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Abstract—As detailed in recent reports, HPC architectures will
continue to change over the next decade in an effort to improve
energy efficiency, reliability, and performance. At this time of
significant disruption, it is critically important to understand
specific application requirements, so that these architectural
changes can include features that satisfy the requirements of
contemporary extreme-scale scientific applications. To address
this need, we have developed a methodology supported by a
toolkit that allows us to investigate detailed computation, memory,
and communication behaviors of applications at varying levels of
resolution. Using this methodology, we performed a broad-based,
detailed characterization of 12 contemporary scalable scientific
applications and benchmarks. Our analysis reveals numerous
behaviors that sometimes contradict conventional wisdom about
scientific applications. For example, the results reveal that only
one of our applications executes more floating point instruc-
tions than other types of instructions. In another example, we
found that communication topologies are very regular, even for
applications that, at first glance, should be highly irregular.
These observations emphasize the necessity of measurement-
driven analysis of real applications, and help prioritize features
that should be included in future architectures.

I. INTRODUCTION

As detailed by several reports [12], [17], HPC architectures
will continue to change over the next decade in response to ef-
forts to improve energy efficiency, reliability, and performance.
At this time of significant disruption, it is critically important
to understand the requirements of contemporary extreme-scale
scientific applications, so that these architectural changes can
include features that satisfy these requirements. The proper
mapping of these features to these future architectures will
ultimately result in the best return on investment in these future
systems. For example, in just the past few years, we have
seen various new capabilities in contemporary processors and
networks (e.g., integrated GPU and CPU, integrated random
number generator, transactional memory, fine-grained power
management, MPI collective offload, etc.) that have a signifi-
cant impact on application performance.

In contrast to workload characterization performed in the
last twenty years , today’s characterizations must be more
broad and yet more detailed in order to inform the design of
these new architectures. Identifying architecture independent
characteristics of applications is challenging, and generating
these characteristics using a uniform, crosscutting methodol-
ogy is vital to prioritization and efficiency.

In this paper, we present a methodology for examining
important computation and communication behaviors for a

representative set of real-world extreme-scale applications. Our
initial toolkit, presented here, allows us to consistently and
uniformly measure various behaviors in these applications:
instruction mixes, memory access patterns and capacity, point-
to-point messaging frequency and payload size, collective
frequency, operation, and payload size, and communication

topology.

For our applications, we have selected a substantial number
of important U.S. Department of Energy (DOE) applications.
Also, we have identified several new proxy applications, which
are being developed by DOE Co-design centers, and we
investigate these “proxy apps” with the same tools in order to
identify differences between proxy apps and the applications
they are meant to represent. The applications, proxy apps, and
benchmarks we studied are summarized in Tab. L.

With these measurements, we identify a number of obser-
vations (in §V), which we believe can inform decisions about
future architectures.

A. Key Metrics and Methods

We identified several key metrics (Tab. II) and methods for
measuring those metrics for our study. We focus on processor
instructions, memory behavior, and communication using the
Message Passing Interface [27] (MPI), which is used by most
of our applications. Later sections describe each metric and
methodology in detail.

TABLE II: Key metrics and methods.

Category Metrics

Computation

Instruction mix
SIMD mix, width
Memory bandwidth
Reuse Distance

Instruction categories and counts

SIMD counts and vector widths

Achieved R/W memory bandwidth / socket
Temporal data locality

Communication
Point-to-Point Frequency, volume, type, topology
Collective Frequency, volume, type, operator

B. Related work

A considerable amount of previous work [4], [32], [24],
[5], [22], [31] has characterized scientific applications using
a variety of metrics and methodologies. This previous work
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TABLE I: Applications and Kernels

Application Area Description Input Problems
Benchmarks and Proxy Applications
HPCC [13] Benchmark Collection of kernels to test system-wide and node- Two nodes (24 MPI tasks), sized to use approximately
level performance 50% of memory
AMG [6] Multigrid Parallel solver for linear systems on unstructured  Built-in Laplace problem on unstructured domain with
Solver grids anisotropy.
Nekbone Fluid Mini-application of Nek5000, customized to solve  Conjugate gradient solver for a linear or block geometry
Dynamics basic conjugate gradient solver
MOCEE [25] Neutron Simulates deterministic neutron transport equation  Ten energy groups, eight angles, and weakly scaled mesh
Transport parallelized across energy groups, angles, and mesh
LULESH [1] Hydro- High deformation event modeling code via Lagragian ~ Sedov blast wave problem in three spatial dimensions
dynamics shock hydrodynamics
Applications
S3D [8], [28] Combustion Direct numerical solver for the full compressible  Amplitude pressure wave with ethylene-air chemistry on
Navier-Stokes, total energy, species, and mass con-  weakly scaled domain
tinuity equations
SPASM [15] Materials Short-range molecular dynamics Cu tensile test with the embedded atom method
GTC [18] Fusion Particle-in-cell code for studying microturbulence in 16 toroidal planes, number of domains for plane decom-
magnetically confined plasmas position varied, 5 particles/cell/domain
ddcMD [21] Molecular Classical molecular dynamics via flexible domain  Molten metal re-solidification, 256 MPI processes
Dynamics decomposition strategy
LAMMPS [20]  Molecular Large-scale Atomic/Molecular Massively Parallel LJ - atomic fluid with Lennard-Jones potential; EAM - Cu
Dynamics Simulator with EAM potential; RHODO - rhodopsin protein with
long range forces
Nek5000 [14] Fluid A computational fluid dynamics solver based on the 3D MHD
Dynamics spectral element method
POP [26] Climate Ocean circulation model part of the Community Cli-  192x128x20 domain with balanced clinic distribution over

mate System Model [9]

8 MPI processes

provided detailed information about scientific applications,
which typically focused on a specific metric, like communica-
tion. These existing studies are not sufficient going forward,
however. With continued development of applications and
algorithms, we need to continuously revisit these questions.
And, as mentioned earlier, the new architectural decisions
facing HPC are forcing us to answer new questions.

