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Abstract—Code optimization in the high-performance com-
puting realm has traditionally focused on reducing execution
time. The problem, in mathematical terms, has been expressed as
a single objective optimization problem. The expected concerns
of next-generation systems, however, demand a more detailed
analysis of the interplay among execution time and other metrics.
Metrics such as power, performance, energy, and resiliency may
all be targeted together and traded against one another. We
present a multi objective formulation of the code optimization
problem. Our proposed framework helps one explore potential
tradeoffs among multiple objectives and provides a significantly
richer analysis than can be achieved by treating additional
metrics as hard constraints. We empirically examine a variety
of metrics, architectures, and code optimization decisions and
provide evidence that such tradeoffs exist in practice.

I. INTRODUCTION

The race to exascale is rapidly changing supercomputer
architecture designs. Shrinking circuit sizes and a growing
push toward heterogeneous architectures is yielding systems
with processors with many cores, sometimes differing vastly
in their capabilities. From a user’s standpoint, these changes
fundamentally alter the way one interacts with these systems.
System resiliency, which traditionally was “free,” will no
longer be so. Lower voltage, a larger number of elements
within a node, and elements’ shrinking feature sizes are ex-
pected to decrease the mean time between failures [30]. Adding
extra logic into the hardware to address the resiliency issue
takes up valuable chip real estate; the burden of making sure
the application ran to a successful and correct completion may
be shifted—at a performance/energy price—to the software.

Another challenge the new architecture designs expose is
the power wall problem. As an example, [30] recommends the
power wall for exascale systems be 20 MW, a limit that is
already being flirted with by current-generation petaflop sys-
tems∗. Hardware architects are consequently working closely
with application scientists to design systems that can deliver
more FLOPs per Watt. Hardware-based solutions alone cannot,
however, address all the different stress scenarios that software
phases might put on hardware. Part of the solution has to
come from the software side as well; these solutions can
be addressed by autotuning. Autotuning is the systematic
process of navigating the space defined by the software and
hardware parameters that impact a metric related to the per-
formance of the system. Next-generation autotuning strategies
should efficiently identify and obtain high-performance code

∗For example, the Tianhe-2 computer requires 17.8 MW of power to achieve
33.8 LINPACK petaFLOP/s [5].

optimizations that can help reduce the power demands of
key computational pieces of the scientific applications and
carefully orchestrate hardware-provided configuration options
to reduce the power draw. Exascale systems will also provide
massive concurrency; billions of cores are projected. Writing
an application that can take advantage of the available compute
resources will provide substantial challenges to today’s high-
performance computing (HPC) application developers.

Traditionally, the autotuning problem has been expressed as
a single-objective (execution time) minimization problem (see,
e.g., [12]). Given current and projected changes in architecture
designs, however, this formulation of the problem is insuf-
ficient for a wide variety of emerging autotuning problems.
Execution time will be one among several, possibly competing,
system-related metrics such as system resiliency and energy
consumption that must be optimized. Ramping up the speed
of the processor to complete the application execution, for
example, can jeopardize system resiliency because the increase
in chip temperature can make it more vulnerable to failures.
Similarly, launching an application to utilize more cores than
its computational phases need, or can exploit, wastes energy.
Therefore, a multi objective formulation of the autotuning
problem is needed.

Multi objective optimization concerns the study of optimiz-
ing two or more objectives simultaneously. Even if there is a
unique optimal (software/hardware) decision when any of the
objectives is considered in isolation, there may be an entire set
of solutions when the objectives are considered collectively.
This set is referred to as a Pareto front (formally described
in Section III) and plays an integral role in a wide variety
of decision problems in HPC. Two examples relevant to this
paper are the following:

1) HPC administrators increasingly must balance financial
costs associated with energy consumption with the need
for users to obtain results in a timely manner. In some
cases it may be possible to quantify a price on time and
thereby obtain a single, weighted objective comprising
both energy and time costs. However, such a priori
weights are typically unknown, and minimizing such a
single objective does not provide information when these
weights (or the price of energy) change. A Pareto front in
the time-energy space provides optimal solutions for all
possible weights/prices.

