-world), and small-world networks are particularly supportive of cooper-
ative behaviour. Small-world networks have low geodesic path lengths and
high clustering, implying a higher probability of connection between ob-
servers of an interaction and potential interaction pairs3.

2. Interaction rate
At very low rates (m = 125), there is not time for indirect reciprocity to
take hold before selfishness increases (i.e. image scoring suffers from a cold
start problem). As m increases selfishness is slightly reduced (down to 1.07%
at m = 1000), but again rises as we approach m = 50000 (up to 31.4%).
At low and high values of m, there is increased probability of agents having
insufficient information to make an accurate assessments. As a result, the
efficacy of image scoring is drastically reduced, and selfishness rises. These
represent vulnerable configurations for reputation mechanisms.

3. Population strategy distribution
A population with an equal strategy distribution increases the effect of in-
complete information by increasing the uncertainty about a potential part-
ner’s strategy, making a decision based on incomplete information more likely
to be incorrect.

The last two conclusions are corroborated by Figures 2a and 2b, which show
the proportions of incorrect decisions for simulation runs shown in Figure 1b.
Figure 2a shows a significant increase in the number of misclassified interactions
as m (and population selfishness) increases, up to 3.5%, or an average of 1750
per round. Indirect reciprocity promotes cooperation through feedback effects,
such that a cooperative action induces further cooperative actions, and so forth.

3 Recall that although observers may be connected with the recipient of an interaction,
they only update the score of the donor. For the observation to be of use, the observer
must then also interact with the donor.
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Fig. 2: (a) The percentage of all interactions that were misclassified (y-axis shows
0–10% for clarity) in Figure 1b (n = 100), for differing values of m, (b) number
of interactions misclassified as proportion of interaction type for simulation runs
in Figure 1b.

Proportion of population

Network Parameter UC CC S

Eppstein 1000 edges 0.33 0.20 0.46
Eppstein 5000 edges 0.36 0.23 0.39
Eppstein 10000 edges 0.41 0.25 0.32

Kleinberg CE1 0.42 0.26 0.31
Kleinberg CE5 0.43 0.20 0.36
Kleinberg CE10 0.34 0.30 0.35

m CC SF SW Ran

S IP S IP S IP S IP

1000 0.13 3.71 0.91 1.2 0.01 0.1 0.03 2.0
5000 0.10 3.76 0.005 1.8 0.02 0.3 0.01 0.4
10000 0.21 5.71 0.004 1.1 0.03 0.4 0.02 0.3
20000 0.30 6.94 0.006 1.1 0.06 0.6 0.02 0.2
50000 0.39 5.93 0.01 2.2 0.11 0.6 0.04 0.2

(a) (b)
Table 1: (a) Strategy distribution for a selection of scale-free and small-world
networks. UC is Unconditionally Cooperative, CC is Conditionally Cooperative,
and S is Selfish. CE is Clustering Exponent, n = 1000 and m = 1000 unless
otherwise stated. (b) Selfish proportion of population (S) and Percentage of
Incorrect interactions (IP) for Completely Connected (CC), Scale Free (SF),
Small World (SW) and Random (Ran) networks while varying m, with n = 100.
All other parameters as Figure 1a for both.

A decision to defect when an agent should have cooperated can thus significantly
impact which strategies are reproduced. Figure 2b shows the proportion of in-
teractions that were misclassified as a proportion of that interaction type. While
only a negligible number of decisions to cooperate were incorrect, the number
of incorrect defections was large, peaking at 62% for m = 10000. This further
demonstrates the effect of population strategy diversity, since as we move past
m = 10000 the proportion of incorrect decisions to defect reduces — there are
more selfish agents, so a decision to defect is more likely to be correct. Reduc-
ing uncertainty over a recipient’s strategy with supplementary mechanisms is
therefore key to aiding reputation mechanism efficacy.

Scaling up the population to 1,000 agents demonstrates a smoothing effect.
The influence of incomplete information is slightly reduced, but the populations
are more evenly distributed with selfishness remaining significant. Interestingly,
the support that a small-world topology displayed for cooperative behaviour in a
small population (n = 100)is no longer present (Table 1a), and selfishness levels
are similar to scale-free networks. Increasing the number of edges in scale-free



networks slightly reduces the level of selfishness, corroborating our hypothesis
regarding visibility of agent interactions.

5.1 Supporting reputation with gossiping

In this section, we present results from implementing gossiping with our four
aggregation rules. Table 2 compares levels of selfishness in the population for the
same configuration as Figure 1a, except that agents gossip and use the Average
Replace update rule. Figure 3a shows the strategy distribution using the different
update rules on a scale-free topology with m = 1000. Finally, Table 3b shows
the results from using gossiping on the real-world networks. From these results,
we can conclude the following:

1. Gossiping significantly reduces levels of selfishness.
On average, gossiping reduces levels of selfishness by around 10% in the
synthetic networks and around 18% in the real-world networks.