On another front, with the growing importance of bench-
marks and proxy applications, we want to clearly distinguish
these smaller programs from the more complex existing (or
future) applications they are meant to represent. In particular,
we want to identify the metrics that they represent well,
and, perhaps more importantly, the metrics that they do not
represent.

C. Assumptions and Caveats

Any characterization study comes with a set of assumptions
and caveats. In this section, we outline some of these topics.
First, although it would be preferred to have an idealized
architecture for performing these measurements, running these
full applications on a simulator or emulator at scale would
be impractical. Instead, we identified a single architecture and
software system on which we preformed all of our experiments
to ensure consistency and understanding of application mea-
surements. In particular, because processor instructions and
semantics differ across platforms, it was very important to
use the same processor and compilation system to conduct
this analysis. We describe this platform in §I-D. Second,

since our focus is scalable scientific applications, we included
measurements of communication behavior and the runtime
software, namely MPI, in our analysis. Third, these applica-
tions, particularly the proxy apps, are changing rapidly. Our
toolkit is built to regenerate this analysis frequently, expecting
such rapid changes. In this work, we present a snapshot of the
behaviors for a specific version of each application. Finally,
many of these applications and benchmarks can be applied to
a wide range of problems in terms of both algorithms and data
sizes. In our experiments, we selected problem sizes that were
representative of typical application experiments; however, for
a small set of our measurements, such as reuse distance,
we had to reduce the problem size in order to complete the
measurements in a practical amount of time. We identify those
constraints in our discussion of the results.

D. Experimental Platform

For our application characterizations, we used the Geor-
gia Institute of Technology’s Keeneland Initial Delivery Sys-
tem [30] (KID). KID uses the scalable node architecture of the
HP Proliant SL-390G7. Each node has two Intel Westmere host
CPUs, 24GB of main memory, a Mellanox Quad Data Rate
(QDR) InfiniBand HCA, and a local disk. The system has 120
nodes with 240 CPUs.

At the time of our experiments, the KID software envi-
ronment was based on the CentOS 5.5 Linux distribution. In
addition to the CentOS distribution’s default software develop-
ment environment based around the GNU Compiler Collection
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(GCC), the Intel 2011 and PGI 12 compilers are available to
users of the system. To support efficient use of the system’s
CPUs , math libraries such as the Intel Math Kernel Library
(MKL) are also available.

II. INSTRUCTION MIX

A program’s instruction mix captures the number and type
of the instructions the program executes when applied to a
given input. To collect application instruction mixes from fully
optimized x86-64 executable files (also called binaries), our
toolkit uses a performance modeling framework called MI-
AMI. MIAMI uses a PIN [19]-based front-end to recover the
application control flow graph (CFG) and record the execution
frequency of select control flow graph edges during program
execution. After the program finishes, MIAMI recovers the
execution frequency of all CFG basic blocks, builds the loop
nesting structure, and uses XED [2] to decode the instructions
of each executed basic block. We decode the x86 instructions
into generic operations that resemble RISC instructions. Thus,
arithmetic instructions with memory operands are decoded into
multiple micro-ops: one for the actual arithmetic operation,
plus one additional micro-op for each memory read and write
operation performed by the x86 instruction. Each micro-op has
associated attributes such as bit width, data type (integer or
floating-point), unit type (scalar or vector), and vector length
where applicable.

In our methodology, we aggregate these micro-ops into
a few coarser categories as seen in Tab. III. Load and store
operations are all classified as either MemOps if they operate
on scalar values, or MemSIMD if they operate with vector
data. Arithmetic operations are classified as floating-point vs.
integer, and also as scalar vs. SIMD, resulting in four exclusive
categories. The Moves category includes scalar and vector
register copy operations, as well as data conversions from one
data type to another or between different precisions of the same
data type. All conditional and unconditional branches, as well
as direct and indirect jumps, are classified as BrOps. Finally,
the Misc category includes all other types of instructions, such
as traps, pop count, memory fence and other synchronization
operations.

Collecting instruction mixes from application binaries has
both advantages and disadvantages. Working at the binary level
reveals the precise instruction stream that gets executed on
the machine after all the compiler optimizations are applied.
In addition, classifying the semantics of low level machine
instructions is less error prone than trying to understand the
resulting instruction mix of a high level source code construct.
Compilers often need to generate many auxiliary machine
instructions to perform a simple source code operation such
as an array access. On the other hand, compiler choice and
compiler optimizations may affect the reported instruction
mixes. In particular, the quality of the register allocator has
a direct effect on the number of memory operations in the
instruction stream. Other scalar optimizations influence the
number of auxiliary instructions that end up in the final
application binary.