2) For hardware design and thermal considerations, power
capping—where one must perform a computation while
satisfying a specified power limit/budget—is increasingly
done. Performance tuning in this context could minimize



the single objective of run time subject to a constraint
on power. However, such a single-objective optimization
will not identify the implications associated with that
particular power limit. A one watt increase in this limit
could be deemed acceptable if it allowed for a 20%
reduction in time. Similarly, a decrease in the power limit
could result in a negligible performance loss, and thus
placing less thermal stress on the hardware would come at
minimal cost. A Pareto front in time-power space provides
valuable information on the performance consequences of
setting power limits.

Hence, multi objective optimization studies provide signifi-
cantly richer insight than do single-objective and constrained
optimization approaches. The related work summarized in
Section II provides further examples where considering several
metrics simultaneously is of interest.

In Section 3, we present a mathematical formulation of the
multi objective performance tuning problem. In Section IV we
bridge the terminologies used by the mathematical optimiza-
tion and performance-tuning communities for the specific case
of time, power, and energy metrics. We establish conditions
when problems using these metrics benefit from a multi objec-
tive formulation and when the number of objectives of interest
can effectively be reduced. To illustrate the relationship be-
tween tuning decisions and multiple, simultaneous objectives,
we consider a set of problems based on common HPC kernels.
Section V presents decision spaces consisting of different
loop optimization techniques (e.g., loop tiling, unrolling, scalar
replacement, register tiling), clock frequencies, and paralleliza-
tion (e.g., thread and node counts). We use these problems
to conduct an experimental study on multiple objectives on
several novel architectures. To the best of our knowledge, this
is the first detailed work on empirical analysis of run time,
power, and energy tradeoffs on an Intel Xeon Phi coprocessor
(Section VI-A), an Intel Xeon E5530 (Section VI-B), and
an IBM Blue Gene/Q (Section VI-C). Our results show that
tradeoffs exist in practice under a number of different settings.

Although current architectures expose only a limited set
of energy and power-related parameters (e.g., CPU clock
frequency) to the software, we anticipate that exascale ar-
chitectures may admit a richer set of hardware parameters
(e.g., power gating of different hardware components) that
have power and energy implications. Therefore, we believe
that presenting a framework that shows how tradeoffs can be
explored is an important contribution to the HPC community.
Furthermore, the existence of these tradeoffs can motivate
hardware designers to expose a richer set of configuration
knobs to future administrators and software designers. This
framework and our analysis are sufficiently general and can
be easily extended to incorporate new hardware- and software-
based power and energy configuration options as they become
available.

II. RELATED WORK

Several recent works have examined metrics based on
performance and power/energy models. An energy-aware com-
pilation framework was developed in [27]. It can estimate
and optimize energy consumption of a given code taking as
input the architectural and technological parameters, energy

models, and energy/performance constraints. A performance-
adaptive algorithm for optical interconnects was proposed in
[29] and used to optimize power consumption, throughput, and
latency for various traffic patterns. A multi objective algorithm
based on game theory was proposed in [7] for mapping tasks
onto multi core architectures in order to optimize performance
and energy. An integrated architecture-circuit optimization
framework was used by Azizi et al. [11] to study the tradeoff
between energy and performance; the authors showed that
voltage scaling plays a crucial role in this tradeoff while the
choice of an optimal architecture and circuitry does not have
a significant impact. The authors in [40] adopted machine-
learning techniques to build predictive models for power draw,
execution time, and energy usage of computational kernels. A
“roofline” model for energy that takes into account algorithm
characteristics (e.g., operations, concurrency, and memory traf-
fic) and machine characteristics (time and energy costs per
operation or per word of communication) was developed in
[15]; using this model, the authors also analyzed the conditions
for tradeoffs between time and energy.

Objectives based on architectural simulations have also
been used. A multi objective exploration of the mapping space
of a mesh-based network-on-chip architecture was performed
in [10]; using evolutionary computing techniques, the authors
obtained the mappings on a performance-power Pareto front.
Performance, power and resource usage objectives were treated
by the design space tool in [25] to explore the vast design space
of the Grid ALU Processor and its post-link optimizer.

