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Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning

and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertain outcomes

I have a lecture on Thursday in the early morning
and an alarm clock set for even earlier.

Let action St = snooze the alarm clock t times

Will St get me there on time?

Problems:

1 partial observability (planned engineering works, announced
strikes, etc.)

2 noisy sensors (BBC reports, Google maps)

3 uncertainty in action outcomes (my phone might die, etc.)

4 immense complexity of modelling and predicting traffic

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Uncertainty

A binary true-false approach either:

1 might lead to conclusions that are too strong:
“S25 will not get me there on time”

2 or too weak:

“S25 will not get me there on time unless there’s no delay on
the District Line and it doesn’t rain and I haven’t forgotten the
keys at home etc.”
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Intro to AI (2nd Part)

Methods for handling uncertainty: defaults

default logic handles ”normal circumstances”:

Tube normally runs

Announced strikes normally happen

Issues:

What assumptions are reasonable?
How to handle contradiction? (e.g., will the tube run?)

Also, fuzzy logic handles degrees of truth. It doesn’t arguably
handle uncertainty e.g., Asleep is true to degree 0.2
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Rules with fudge factors

e..g, S25 7→0.4 AtLectureOnTime

But...

ReadingSteinbeck 7→0.7 FallAsleep

FallAsleep 7→0.99 DarkOutside

Problems with combination, e.g.,
ReadingSteinbeck 7→∼0.7 DarkOutside

Causal connections?
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Intro to AI (2nd Part)

Probabilities

Probability

P(S25 gets me there on time| . . .) = 0.2

Given the available evidence, S25 will get me there on time with
probability 0.2

Probabilistic assertions summarize effects of:

laziness: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective/Bayesian view: Probabilities relate propositions to
one’s own state of knowledge e.g.,
P(S25 gets me there on time|no reported accidents) = 0.3
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Probability

These are not claims of a “probabilistic tendency” in the
current situation (but might be learned from past experience
of similar situations)

Probabilities of propositions change with new evidence: e.g.,
P(S25|no reported accidents, 5 a.m.) = 0.8

Analogous to logical entailment status KB |= α, not truth.
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Intro to AI (2nd Part)

If you snooze you lose?

Suppose I believe the following:

P(S0 gets me there on time| . . .) = 0.99

P(S1 gets me there on time| . . .) = 0.90

P(S10 gets me there on time| . . .) = 0.6

P(S25 gets me there on time| . . .) = 0.1

Which action should I choose?

IT DEPENDS on my preferences

e.g., missing class vs. sleeping

S0: ages in the Huxley building, therefore feeling miserable.
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Chances and Utility

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Probability basics

Begin with a set Ω—the sample space

e.g., 6 possible rolls of a dice.

w ∈ Ω is a sample point/possible world/atomic event
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Probability basics

A probability space or probability model is a sample space Ω
with an assignment P(w) for every w ∈ Ω s.t.

0 ≤ P(w) ≤ 1

ΣwP(w) = 1

e.g., P(1) =P(2) =P(3) =P(4) =P(5) =P(6) = 1/6.
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Intro to AI (2nd Part)

Events

An event A is any subset of Ω

P(A) = Σ{w∈A}P(w)

E.g.,
P(dice roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2
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Intro to AI (2nd Part)

Random variables

A random variable is a function from sample points to some range,
e.g., R, [0, 1],{true, false} . . .

e.g., Odd(1) = true.

P induces a probability distribution for any random variable X :

P(X = xi ) = Σ{w :X (w)= xi}P(w)

e.g.,
P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2
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Propositions

A proposition can be seen as an event (set of sample points) where
the proposition is true

Given Boolean random variables A and B:

event a = set of sample points where A(w) = true

event ¬a = set of sample points where A(w) = false

event a ∧ b = points where A(w) = true and B(w) = true
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Events and Propositional Logic

Proposition = disjunction of atomic events in which it is true

e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)

⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)

= P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b) + P(a ∧ b)− P(a ∧ b)

= P(a) + P(b)− P(a ∧ b)
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Probabilities are logical

Theorem (De Finetti 1931)

An agent who bets according to ”illogical” probabilities can be
tricked into a bet that loses money regardless of outcome.
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Syntax for propositions

Propositional e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity

Discrete e.g., Weather is one of 〈sunny , rain, cloudy , snow〉.
Weather = rain is a proposition.
Important: exhaustive and mutually exclusive

Continuous e.g., Temp = 21.6; Temp < 22.0.
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Probabilities

Unconditional probabilities

Conditional probabilities
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Prior probability

Prior/unconditional probabilities of propositions:

e.g.,
P(Cavity = true) = 0.1 and
P(Weather = sunny) = 0.72, correspond to belief
prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)
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Prior probability cont.