In our methodology, we strive to be consistent in how
we profile applications, making sure that we used the same
compiler and optimization flags in all cases. This consistency
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allows us to more directly compare the instruction mixes from
the applications under study.

TABLE III: Instruction category descriptions.

Category Description
MemOps Scalar Load and store operations
MemSIMD  SIMD Vector Load and store operations
Moves Integer and floating-point register copies; data type and
precision conversions
FpOps Scalar floating point arithmetic
FpSIMD Vector floating point arithmetic
IntOps Scalar integer arithmetic
IntSIMD Vector integer arithmetic
BrOps Conditional and unconditional branches; direct and in-

direct jumps
Misc Other miscellaneous operations, including pop count,
memory fence, atomic operations, privileged operations

SIMD. Many commodity microprocessors used in today’s
supercomputers include support for Single Instruction Multiple
Data (SIMD) instructions. When executed, a SIMD instruction
performs the same operation on several data values simultane-
ously to produce multiple results. In contrast, a non-SIMD
instruction produces at most a single value. On processors
that support SIMD instructions, using such instructions is
desirable because it increases the amount of data parallelism
possible using a given number of instructions. From another
perspective, using SIMD instructions places less demand on
the memory subsystem for instruction fetches and data loads
and stores compared to a sequence of non-SIMD instructions
that perform the same sequence of operations. SIMD instruc-
tions were introduced for commodity microprocessors in the
latter half of the 1990s [16], [3] and promoted as support for
accelerated graphics and gaming. However, many operations
used for graphics and gaming are also useful in scientific
computing, making modern SIMD instruction set extensions
such as the Streaming SIMD Extensions 4 (SSE4) [29] an
attractive target for developers of scientific applications.

We use an instruction’s extension as reported by XED
to classify instructions as vector or scalar operations. Some
modern compilers commonly generate SSE instructions even
for scalar arithmetic, because the SIMD execution path is
faster than the x87 pipelines on current x86 architectures.
To make the instruction mix metric less dependent on the
compiler, we classify SIMD instructions that operate on a
single data element as scalar. Therefore, our reported SIMD
counts correspond to true vector instructions that operate on
multiple data, and the SIMD counts may be lower than a
classification based exclusively on instruction extensions.

Results. For this study, we classify SIMD instructions into
three categories: memory, integer, and floating-point as seen
in Tab. III. Note that SIMD register copy operations are not
reported separately. Instead, they are aggregated together with
their scalar counterparts in the Moves category.

Tab. IV shows the instruction mix captured from bench-
marks, proxy apps, and full applications. A few commonalities
and distinctions are noteworthy.

First, HPL is strikingly different from every other bench-
mark, proxy app, and full application. It is composed of over
60% floating point operations; this is nearly double the next
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TABLE IV: Instruction Mix Characteristics (Percentage of all instructions - NOPs excluded.)

I
s g g g

s 2 v 2 % DR <

5 2 ¢ & 2 & 2z ¢ & 3

i = = e g E E = g =
HPCC:HPL 0.9 19.2 0.1 60.2 3.1 0.0 15.7 0.8 0.0
HPCC:MPIFFT 24.1 5.7 11.3 11.3 22.5 0.1 18.5 6.4 0.0
HPCC:MPIRandomAccess  28.2 3.3 0.0 0.0 41.1 1.8 10.9 146 0.1
HPCC:PTRANS 27.5 1.1 6.7 0.9 36.4 1.1 20.3 6.0 0.0
Graph 500 24.7 0.1 0.0 00 376 0.0 225 15.1 0.0
AMG (setup) 17.3 0.1 0.4 0.0 530 0.0 3.1 26.1 0.0
AMG (solve) 29.8 1.3 15.7 06 213 00 204 109 0.0
MOCFE 31.2 10.1 1.0 6.7 28.8 0.1 10.8 10.9 0.1
Nekbone(1024Weak) 31.3 5.1 0.3 21.2 12.1 0.1 25.3 47 0.0
LULESH 31.1 2.2 29.7 4.6 2.2 0.0 28.9 1.2 0.0
S3D 19.1 14.0 3.3 18.3 199 2.1 14.4 7.7 1.0
SPASM 31.7 04 219 0.4 13.5 02 241 7.8 0.0
GTC 32.7 0.0 7.6 0.3 38.3 0.0 4.4 16.6 0.0
ddcMD 28.6 0.2 34.9 0.3 7.1 00 267 2.3 0.0
LAMMPS_EAM 36.4 0.0 2838 0.0 8.6 03 206 52 00
LAMMPS_LJ 33.7 0.1 22.6 0.0 104 00 276 56 0.0
LAMMPS_RHODO 35.1 0.5 18.5 1.0 144 02 225 7.8 0.0
Nek5000 (MHD) 29.6 2.6 2.4 9.1 23.3 0.1 25.7 7.2 0.1
POP 18.6 15.1 8.4 142 203 1.2 14.8 7.5 0.0

TABLE V: Distribution of data sizes for Memory/Move/Arithmetic Instructions. A/B/C/D/E format represents percentage of
instructions working on 8/16/32/64/128 bit width data, respectively. (* In FpOps for HPCC:MPIFFT, E in the A/B/C/D/E format

indicates 80 bits.)