Closer to the presented work are exploratory studies using
empirical performance data in conjunction with power or
energy. The impact of energy constraints for multithreaded
applications on multiprocessor applications was studied in
[36] and synchronization-aware algorithms were proposed to
save energy with a user-acceptable loss in speedup. Power-
monitoring device, PowerMon2, was developed in [14] to
analyze performance and power tradeoffs. The authors in
[32] used a power-aware performance prediction model of
hybrid MPI/OpenMP applications to develop an algorithm to
optimize energy consumption and run time. An automated
empirical tuning framework that can be configured to optimize
both performance and energy efficiency was proposed in [37].
Energy and performance characteristics of different parallel
implementations of scientific applications on multi-core sys-
tems were investigated in [33], and interactions between power
and application performance were explored. The empirical
performance tuning tool Active Harmony [16] was used in
[39] to explore the tradeoff between energy consumption and
performance for HPC kernels. The effects of CPU and network
bandwidth tuning from a whole-system-level perspective were
analyzed in [31]; in demonstrating opportunities for energy
savings, tradeoffs between power and run times were found.

Researchers have also explored search algorithms for multi
objective problems. In addition to execution time, many of
these works involve objectives that are simpler to evaluate,
e.g., code size; and none have looked at power or energy
objectives. Performance and code size were considered in
a multi objective approach in [22] when an unroll factor
was varied. A multi objective evolutionary algorithm was
adopted in [23] to find Pareto-optimal (for combinations of
code size, compilation time, and execution time) compiler



optimization levels. Evolutionary search algorithms were also
used in the adaptive compiler framework [34] to find compiler
optimization sequences that minimize code size, average run
time, and worst-case run time. Automated tuning of a just-
in-time compiler through multi objective evolutionary search
was performed in [24]. The tuning identified optimization
plans that are Pareto-optimal in terms of compilation time
and a measure of code quality. Milepost GCC [20] is a
self-tuning optimization infrastructure that supports general
multi objective optimization where a user can choose to
minimize execution time, code size and compilation time. A
multi objective autotuning framework that adopts differential
evolution algorithms as a search methodology was developed
in [26]. The authors demonstrated the proposed approach by
optimizing run time and parallel efficiency when varying loop
tiling and thread-count parameters for parallel codes.

III. MULTI OBJECTIVE OPTIMIZATION:
BACKGROUND AND NOTATION

We consider the multi objective (sometimes called “multi
criteria” [19]) mathematical optimization problem

min
x∈X

F (x) = [F1(x), . . . , Fp(x)], (1)

where p > 1 objectives are simultaneously minimized. In
this paper, we assume that the n-dimensional decision space
X ⊂ Rn is a finite collection of discrete points of size |X |.
The assumption of a discrete and finite decision space can be
relaxed. We assume that each of the p objectives is bounded
from below but can take on the extended value “+∞” (e.g.,
corresponding to an infeasible code transformation within the
space X or a—ideally, reproducible—runtime failure) and that
there is at least one point in the decision space X at which all
p objectives are finite.

Many of the standard properties from single-objective
optimization have analogies in the multi objective setting. For
example, objectives f that should be maximized can be brought
into the framework (1) by defining Fi(x) = −f(x). Similarly,
the units of the component objectives Fi do not matter since
the solution set of (1) is invariant to shift and positive-scale
transformations†.

In the case of minimizing a single objective f , the idea of
(global) optimality is simple: x̂ ∈ X is optimal if and only if
f(x̂) ≤ f(x) for all x ∈ X . For multiple objectives, however,
we must alter this notion of optimality. The following defini-
tions are standard in multi objective mathematical optimization
(see, e.g., [19]).

Definition 3.1: We say that F (x) ≤ F (y) if Fi(x) ≤ Fi(y)
for all i = 1, . . . , p, and F (x) 6= F (y); in this case we have
that y is dominated by x. We say that a point x ∈ X is
Pareto optimal for (1), or non dominated, if there is no y ∈ X
with F (y) ≤ F (x). We denote the set of Pareto-optimal points
by X ∗ ⊆ X . The set of objective function values of all
Pareto-optimal points, F∗ = {F (x) : x ∈ X ∗}, is called the
Pareto front.