Joint probability distribution probability of every sample point

P(Weather ,Cavity) = a 4× 2 matrix of values:

Weather = sunny rain cloudy snow

Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Conditional probability

Conditional or posterior probabilities

e.g., P(cavity |toothache) = 0.8 i.e., given that toothache is all I
know NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions: P(Cavity |Toothache) =
2-element vector of 2-element vectors)
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Conditional probability

If we know more, e.g., cavity is also given, then we have
P(cavity |toothache, cavity) = ...

= 1

Note: the less specific belief remains valid after more
evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification , e.g.,
P(cavity |toothache) =
P(cavity |toothache,Cristiano Ronaldo scores) = 0.8
This kind of inference is crucial!
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Conditional probability

Definition of conditional probability:

P(a|b) =
P(a ∧ b)

P(b)
if P(b) 6= 0

Product rule gives an alternative formulation:

P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)
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Conditional probability

A general version holds for whole distributions, e.g.,
P(Weather ,Cavity) = P(Weather |Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix multiplication)

Chain rule is derived by successive application of product rule:

P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1) P(Xn|X1, . . . ,Xn−1)
= P(X1, . . . ,Xn−2) P(Xn−1|X1, . . . ,Xn−2) P(Xn|X1, . . . ,Xn−1)
= . . .
= Πn

i =1P(Xi |X1, . . . ,Xi−1)
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Inference by enumeration

Paolo Turrini Intro to AI (2nd Part)

Start with the joint distribution:

For any proposition ϕ, sum the atomic events where it is true:

P(ϕ) = Σw :w |=ϕP(w)
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Start with the joint distribution:

For any proposition ϕ, sum the atomic events where it is true:

P(ϕ) = Σw :w |=ϕP(w)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Paolo Turrini Intro to AI (2nd Part)

Start with the joint distribution:

For any proposition ϕ, sum the atomic events where it is true:

P(ϕ) = Σw :w |=ϕP(w)

P(cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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Inference by enumeration

Paolo Turrini Intro to AI (2nd Part)

Start with the joint distribution:

Can also compute conditional probabilities:

P(¬cavity |toothache) =
P(¬cavity ∧ toothache)

P(toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Inference by enumeration

Paolo Turrini Intro to AI (2nd Part)

Start with the joint distribution:

Can also compute conditional probabilities:

P(cavity |toothache) =
P(cavity ∧ toothache)

P(toothache)

=
0.108 + 0.12

0.108 + 0.012 + 0.016 + 0.064
= 0.6
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Normalization

Paolo Turrini Intro to AI (2nd Part)

Start with the joint distribution:

Denominator can be viewed as a normalization constant α

P(Cavity |toothache) = αP(Cavity , toothache)

= α [P(Cavity , toothache, catch) + P(Cavity , toothache,¬catch)]

= α [〈0.108, 0.016〉+ 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables.

Typically, we want the posterior joint distribution of the query
variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X− Y− E
Then the required summation of joint entries is done by
summing out the hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H=h)

The terms in the summation are joint entries because Y, E,
and H together exhaust the set of random variables.
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Let the hidden variables be H = X− Y− E
Then the required summation of joint entries is done by
summing out the hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H=h)

The terms in the summation are joint entries because Y, E,
and H together exhaust the set of random variables.
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Intro to AI (2nd Part)

Inference by enumeration, contd.

Obvious problems: with n variables...

1 Worst-case time complexity O(dn) where d is the largest arity

2 Space complexity O(dn) to store the joint distribution

3 How to find the numbers for O(dn) entries?
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Intro to AI (2nd Part)

Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every
atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the size

Independence and conditional independence provide the tools.
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Intro to AI (2nd Part)

What’s next?

Bayes’ rule

Conditional and unconditional independence

(hopefully) Bayesian Networks
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Appendix:Independence

A and B are independent iff

P(A|B) =P(A) or P(B|A) =P(B) or P(A,B) =P(A)P(B)

P(cavity |Cristiano Ronaldo scores) = P(cavity)

P(Cristiano Ronaldo scores|cavity) =
P(Cristiano Ronaldo scores|¬cavity) =
P(Cristiano Ronaldo scores)
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Intro to AI (2nd Part)

Appendix: Independence

P(Toothache,Catch,Cavity ,Weather)
= P(Toothache,Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare
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