
A method for automatically generating analogue
benchmark suites using micro architectural event counters

Simon McIntosh-Smith
Microelectronics Research Group

University of Bristol
Woodland Road, Bristol,

BS8 1UB, UK
simonm@cs.bris.ac.uk

Owen Thomas
Red Oak Consulting
2 Lymington Rise
Four Marks, Alton,

Hampshire, GU34 5BA, UK
owen@redoakconsulting.co.uk

ABSTRACT
Real workloads on large-scale, multi-user high performance
computing systems can be complex in multiple dimensions:
the range of applications run on the hardware system may
be diverse and could number in the hundreds or even thou-
sands, and the application mix may vary over time. Con-
structing and then maintaining representative benchmark
suites for such situations can be extremely challenging and
can be further complicated when the systems are running
codes of a confidential nature.

In this short paper we present a new method which can
automatically characterise any workload on a large-scale,
multi-user and multi-application system. Our approach uses
microarchitecture-level performance metrics, such as the num-
ber of branch mispredictions or cache misses. These low-
level metrics can be gathered using standard tools on live
systems running production codes with very little perfor-
mance overhead and with no change to any of the codes be-
ing analysed. Our method uses microarchitecture-level met-
rics to construct a statistical model of the real workload. In a
second step, a set of ‘analogue’ benchmarks are also profiled
using the same set of microarchitecture performance met-
rics. In the final step, an automated process constructs a
benchmark workload from the set of simple analogue bench-
marks. This ‘analogue workload’ closely approximates the
real workload in terms of its statistical behaviour on the
hardware and can be used for subsequent relative perfor-
mance benchmarking.

Categories and Subject Descriptors
B.8.2 [Performance Analysis and Design Aids]; C.1.2
[Multiple Data Stream Architectures]

Keywords
Performance Model, Multi-core CPU, Hardware counters

1. INTRODUCTION
The challenges of benchmarking complex systems con-

sisting of large-scale heterogeneous hardware running large
numbers of different user applications are well documented
[1, 2]. These challenges are compounded when the applica-
tions may be confidential. The long-term maintenance of a

Copyright is held by the author/owner(s).
PMBS’11, November 13, 2011, Seattle, Washington, USA.
ACM 978-1-4503-1102-1/11/11.

benchmark suite can also be a problem: changes in the mix
of user applications and in the hardware systems can impact
the accuracy and relevance of a benchmark suite.

To address these problems, we have developed a technique
that can automatically assemble an non-confidential bench-
mark suite that closely approximates the behaviour of a set
of target codes [3]. Our approach uses microarchitecture-
level hardware counters which record information on a per
core and per socket basis. We selected a set of eight com-
mon hardware counters which gave good coverage across the
most important microarchitecture-level features which influ-
ence performance. These hardware counters were: the av-
erage number of instructions per cycle, the number of cache
misses at each level of the cache (L1 instruction, L1 data,
L2, last level), the number of branch instructions and branch
mispredictions, the number of DRAM accesses and the num-
ber of data TLB misses. Based on these low-level hardware
counters, we construct a representative ‘analogue’ bench-
mark suite in using the following approach.

In step one, the target codes are characterised: each code
is run in isolation and the hardware counters are recorded
during execution. Each target is characterised by running n

copies of the target code in parallel, one on each of n cores
of an n-core CPU. Hardware counters are recorded using the
standard Linux tools Oprofile and System Tap. These anal-
yses allow us to produce a run-time performance characteris-
tic for each target code, as perceived by the microarchitecture-
level hardware counters. A variant of this step involves char-
acterising a live system running a production mix of real
codes over substantial period of time, such as 24 hours. This
final variant results in an aggregate characterisation.

In step two, we select a set of readily-available poten-
tial benchmark codes, which we call analogues. We select
analogue codes using a number of criteria. First, an ana-
logue code should be open source and actively maintained.
This addresses the problem with benchmark codes rapidly
becoming out of date. Second, an analogue should ideally
display an extreme behaviour in one or more of the eight
microarchitecture-level hardware counters we are measur-
ing. We construct the set of analogues to give us good cov-
erage across the range of hardware counters. The analogues
are characterised using a similar approach to that described
in step one, but in addition we characterise each analogue
multiple times, each with a different set of input param-
eters. Analogues which support command-line parameters
that significantly alter their run-time behaviour with respect
to our chosen hardware counters are favoured. We term the



















          






















Figure 1: Least squares difference between the ana-
logue and target job mixes.

repeated execution of an analogue with different command
line parameter values a parameter sweep.