The concepts introduced in Definition 3.1 are perhaps best
illustrated by an example. Figure 1 (left) considers the case

†The solution set for minx F (x) is exactly that for minx{α +
diag(β)F (x)} for any α ∈ Rp and any positive β ∈ Rp.

when the p = 2 objectives of time, F1, and total power, F2,
are simultaneously minimized. The F1 × F2 objective space
shown is not to be confused with the decision space X (which
in this example corresponds to parameter values defining loop
unrolling and other code transformations, see Section V). For
the examples in Figure 1, we assume that the objective values
of every feasible decision x ∈ X are shown. The shaded area
represents the region in F1 × F2 space that is dominated by
the point C; all points in this region are inferior to C in both
objectives. The set of non dominated points form the Pareto
front F∗.

If the objective F1 (F2) is minimized in isolation, then
we obtain the point A (B), which necessarily belongs on the
Pareto front. Similarly, the minimizers of the single objective
fλ(x) = F1(x) + (1− λ)F2(x), for λ ∈ [0, 1], corresponding
to a convex combination of the objectives, will lie on the
Pareto front. However, not all points on the Pareto front
necessarily correspond to minimizers of a linear combination
of the objectives (e.g., point D in Figure 1 (left)).

Hence, the Pareto front contains significantly richer infor-
mation than one obtains from single-objective formulations.
For example, if one were to minimize time subject to a
constraint on power, F2(x) ≤ P , the Pareto front provides
the solution for all possible values of the cap P . In Figure 1
(left), we see that caps of 260 W, 257 W, and 254 W would
result in minimal times of 6 s, 6.5 s, and 8 s, respectively.

In some cases, the multiple objectives may not be compet-
ing. For the same decision space X considered in Figure 1
(left), Figure 1 (right) has a second objective of energy
consumption, which is strongly correlated with the objective
F1. In fact, the Pareto front now corresponds to a single point,
which simultaneously minimizes both objectives.

As evidenced in these examples, only certain regions of
the objective space are of interest. Typically, search algorithms
for efficiently finding Pareto fronts focus on a hyperrectangle
defined by two points formally defined below.

Definition 3.2: The ideal objective point F I=[F I1 , . . . , F
I
p ]

for (1) is defined component wise by F Ii = min
x∈X

Fi(x). The

nadir objective point FN = [FN1 , . . . , F
N
p ] for (1) is defined

component-wise by FNi = max
x∈X∗

Fi(x).

The ideal point represents the best possible value in isola-
tion for each objective. The ideal point can be attained only
if the Pareto front consists of a single point as in Figure 1
(right). The nadir point is the extreme point defined by the
Pareto front. In the example in Figure 1 (left), the ideal and
nadir points are at (5.97 s, 252.5 W) and (8.57 s, 260.5 W),
respectively. Together, the ideal and nadir points define the
range of objective values that decision makers may encounter
if they are interested in all possible optimal tradeoffs.

Before directing our focus to three specific metrics, we note
that hard constraints, including those involving an objective of
interest, can also be incorporated in (1). We assume that these
constraints define the decision space X and that the choice of
this decision space can directly affect the objective space, and
hence the ideal and nadir points.



Fig. 1. Illustration of Pareto fronts when minimizing two objectives (fdtd kernel, input size 512, Intel Xeon E5530; see Section VI-B). Left: The points A, B,
C, and D are non dominated and hence belong to the Pareto front. Right: The Pareto front is a single point, A, which dominates all other points.

IV. OPTIMIZATION OF TIME, POWER, AND ENERGY

In this section we focus on the particular bi objective
cases where either time and power or time and energy are
simultaneously minimized. We could just as easily examine
more than two simultaneous objectives. However, interpreta-
tion/visualization of the empirical results presented in Sec-
tion VI would be less straightforward. Furthermore, though
our experimental focus is on objectives defined by empirical
evaluation, our framework can also include objectives defined
by model or simulator evaluation.

For clarity, we denote the time, power, and energy objec-
tives by T , P , and E, respectively. Since power corresponds
to a rate of energy, these two problems (which we can write
as F = [T, P ] and F = [T, E]) are clearly related, with
E = PT .

One can exploit other properties of these three objectives
in their simultaneous optimization. For example, since T, P,E
are strictly positive, we can freely multiply/divide by T, P,E
without changing inequalities. Similarly, for many problems
of interest one can assume that the objective values of two
different decision points are different (i.e., for all x, y ∈ X
with x 6= y, T (x) 6= T (y)). This property ensures that there is
a one-to-one correspondence between Pareto-optimal decision
points X ∗ and the Pareto front F∗.