Target MemOps Moves IntOps IntSIMD FpOps FpSIMD

o0 0 0 0 o0 0

o2 3 8oz 8,20a38.2g 38,203 8,29 3 8

HPCC:HPL o o0 I 3 9|0 0 2 0 970 0 17 8 0|0 O 100 o 0,0 O O 100 0,0 O 1 9 0
HPCC:MPIFFT 2 2 9 69 197 0 13 3 4,0 0 26 74 0,0 0O 8 14 0|0 O O 9 5[0 0 5 95 0
HPCC:MPI-RA 32 14 71 111 0 32 66 1,0 0 15 8 0|0 0 100 o 0,0 O O 100 0|0 O O 0 0
HPCC:PTRANS 1 1 55 40 4,0 0 54 30 16/0 0 75 25 0|0 0 100 0O 0,0 O O 100 0|0 O 40 60 O
Graph 500 0 0 32 68 0|0 0 16 8 0|0 0 10 9 0|0 0 100 0O 0,0 0 O 0O 0]0 0 O 0 0
AMG (setup) 0O 0 61 3 1,0 0 23 67 100 0 53 47 0] 0 O 100 0O 0,0 O O 100 0|0 O 66 34 0
AMG (solve) 0 0 34 62 4,0 0 1 54 4570 0 4 9 0[]0 0 99 1 0{0 O O 100 O[O O O 100 O
Nekbone 1 1 6 79 14,0 0 6 45 50]0 0 25 75 0|0 0 100 o 0,0 O O 100 0O/0 O O 100 O
LULESH 0O 0 3 9 7,0 0 1 35 64]0 0 48 52 0|0 O 0 100 0[O0 O O 100 O[O O 41 59 0
S3D 0O 0 5 52 42,0 0 12 41 47,0 0 28 72 00 O 79 21 O0y,0 O O 100 OO0 O 3 97 O
GTC 0O 0 3 64 0,0 0 29 54 170 0 4 95 0|0 0 100 0O 0,0 O 88 12 0,0 0 77 23 0
ddcMD o 0 495 1,0 0 2 17 8|0 0 28 72 0|0 O 68 32 0|0 O O 100 0|0 O 45 5 0
LAMMPS_EAM | 0 0 I5 8 0|0 O 11 48 410 0 60 40 0| O O 100 o 0,0 O O 100 0|0 O O 0 0
LAMMPS_LJ 0O 0 11 8 0|0 O 10 3 53] 0 0 62 38 0|0 0 100 o 0,0 O O 100 0,0 O O 0 0
LAMMPS_RH 1 1 14 8 1|0 0 12 40 4|0 0 52 48 0|0 O 95 50,0 0 0 100 00 O 13 8 0
NEK5000 MHD) | 1 0 14 77 8|0 O 14 36 50| 0 0 42 58 0| 0 0O 100 o 0,0 O O 100 O0/0 O O 100 O
POP 1 0 8 47 4570 0 10 35 5|0 0 19 8 0|0 0 100 0O 0,0 O O 100 0,0 O 16 84 0

highest code (35% in ddcMD). It has the lowest number of
branch operations (<1%) as well; most codes are many times
higher. Virtually every one of its memory and floating point
operations are vectorized, which is unique among our test
codes, and it has the lowest fraction (20%) of instructions
devoted to memory operations. With respect to instruction
mix, HPL has little in common with the “real” computational
science applications we studied.

A comparison of instruction mixes can also provide in-
teresting insights into how well a proxy app represents its
full application. For instance, consider the Nekbone proxy
app intended to represent some characteristics of the Nek5000
application. Though similar in some ways, we also see clear
differences: the fraction of floating point instructions in Nek-
bone is about double that of Nek5000, and the fraction of

integer instructions is about half that of Nek5000. The different
solvers in LAMMPS also exhibited some dissimilarities, such
as a higher floating point instruction mix for EAM and a
higher integer mix for RHODO, but the similarities across
these LAMMPS benchmarks outweighs their differences. For
AMG, we separate the setup phase from the solution phase, as
the setup phase tended to run longer than the solution phase for
the benchmark problems we used. We saw a vast difference
in the instruction mixes between these phases, with a much
greater integer instruction mix during setup, and many more
floating point instructions during the solution.

Looking at trends across all of our test cases, memory
operation mix is—except for HPL —quite similar across
the codes. Most comprise 30% to 35% memory instructions,
though the fraction of those that are SIMD varies from none
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to at most half.

The fraction of integer instructions is surprisingly high
across a number of applications. A few standout examples
in the applications are in GTC and the setup phase of
AMG, at 38% and 53%, respectively. In benchmarks, HPCC’s
MPIRandomAccess and PTRANS and Graph500 are high as
well, around 40% integer instructions. Excluding LULESH
(2.2%), the remaining codes are between 7% to 29% integer
instructions. Interestingly, though integer instruction count is
more than we expected, no code has any significant fraction
of vectorized integer instructions; most between 0% and 0.2%,
and S3D is the highest at 2%.