In step three, we automatically assemble a combination of
one or more analogues in order to approximate the behaviour
of one or more target codes. In the simplest variant of this
stage, we find the single analogue whose microarchitecture-
level counter profile most closely matches that of a single
target code. In a more complex variant, we can combine a
number of different analogue codes in order to more closely
approximate the microarchitecture-level counter profile of a
single target. We do this by assembling a job mix – a set
of m analogues Am = {a1 . . . am}, each of which may be
executed a different number of times. It is the aggregate
characterisation of such an analogue job mix which is opti-
mised to model the behaviour of the target code. Blending
multiple analogues in this way gives us greater flexibility to
reproduce target behaviour. In the most complex variant
of this step, we can construct an analogue job mix that will
model the behaviour of a target job mix. That is, having ob-
tained the aggregate characterisation of a job mix of target
codes, possibly from characterising a live production system,
we can construct an analogue job mix with a very similar
aggregate characterisation.

The algorithm for constructing an analogue job mix to
closely match a target job mix is as follows. We employ a
residual refinement approach, which takes an aggregate view
of the target job mix, using the hardware metrics averaged
across all of the target benchmarks and also across all of the
different hardware platforms that we used for our experi-
ments. We then take the analogue sweep dataset previously
constructed by running each analogue benchmark with a
range of different input parameters across all the hardware
platforms, resulting in a large number of microarchitecture
characterisation data points from which to choose. We then
construct an analogue job mix by creating by incrementally
selecting individual analogue job instances which reduce the
residual least squares error. This method iterates until ei-
ther the residual error drops below 0.01 or the number of
iterations exceeds some upper threshold.

2. RESULTS
From a twelve hour run of a target job mix consisting of a

random selection of six benchmark codes, we used the resid-
ual refinement method described above to construct an ana-
logue job mix from a set of three analogue codes which were
characterised across a number of hardware platforms and for
a set of different input parameters, 141 characterisation data

Figure 2: Comparison of aggregate metrics for the
analogue and target job mixes.

points in total. This method converged rapidly, getting close
to the optimal with just 100 jobs in the analogue job mix
with a least squares residual error of 11.4; with 5,000 jobs in
the analogue job mix the residual error had only improved
by 0.1. The graph of residual error as we add jobs from our
pool of 141 analogue candidate instances to our analogue job
mix is shown in Figure 1. The hardware counter character-
isation for the input target job mix is shown alongside the
corresponding profile of the auto generated residual refine-
ment analogue job mix in Figure 2, with the metrics ordered
with the most important on the left and least important on
the right. The results were generated on a system with dual
socket quad-core Intel Core i7 (‘Nehalem’) E5520 2.27GHz
CPUs, each with 8MB of L3 cache per CPU, and 24GB of
1066MHz DDR3 memory. As one can see, the most im-
portant metrics have been matched very closely, with less
important metrics showing larger errors. The performance
penalty for measuring the microarchitecure-level hardware
counters during characterisation was consistently between
1.0 and 1.5%.

3. CONCLUSIONS
We have demonstrated the use of microarchitecture-level

metrics to automatically construct analogue benchmarks that
closely match the behaviour of a set of target benchmarks,
even though the analogue job mix is considerably simpler
than the target workload that it approximates. The ana-
logue workload is non-proprietary and non-confidential by
construction, and can thus be shared openly with partners,
for example for procurement purposes. The full version of
this paper [3] includes results for a range of different x86
processor architectures, and investigates the use of the con-
structed analogue job mix for relative performance bench-
marking.

4. REFERENCES
[1] Armstrong, B., Bae, H., Eigenmann, R., Saied,

F., Sayeed, M., and Zheng, Y. HPC benchmarking
and performance evaluation with realistic applications.
In SPEC Benchmark Workshop (January 2006).

[2] Carlton, A. Lies, damn lies, and benchmarks.
http://www.spec.org/osg/news/articles/news9412/lies.html,
December 1994.

[3] McIntosh-Smith, S., and O., T. A method for
automatically generating analogue benchmark suites
using micro architectural event counters. SIGMETRICS
Performance Evaluation Review 40, 2 (2012).