Furthermore, we may have a priori knowledge about
the relationship between some decision parameters and some
objectives. For example, for many architectures it is safe to
assert that power is monotonically increasing in the number
of nodes employed. Such relationships can be exploited by
both exploratory studies and search algorithms to reduce the
number of distinct decision points evaluated.

Because of the relationship between power and energy, we
have a simple relationship between the two objective spaces
considered here.

Definition 4.1: Let X ∗P⊆ X denote the set of Pareto-
optimal points for F = [T, P ], and let X ∗E⊆ X denote the
set of Pareto optimal points for F = [T, E].

Proposition 4.2: All points on the energy-time Pareto front
have a corresponding point on the power-time Pareto front:
X ∗E ⊆ X ∗P .

Proof: Let x̂ ∈ X ∗E denote a point on the energy-time
Pareto front (and hence there is no point x ∈ X that dominates
x̂ for the objectives T and E). Now suppose that x̂ /∈ X ∗P , and
hence there is some x̃ ∈ X that dominates x̂. If T (x̃) < T (x̂)
and P (x̃) ≤ P (x̂) , then E(x̃) = T (x̃)P (x̃) < T (x̂)P (x̂) =
E(x̂), and hence x̃ is strictly better in both T and P . On the
other hand, if T (x̃) ≤ T (x̂) and P (x̃) < P (x̂), then E(x̃) <
E(x̂). In both cases, T (x̃) ≤ T (x̂) and E(x̃) < E(x̂), which
contradicts the definition of x̂ being non dominated for the T
and E.

Proposition 4.2 says that the number of non dominated
points for energy-time is bounded by the number of non
dominated points for power-time.

Definition 4.3: Let x(1) ∈ X ∗P denote a non domi-
nated point on the T -P front that minimizes time: x(1) ∈
arg minx∈X∗P T (x) (where the inclusion is done in case there
is not a unique minimizer).

Proposition 4.4: A necessary condition for x ∈ X to be a
non dominated point on the T -E Pareto front is that

P (x) ≤ P (x(1))T (x(1))

T (x)
. (2)

Proof: By the definition of x(1), T (x(1)) ≤ T (x) for all
x ∈ X . Hence, x ∈ X can be on the T -E Pareto front only if
E(x) ≤ E(x(1)), which can be rewritten as (2) since T (x) > 0
for all x ∈ X .

Many necessary bounds exist in addition to (2), but (2)
is especially useful because it provides a convenient bound
that requires only a minimizer of a single objective (time).
Furthermore, it offers a mathematical relationship for the
conditions needed in order for the energy-time Pareto front
to comprise more than one point. Clearly this inequality does
not hold for the example in Figure 1.

Proposition 4.4 can also be used to look at the effect of
idle power. If we decompose the power into a constant idle



Fig. 2. Illustration of the points comprising a relaxed Pareto front for different
values of ε (SPAPT adi problem, Intel Xeon Phi; see Section VI-A). The points
within each shaded region belong the relaxed Pareto front obtained from (4).

power and a varying difference above idle power, P (x) =
PI + ∆P (x), then (2) is equivalent to

∆P (x(1))T (x(1))−∆P (x)T (x) ≥
(
T (x)− T (x(1))

)
PI .

(3)
A necessary condition for (3) is that the power savings must
outpace the product of idle power and relative slow-down,

P (x(1))− P (x) ≥ T (x)− T (x(1))

T (x(1))
PI .

Hence, for fixed times T (x) and T (x(1)), it becomes more
unlikely that tradeoffs exist as the idle power PI grows (since
there’s always an upper bound to peak available power).

For many time-power-energy multi objective problems, one
may need to acknowledge the measurement error in each
objective. Assuming that there is a fixed error margin εi ≥ 0
for the ith objective, if Fi(x) is within εi of Fi(y), then we
cannot say that x is truly better than y (or vice versa) with
respect to the objective Fi. The notion of non dominance
in Definition 3.1 would thus need to be modified so that x
dominates y if F (x) 6= F (y) and

Fi(x) + εi ≤ Fi(y) for all i = 1, . . . , p. (4)

As a result, one would arrive at a relaxed Pareto front that
potentially consists of a cloud of points. This is illustrated
in Figure 2 for different multiples of the measurement error
margin (ε1 = .2s,ε2 = 2W). In practice, one often knows what
the εi should be. For example, we know what the measurement
resolution of power and time are for each of our experiments;
see the measurement descriptions in Section VI.