Tab. V shows the distribution of memory/move/arithmetic
instructions according to their working data sizes, which can
provide additional insight about the workloads, especially for
designing more specialized hardware. The results in the table
indicate that most of memory/arithmetic instructions work on
either 32 or 64 bits, as expected.

III. MEMORY BEHAVIOR
A. Memory Bandwidth

All memory systems have a limited data transfer speed
due to the limited capacity of hardware queues in the proces-
sor and the memory controller, the finite number of buffers
and ports in memory DIMMs, as well as the limited width
and frequency of memory buses. Due to improvements in
computational throughput such as speculative execution and
hardware prefetching, applications often become bottlenecked
by the transfer capacity of the memory system. This effect is
exacerbated as the number of cores on a single chip increases,
since those cores compete for limited memory resources.

It is important to understand how applications exercise
the memory system. One metric that provides insight is the
consumed memory bandwidth, which for many applications
is a measure of achieved throughput. Memory bandwidth is
defined as the ratio between the amount of data transferred
to and from memory, and the time it takes to execute the
application.

Achieved memory bandwidth is a performance metric
dependent on both the application and the underlying archi-
tecture. We use hardware performance counters to measure
the number of read and write transactions to memory. Modern
micro-processors expose hardware performance events at the
memory controller level. These events count read memory
requests caused by both data accesses missing in the cache
and prefetch requests initiated by the hardware prefetcher, as
well as write transactions due to modified cache lines being
written back to memory.

In our methodology, we use PAPI [7]-based calipers that
record the number of read and write memory transactions
as well as the wall clock time it takes to execute the code
between the calipers. We compute separate bandwidth results
for memory reads and writes.

Results. Each microprocessor in our experimental platform
has its own integrated memory controller. As a result, we are
interested primarily in the achieved memory bandwidths per
socket. Fig. 1 presents the read and write memory bandwidths
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per socket we measured for our test applications. The figure
also includes the sustained peak machine bandwidth for one
socket, measured for different ratios of read and write memory
transactions. To measure these peak bandwidths, we wrote
a micro-benchmark that accesses a large block of memory
and modifies part of the memory. By varying the amount
of memory modified, our micro-benchmark achieves different
ratios of memory writes to memory reads. Note that with a
write-allocate cache policy, our micro-benchmark can generate
write and read memory transactions in a ratio of at most 1:1.

12000

Peak macﬁine bandwidth - ' '
10000 1
o :
o :,
= 8000 [ 1
= POP..
= X
b
S 6000 [ 1
T -
S g
a .
NEK
£ 4000 - x 1
= NEKBONE
2000 g
LuLesH®TC ]
0 : : : :
0 5000 10000 15000 20000

Read Bandwidth (MB/s)

Fig. 1: Measured application bandwidths and sustained peak
machine bandwidth per socket

The data in Fig. 1 shows that POP is running very close
to the test machine’s peak memory bandwidth. Therefore,
POP is memory bandwidth limited and would not benefit
from an increase in core concurrency without similar increases
in available bandwidth. At the other end of the spectrum,
LULESH and GTC achieve only a small fraction of the ma-
chine’s memory bandwidth. Because LULESH does not have
MPI support, it was executed only in serial mode, achieving
about 2GB/s of combined read and write memory bandwidth
per core. GTC, however, does use MPI, and still exhibited a
low memory bandwidth even when four GTC processes were
run on each socket. The low GTC memory bandwidth results
indicate that GTC is likely memory latency limited.

Nek5000 and Nekbone are in between these two extremes.
They achieve a significant fraction of the sustained machine
bandwidth, with some room for core concurrency scaling.
We also note that Nek5000 generates a higher ratio of write
memory transactions than its proxy, Nekbone.

B. Reuse Distance

Reuse distance is defined as the number of distinctive data
elements accessed between two consecutive references to the
same element. We use reuse distance as a metric to quantify
the pattern of data reuse or program locality. Reuse distance
is independent of architecture, because it measures the volume
of the intervening data accesses between two accesses. Reuse
distance largely determines cache performance. For a fully as-
sociative cache under Least Recently Used replacement, reuse
distance can accurately measure the number of cache hits or
misses, given cache configurations. Reuse distance also allows
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direct comparison of data behavior across applications. As the
memory hierarchy becomes deeper and more adaptive, it is
increasingly important to quantify reuse distance to optimize
application performance.

Measuring reuse distance is challenging due to its high
cost in terms of time and space. For each memory access,
we need to check previous memory access records to count
distinctive data elements, which is often time consuming. For
a program accessing a large amount of data, the space required
to save previous access records is also intimidating. To work
around these problems, we use an approximate reuse distance
analysis [11] with a Pin-based binary instrumentation tool to
measure reuse distance. We use a splay tree to organize the last
access record of each block of data. This approach relies on
the observation that the accuracy of the last couple of digits of
a reuse distance rarely matter [11]. This method significantly
reduces the time and space requirements for measuring reuse
distance.

Results. Using the tool described in §III-B, we measured
data block reuse distance for 12 applications. We used a data
block size of 64 bytes. Despite our optimizations for reducing
measurement cost, measuring reuse distance empirically still
has a high time and space cost. To make measurement feasible,
we had to use smaller problems for some of the applications
we studied. Thus, for LAMMPS, we simulated 1,600,000
atoms per process with the LJ and EAM problems (using
approximately 575 MB and 498 MB per process, respectively)
and 128,000 atoms per process for the RHODO problem (using
approximately 474 MB per process).