2. There is no clear relationship between the number of interactions
and the reduction in selfishness, whereas there is a clear link be-
tween network structure and gossiping efficacy.
The real-world networks and scale-free synthetic networks in particular show
significant reductions in selfish behaviour. Given that real-world domains of-
ten have scale-free properties, these results suggest that gossiping can be
practically applied. Random networks are less conducive to gossiping than
other network classes, which may be a consequence of their reduced clus-
tering. As argued above, clustering increases the probability of observations
being of use, and gossips are simply a substitute for direct observation.

3. All update rules except Aggregate Average show a statistically
significant decrease in selfishness (α = 0.05).
In the synthetic networks Aggregate Average performs worse than the other
update rules, which perform fairly equally. In the real-world networks Most
Recent performs consistently and gives the largest reduction in selfish be-
haviour, while the other update rules occasionally increase selfish behaviour.

On average across the 4 update rules, 331.7 million gossips were started,
with 1.436 billion gossip packets sent over 10 million interactions, or 143 packets
per interaction. Agents adopted a new image score for a given individual 496.4
million times. On average, a single gossip causes 1.50 image score changes. Ag-
gregate Average is the only rule to incorporate the agent’s current image score
of the gossip subject, whereas the other three rules only consider the received
gossips. A gossip using the Aggregate Average rule causes, on average, 1.09 im-
age score changes, which is less than the other rules (1.67 for Average Replace,
1.63 for Most Recent, and 1.60 for Majority Replace). Update rules that do not
incorporate the current perception of the subject’s image score perform better.
That Most Recent performs as well as the others suggests that many of the up-
dates are for when agents have no information (i.e. they assume an image score
of 0), and the gossip provides initial data for decisions. Aggregate Average incor-
porates the assumption of an image score of 0, biasing the resultant value. These
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Fig. 3: (a) Strategy distribution using gossiping with m = 1000, on a scale-free
network with 1000 edges, varying the update rule, and (b) the effect of gossiping
on selfishness in real-world networks with each update rule (Aggregate Average
(AA), Average Replace (AR), Majority Replace (MR), Most Recent (Mrec))
(ogp = 1). n = 1000,m = 1000, and all other parameters as Figure 1a.

Selfishness

Topology m ogp = 0 ogp = 1 Diff.

Completely-Connected 125 0.540 0.418 0.122
Completely-Connected 300 0.324 0.221 0.103
Scale-free 125 0.613 0.479 0.134
Scale-free 300 0.512 0.330 0.182
Random 125 0.569 0.527 0.042
Random 300 0.424 0.256 0.168

Table 2: The average proportion of selfish agents in the population for the runs
in Figure 1a (ogp = 0) compared with runs using the same configuration except
that agents gossip using the Average Replace update rule (ogp = 1).

results suggest that gossiping is a useful mechanism by which new entrants to a
system can start interacting quickly without having to observe the population
to gain sufficient information.

In the real-world networks, Aggregate Average still performs poorly, but
Most Recent gives the most consistently beneficial results. These results are
given for m = 1000, meaning that agents are likely to have very little or no
information on potential interaction partners. The Most Recent rule is equivalent
to allowing each of the gossip recipients to act as an observer of the interaction
being gossiped about, and thus reduces the number of interactions necessary for
indirect reciprocity to take hold. This corroborates our conclusion that gossiping
is a particularly useful supplement to reputation for new entrants to a system,
or in systems characterised by high levels of population churn. While the benefit
of gossiping in the real-world networks is generally larger than in the synthetic
networks, the introduction of gossiping occasionally results in an increase in
selfishness (particularly with Aggregate Average, but never with Most Recent).
This requires further investigation, and these results imply careful consideration
must be given to how agents incorporate information attained through gossiping.



6 Summary and Further Work

In this paper, we have shown that (i) incomplete information can significantly
undermine lightweight reputation mechanisms, with up to 62% of defection ac-
tions (in the completely connected topology scenario) taken incorrectly, (ii) the
underlying network topology has a significant influence on levels of selfishness
in the population, (iii) gossiping can reduce levels of selfishness by up to 25%,
with the biggest gains found on real-world topologies, and (iv) using the most
recently gossiped information about a potential partner results in the most con-
sistent benefits, suggesting that gossiping may be particularly useful for agents
first entering a system. In future work, we intend to extend our investigation
on real-world networks (using an unbiased sampling algorithm) and determine
the topological properties that are most conducive to supporting cooperative
behaviour.
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