To simplify the presentation, we follow the convention in
Definition 3.1 (which takes εi = 0 for i = 1, . . . , p) for the
results reported in Section VI.

V. PROBLEM SETS AND DECISION SPACES

We now describe the set of problems, consisting of HPC
kernels from SPAPT [13], TORCH [28], and CSPARSE [17],
and the proxy application miniFE [21], that we used for our

empirical multi objective study. We also describe the code
transformation framework that we utilize to generate variants
with different flavors of compiler optimizations.

Each search problem in the SPAPT [13] suite is a specific
combination of a kernel, an input size, a set of tunable deci-
sion parameters, a feasible set of possible parameter values,
and a default configuration of these parameters for search
algorithms. These problems are expressed in an annotation-
based language that can be readily processed by Orio [35].
The tunable decision parameters are loop unroll/jamming,
cache tiling, register tiling, scalar replacement, array copy
optimization, loop vectorization, and multi core parallelization
using OpenMP. The kernels in SPAPT are grouped into four
groups: elementary dense linear algebra kernels, dense linear
algebra solver kernels, stencil code kernels, and elementary
statistical computing kernels. This work considers problems
from three groups: matrix-matrix multiplication (mm), matrix
transpose and vector multiplication (atax), and triangular
matrix operations (trmm) from the basic dense linear algebra
kernels; bi conjugate gradient (bicgkernel) and lu decom-
position kernels from the dense linear algebra solver kernels;
and matrix subtraction, multiplication, and division (adi), 1-D
Jacobi computation (jacobi), finite-difference time domain
(fdtd), and matrix factorization (seidel) kernels from the
stencil code kernels.

To generate and evaluate a set of points in the SPAPT
decision space, (which can be further extended to include
different compiler optimization parameters), we must use a
source-to-source transformation framework. We use Orio [35],
which is an extensible and portable software framework for
empirical performance tuning. It takes an Orio-annotated C
or Fortran implementation of a problem along with a tuning
specification that consists of various performance-tuning direc-
tives as inputs, generates multiple transformed code variants
of the annotated code, empirically evaluates the performance
of the generated codes, and has the ability to select the best-
performing code variant using various search algorithms. We
refer the reader to [35] for a detailed account of annotation
parsing and code generation schemes in Orio.

On multi core architectures, larger core counts reduce the
ratio of peak memory bandwidth to peak floating-point perfor-
mance. To analyze such behavior, we include two bandwidth-
limited problems: a sparse matrix multiplication kernel and a
quick sort kernel that sorts n items in O(n log n) time. The
reference implementation of the sparse matrix multiplication
kernel is based on CSPARSE, a concise sparse matrix package
in C [17], and takes sparse matrix triplets as input. For the
quick sort kernel, we use the implementation from the TORCH
Computational Reference Kernels [28], a collection of core
problems in scientific computing. While in the sparse matrix
multiplication kernel the number of nonzero elements in the
matrix leads to floating-point operations, the quick sort kernel
performs only comparisons without any significant floating-
point operations.

For large-scale multi node experiments, we use a proxy
application from the Mantevo project, which was designed
to explore the capabilities of emerging architectures [21].
miniFE is a finite-element mini-application that implements
kernels representative of unstructured, implicit finite-element
applications. It assembles a sparse linear system from a steady-



state heat conduction problem on a brick-shaped domain of
linear, 8-node hex elements. It then solves the linear system
using a simple (unpreconditioned) conjugate gradient (CG)
algorithm. Thus the kernels that miniFE contains are compu-
tation of element-operators (diffusion matrix, source vector),
assembly (scattering element-operators into sparse matrices
and vectors), sparse matrix-vector products (during the CG
solve), and vector operations (level-1 BLAS: axpy, dot, norm).
Running miniFE with a fixed set of dimensions and varying
the number of MPI ranks is a commonly used strong scaling
test.