- nekbone
--s3d

—-amg

—spasm
----nek

; - -mocfe
0.87 —=-gtc = lammps-rhodo
0.86 —lammps-ij —pop

64 128 256 512 1024 8K 32K

Reuse distance

Fig. 2:
distance

Cumulative distribution functions (CDF) of reuse

Fig. 2 shows the cumulative reuse distance function for
one MPI task for each application. The X axis represents
a given reuse distance value z, while the Y axis represents
the percentage of application data block accesses that exhibit
a reuse distance of x or less under each model. Although
the distribution of reuse distance for a specific application is
strongly correlated to the input problem size, Fig. 2 shows
that the reuse difference (and hence program locality) differs
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greatly between applications. In addition, reuse distance curves
often have one or more knees and plateaus, which correspond
to different working sets [23]. In many cases, the shape of
a specific plot (knees and plateaus) is similar across different
inputs [10]. Thus, although we used a single input per program
in this study for most programs, our measurements suggest
the applications, proxy apps, and benchmarks exhibit a wide
diversity of working sets.

Fig. 2 shows a substantial difference between Nekbone and
Nek5000 with respect to reuse distance. In particular, 98% of
Nek5000 memory references have a reuse distance of less than
64, while the corresponding number for Nekbone is only 85%.
Upon further investigation, we found that Nekbone’s run time
is dominated by the conjugate gradient method (CG) and this
method does not have good data locality. On the other hand,
Nek5000 employs various numerical algorithms, including CG.
Some of these algorithms have much better data locality than
CG, which explains the higher concentration of reuse distances
in the < 64 range for Nek5000.

In Fig. 2, each CDF curve exhibits only a few
plateaus/knees, showing that the reuse distance is highly con-
centrated in a few ranges. For example, AMG, Nekbone, and
LAMMPS-LJ have 3, 2, and 3 plateaus/knees, respectively.
This is consistent with earlier studies of reuse distance [10],
[23]. In addition, for SPASM, MOCFE, GTC, and POP, more
than 99% memory references have reuse distances less than
64. The high concentration of reuse distance in a few ranges
suggests that if a cache’s size is just large enough to hold a
few concentrated ranges, the cache performance will be almost
the same as that of a larger cache. However, because of the
differences in the concentrated ranges across applications, a
dynamic cache with a few configurable effective cache sizes
may be desirable for systems with a varied workload.

IV. COMMUNICATION

The efficiency and scalability of communication and syn-
chronization operations is a critical determinant of the overall
performance of most parallel programs. In this study, we focus
on programs that use MPI for communication and synchro-
nization, for two basic reasons. First, most scalable scientific
applications use MPI including the applications we study here.
Second, MPI defines an interface that allows straightforward
capture of an application’s messaging characteristics, so there
are many tools available for measuring a program’s MPI
behavior.

In our methodology, the MPI data transfer operations we
consider fall into two categories: point-to-point (P2P), in which
a single sending MPI task transfers data to a single receiving
MPI task, and collective, in which a group of processes
participate in an operation such as a data broadcast or an all-
to-all data exchange.

In this study, we examined the communication behavior of
our test applications running on the KID system’s Infiniband
interconnection network. Tab. VI summarizes the communica-
tion behavior of the applications we studied. In the table, the
columns indicating percentage of point-to-point and collective
communication operations show the percentage of the total
MPI operation count.
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TABLE VI: Basic Communication Characteristics. (P2P and Coll % are the percentage of invocations of each class of MPI

subroutines.)

Application P2P % Coll % P2P Subroutines Coll Subroutines Comments
AMG 99.7 0.3 Recyv, Isend, Irecv Allreduce, Bcast, All- In setup, even P2P messages are extremely small (<128
gather, Scan bytes).
Nekbone (linear) 39.8 60.2 P2P or Allreduce gather-scatter implementation
Isend, Irecv Allreduce .
Nekbone (3D) 88.6 11.4 chosen dynamically
MOCFE 44.1 55.9 Isend, Irecv Allreduce, Reduce
S3D 99.7 0.3 Isend, Irecv, Send Allreduce, Bcast 3D Nearest Neighbor on Reg. Grid, periodic BC
SPASM 100.0 negl SendRecv Allreduce, Barrier 3D Nearest Neighbor on Reg. Grid, periodic BC
GTC 78.9 21.1 SendRecv Allreduce 1D Nearest Neighbor along toroid domain
ddcMD 90.0 10.0 Isend, Irecv, Send, Recv Allreduce, Bcast, Unstructured, flexible domain decomposition
Gather, Scatter
LAMMPS-EAM 99.0 1.0 Large P2P messages (>500KB), small collec-
LAMMPS-LJ 100.0 0.0 Send, Irecv Allreduce tive messages (<64 Bytes); RHODO adds non-
LAMMPS-RHODO 97.7 23 neighbor P2P comm. for long-range forces
Nek5000 96.6 3.4 TIsend, Irecv, Send, Recv Bcast, Allreduce, Bar- 2D/3D nearest-neighbor communication patterns on an un-
rier structured grid
POP 54.4 45.6 Isend, Irecv Allreduce 2D Nearest Neighbor

TABLE VII: P2P Communication Characteristics. Buffer size columns show histogram bin upper limit.

Buffer Size

Application Topology n  Min Max Med.
AMG Unstructured in 2D extruded to 3D 256 23 222 27
Nekbone Linear 128 290 29 29
Nekbone 3D geometry 128 26 222 gl4
MOCFE 3 Dim of Parallelism — Mesh, Energy Group, & Angle 256 213 214 214
S3D 3D Nearest Neighbor 256 25 216 2l5
SPASM 3D Nearest Neighbor 256 23 213 26
GTC 1D Nearest Neighbor along the toroid domain 256 24 219 218
ddcMD 3D unstructured 256 23 217 215
LAMMPS-EAM 3D Nearest Neighbor 96 23 222 220
LAMMPS-LJ 3D Nearest Neighbor 96 22t 221 921
LAMMPS-RHODO Mainly 3D Nearest Neighbor 96 23 222 2l7
Nek5000 2D/3D nearest-neighbor 128 23 220 210
POP 2D Nearest Neighbor 64 29 212 29

To collect data about application communication behavior
and performance, we use mpiP version 3.3. Normally mpiP
presents summary statistics about a program’s MPI behavior,
but we modified mpiP to also collect data about the number
of point-to-point operations performed between each pair of
program processes and the volume of data transferred in those
operations. Our modified mpiP outputs this data in the form
of adjacency matrices. Visualizing such matrices is a concise
and effective way to communicate the topology of a pro-
gram’s point-to-point communication behavior. For example,
visualizing the adjacency matrix for an application whose tasks
communicate only with their nearest neighbors in a Cartesian
topology (e.g., a 3D stencil operation) produces a distinctive,
repeating pattern near the matrix diagonal. With some practice,
common communication patterns can be recognized in these
visualizations. We also modified mpiP to generate histograms
of the data sizes used in point-to-point and collective op-
erations. These histograms give an indication of the type

of demands a program places on a system’s interconnection
network, such as whether a program performs a large number
of collective operations involving small messages.

A. Point-to-Point

Fig. 3 shows average point-to-point communication volume
per iteration for three benchmark problems used in our study.
In each case, the data shown was captured during the first ten
iterations of the program’s main loop. These figures display
the communication data as a matrix, such that the block at
location (s, d) is colored according to the volume of data sent
from MPI rank s to MPI rank d.

Fig. 3a shows the average communication volume for the
LAMMPS EAM benchmark running on 96 processes. The
repeated pattern in the figure reflects a three-dimensional
nearest-neighbor communication pattern. Fig. 3b also suggests
a three-dimensional nearest-neighbor communication pattern,
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(b) LAMMPS Rhodo benchmark, 96 tasks.
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(f) POP application, 64 tasks.

Fig. 3: Average volume of point to point communication. Color scale is consistent across all plots.

but unlike the pattern for the EAM benchmark the pattern
suggests that sub-groups of processes participate in commu-
nication topology that is fully-connected within each sub-
group. Also, there is a significant amount of point-to-point
communication between MPI tasks that are not neighbors in
the spatial decomposition. This is to be expected, because
unlike the EAM benchmark, the Rhodo benchmark includes
long range forces in its computation of potential. These two
matrices also illustrate how much the communication pattern
of the same program can vary depending on the problem input.

Fig. 3c presents the average point-to-point communication
volume per iteration for the HPCC MPI RandomAccess phase.
Because the RandomAccess benchmark performs updates to
memory locations selected randomly with a uniform distri-
bution across all processes involved in the benchmark, one
expects to see that each MPI task communicated approximately
the same amount to each of the other MPI tasks, giving a
matrix that is all one color except on the diagonal (since
a process need not use MPI operations for updates within
itself). Thus, the communication pattern shown in the figure, a
nearest neighbor pattern, is counter-intuitive. In fact, the figure
is correct and results from the use of an algorithm optimization
that organizes the available MPI tasks into a virtual hypercube
topology and routes messages along this topology.

Figs. 3d and 3e highlight the differences in point-to-point
communication patterns between a full application, Nek5000,
and a proxy app intended to mimic that application’s behavior,

Nekbone. The proxy app’s communication pattern is much
more regular than that of the full application. Note that this
difference does not necessarily mean the proxy app is not
a valid stand-in for the full application, but it does suggest
that the proxy is not a good representative with respect to
communication behavior for the input set we used.

Finally, Fig. 3f shows the average point-to-point communi-
cation volume for the well-studied POP application. This figure
suggests POP’s primary point-to-point communication pattern
is nearest neighbor, but that some processes also communicate
with processes that aren’t necessarily neighbors. This non-
neighbor communication appears somewhat random, and is
likely a result of the way that the earth’s oceans are mapped
to the available MPI tasks.