To illustrate the wide applicability of our framework, we
use different HPC platforms in the experimental study (plat-
forms are described in the next Section). For each platform,
we use a subset of the problems described above that can
exercise the unique and important aspects of that platform.
The decision-making process for selecting the benchmarks for
experimental evaluation of the proposed framework had one
more important dimension – choosing kernels and applications
that are well known to the HPC community, so that the results
can be evaluated and assimilated within the larger context of
what the community already knows about the behaviors (e.g.,
performance consequences of different compiler optimizations)
of those kernels.

VI. EXPERIMENTAL RESULTS

We now summarize the findings from our empirical eval-
uations on three markedly different platforms. The Intel Xeon
Phi’s Many Integrated Core (MIC) architecture serves as a
platform that allows us to explore the tradeoffs among con-
currency, power, and performance on nodes with many simple
cores, a characteristic that we anticipate will be increasingly
common in next-generation large-scale systems. The Intel
Xeon E5530 architecture allows us to explore the tradeoffs
among power, energy, and performance in a current-generation
architecture. The availability of clock frequency scaling on
the Xeon E5530 allows us to enrich our decision space
X (see Section III) with hardware-provided, power-related
configuration options. Our measurement setup on the Xeon
E5530 also provides us with more detailed power measurement
capabilities. IBM’s BG/Q was chosen as a way to demonstrate
our framework’s applicability on a vastly different processor
architecture and to explore the tradeoffs among concurrency,
power, and performance on a large, multi nodal scale.

A. Intel Xeon Phi

The experiments described in this section are carried out
on a first-generation Intel Xeon Phi coprocessor (based on the
Intel Many Integrated Core (MIC) architecture) [3], consisting
of 60 standard cores clocked at 1090 MHz and with full
cache coherency across all cores. Each core offers four-way
simultaneous multithreading (SMT) and 512-bit-wide SIMD
vectors, which corresponds to 8 double-precision or 16 single-
precision floating-point numbers. Each core has a fully coher-
ent 32 KB L1 instruction cache, a 32 KB L1 data cache, and
a 512KB unified L2 cache. The coprocessor card contains 8
GB of memory, and is connected via a PCI Express bus to a
Westmere host running CentoOS 6.3 and with 64 GB of host
main memory.

Fig. 3. Power, energy, and time for the fdtd SPAPT kernel on Intel Xeon
Phi (includes both thread count and code transformation variants).

Setup and Measurement: For power measurement, we
relied on the system management utility micsmc (v. 4346-16)
designed for monitoring and managing Xeon Phi coprocessors.
Currently, micsmc has a time resolution of 0.5 seconds and
power measurement resolution of 1 W. The icc compiler
(version 13.0.0 20120731), with -mmic (for native MIC
libraries) and -O3 optimization flags, was used to compile
the code variants.

We configure each variant to run k times, where k
is selected (separately for each kernel) so that the total
run time is at least 50 seconds. Let r1(x), . . . , rk(x) de-
note a sequence of k run times for the variant x and let
(t1(x), p1(x)), . . . , (tm(x), pm(x)) denote a time-stamped se-
quence of power measurements obtained from the micsmc
utility. To calculate power draw for the variant, we consider
all power readings (ti(x), pi(x)) with r2(x) ≤ ti(x) ≤ 50
(with r1(x) omitted to remove any cold-cache effect and the
time needed for memory allocation on the card). A 10-second
sleep interval in between two successive executions ensures
that the processor returns to a normal temperature and power
state.

Results: Figure 3 shows the results obtained on the SPAPT
problem fdtd (with an input size of 500 × 500). In these
plots, we show the average run time, average power, and
average energy required by the code variants. The results show
a clear tradeoff between run time and power and the number of
threads. The number of threads adopted has the largest impact



Fig. 4. Power, energy, and time for the sparse matrix multiplication kernel
on Intel Xeon Phi.

on the power draw whereas the code transformation decisions
have the largest impact on run time. We observe that the code
variants are clustered based on the number of threads. The
power draw increases by approximately 5W with an increase
of 30 threads. The corresponding energy plot does not show a
tradeoff; it exhibits a race-to-idle condition [8]. Similar trends
were seen for other SPAPT problems.