B. Collective

The programs we studied exhibited substantial variety in
their collective communication behavior. The programs varied
in the number and size distribution of the messages they
sent using collective operations, but most that used collectives
did so using small message sizes. For example, our three
LAMMPS benchmark problems either did not use collectives
at all during the main computation phase (LJ benchmark),
or sent very little data per operation (EAM and RHODO,
which performed collectives using messages with fewer than
64 bytes). Likewise, the “global” phases of the HPCC bench-
mark exhibited more varied behavior. Both MPIRandomAccess
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and MPIFFT exhibited a bimodal distribution, with some
small collective operations (fewer than 32 bytes) but also
larger collective operations (MPIRandomAccess issued over
250,000 collective operations that sent 256KB per process,
while MPIFFT issued operations using 256MB per process).
In both cases, the operations involving a larger amount of
data were all-to-all operations. Like LAMMPS, the collective
operations in PTRANS all involved small amounts of data per
operation. Our modified version of mpiP reported no collective
data transfer operations used within the HPL phase of the
benchmark suite. Inspection of the HPCC source code shows
that HPL does use collective operations, but it uses its own im-
plementation based on MPI point-to-point operations instead of
the MPI collective operations. Because mpiP only collects data
about calls to MPI functions, our current methodology cannot
detect these data transfers as logically collective operations.

V. OBSERVATIONS

In this section, we make a number of observations from this
evidence for future architectures. First, we consider instruction
mix.

1) None of the applications make use of integer SIMD
instructions, even though some of the applications do a
reasonable amount of integer calculation.

2) About half of tested applications have more integer oper-
ations (IntOps + IntSIMD) than floating point operations
(FpOps + FpSIMD).

3) All applications except for LULESH have non-negligible
amount of integer computations.

4) MemSIMD is rare, only occurring in S3D, POP, and
MOCEFE. And in those three cases, it is still lower (by
percentage) than non-SIMD mem ops.

5) For all apps except ddcMD, the number of memory
operations (MemOps + MemSIMD) are greater than the
number of floating point operations (FpOps + FpSIMD).

6) When FpSIMD is high, the number of branches is always
low.

Second, we review the memory behavior of our appli-
cations. Not surprisingly, memory behavior has a dramatic
impact on performance, but it is also more difficult to measure.

1) POP runs at close to peak machine bandwidth and gener-
ates a higher ratio of write memory transactions than the
other applications in this study.

2) GTC achieves a very low memory bandwidth utilization,
indicating a poor memory access pattern.

3) The reuse distance is highly concentrated in a few ranges,
indicating the opportunity for cache architecture improve-
ments.

Third, communication is one of the most important behav-
iors in determining overall performance for scalable scientific
applications.

1) All of the distributed memory applications use the
Allreduce collective operation with small data pay-
loads (i.e., one double precision number). This analysis
reconfirms an earlier observations [31], and has been
used to motivate hardware support for collective offload
engines in the interconnect.
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2) In general, the applications and benchmarks exhibited
either a uni-modal collective communication distribution
with very small payloads, or a bimodal distribution with
both small payloads and very large payloads. Often the
large amounts of data sent were used in Alltoall
operations, such that each process sent a smaller amount
of data to each other process, but the aggregate amount
of data sent was large.

3) The communication operations for several of the appli-
cations we studied were nearly all point-to-point (P2P)
operations (by count). This preference for P2P operations
appears to be driven mainly by the need for scalability;
collective operations, even when implemented with op-
timal algorithms, can serve as a scalability limitation.
Nevertheless, most applications require at least a few
collective operations.

4) As expected, the basic P2P communication behavior of
the applications that explicitly simulate a physical system
is a nearest neighbor communication pattern. The appli-
cations differ signficantly, however, in how much data is
transmitted through those P2P operations, and whether
they exhibit an element of non-neighbor communication.

5) The runtime communication selection in Nek5000 and
Nekbone reconfirms that a well-optimized collective com-
munication library generally performs better than the P2P-
based counterpart.

Finally, aside from specific architecture metrics, we also
compare some of the proxy applications against real appli-
cations. Benchmarks and proxy applications are very valuable
because these kernels provide hardware and software architects
with comprehensible code segments that can be simulated
and easily rewritten in alternative programming languages.
However, because these benchmarks and proxy applications are
precisely simplified versions of their real-world counterparts,
they also can have different behaviors.

1) Not surprisingly, HPL is a significant outlier from all
the applications we tested: practically all (79.4%) of its
instructions are memory and floating point SIMD oper-
ations. HPL has more that twice the number of floating
point operations than the other applications, proxy apps,
and benchmarks we studied.

2) The proxy app (e.g., Nekbone) and the corresponding
full application (e.g., Nek5000) can have different reuse
distance distributions. It is important to investigate the
full application to understand data locality.

3) Proxy applications and benchmarks tend to have higher
rates of SIMD instructions because complex memory ac-
cess patterns have been removed from compute-intensive
loops, and the compiler can optimize and identify SIMD
optimizations with higher clarity.

4) Finally, the communication topologies that we measured
show that some of the proxy apps do not necessarily
represent the communication behavior of the application
they are intended to model.

VI. SUMMARY

We have presented an empirical analysis of several im-
portant scalable scientific applications, benchmarks, and proxy
applications. Using a methodology supported by a toolkit of
performance tools that allows us to study detailed computation,



PMBS13 Preliminary Version

memory, and communication behavior at varying levels of res-
olution, we confirmed many of our expectations but also found
a number of surprises. In this time of rapid architectural change
for the sake of balancing energy efficiency and reliability
against realized performance, the quantitative measurements
provided by applying our methodology are critical for finding
the right balance point.
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