When there is no activity, the coprocessor enters into a
complete idle state (PC-state), where it has an efficient power
management module to save power and energy by power gating
[4]. Currently, the power draw we observe is approximately
60 W. After transitioning from an idle state to the normal
operating state, however, we observe high idle power (currently
between 80 W and 90 W). Consequently, even a small run time
reduction results in significant energy savings. We note that
some previous works (e.g., [9], [38]) subtract idle power from
the power drawn during the normal operating state in order
to consider only the increase in the power draw that can be
attributed to a given workload’s execution. Our figures show
the view from a system operator’s perspective and take into
account the total system power (idle and workload computation
power).

Next we focus on the sparse matrix multiplication kernel
with the input trdheim, a large, sparse matrix from the UFL
sparse matrix collection [18] with 1,935,324 nonzeros. Other
inputs tested (including std1_Jac3_db, biplane-9, and
t3dl from [18]), produced similar results. We study the
impact of varying the number of threads (concurrency) on
run time, power, and energy. Figure 4 shows the Pareto front.
Although there is a tradeoff between run time and power, we
can observe race-to-idle behavior when it comes to energy

Fig. 5. Power, energy, and time for the quick sort kernel on Intel Xeon Phi.

efficiency. This can be due to a number of architectural
specializations of the Intel Xeon Phi to improve bandwidth
[3]. The aggregate bandwidths of L1 and L2 caches are ap-
proximately 15 and 7 times faster than the aggregate memory
bandwidth, respectively. A 16-stream hardware prefetcher is
used to improve the cache hits. It uses a special instruction
called “streaming store” that allows the cores to write an entire
cache line without reading it first. The interconnect has a
64-byte-wide data block ring to support the high bandwidth
requirement. The memory controllers are symmetrically inter-
leaved around the ring to provide a uniform access pattern,
which eventually increases the bandwidth response.

Figure 5 shows the results of the quick sort kernel on an
input size (the number of random integers to sort) of 107. We
see a similar trend except that the variants with larger thread
counts are slightly slower and thus less energy efficient.

The results from Intel Xeon Phi show that for compute-
limited kernels, the use of large core counts results in sig-
nificant performance benefits with respect to both time and
energy. Nevertheless, power is a limiting factor. Because of the
effective high-bandwidth memory subsystem, the bandwidth-
limited kernels also exhibit a similar trend. We note that
in all our Intel Xeon Phi experiments, we observe that the
maximum power is between 140 W and 145 W, irrespective
of the type of kernel tested. The average power draw is
determined by the number of threads used rather than the type
of computation. This observation underscores the importance
of developing workload-aware parallelization schemes for the
next-generation systems with many cores, so that one uses only
the number of cores (or threads) that the workload can actually
exploit.



B. Intel Xeon E5530

We now describe our results on an Intel Xeon E5530
workstation with two quad-core processors. Each core has
its own 32 KB L1 cache and 256 KB L2 cache; each of
the quad-core processors has a shared 8 MB L3 cache (for
a total of 16 MB of L3 for the 8 cores). The processors
can be clocked at 1.60, 1.73, 1.86, 2.00, 2.13, 2.26, or 2.39
GHz. Processor clock frequency is changed by using the
cpufreq-utils package [1] that is available with many
popular Linux distributions.

Setup and Measurement: Component-level (CPUs and
DIMMs) power measurements are collected by using a Pow-
erMon2 apparatus [14]. PowerMon2 is a hardware and soft-
ware framework designed to obtain fine-grained (up to 1,024
samples per second) current and voltage measurements for
different components of a target system (e.g., CPUs, memory
subsystem, disks, GPUs). We measure the system-level power
draw using the WattsUp Pro power meter [6]. The power meter
is a fairly inexpensive device, costing less than $150 at the
time of this writing. Although the device is easy to use, it
provides relatively coarse-grained measurements, roughly one
reading per second. We implemented a command-line interface
on top of the WattsUp driver to monitor and calculate the
overall energy usage of an application.

Since we can measure system level power only at 1-second
granularity, we configure the main computational loops to run
k times, where k is selected (separately for each kernel/input)
so that the total run time at the highest CPU frequency is more
than five seconds. This ensures that we collect a sufficient
number of power readings that can be attributed to the main
computation of the kernels. The execution time reported in the
paper is for these k iterations of the computation kernel. A post
processing step sweeps through the data to attribute portions
of the power measurements to the actual kernel loops. These
power measurements are then averaged to determine the power
draw for a single execution. To account for the unavoidable
noise in this empirical data collection process, we measure
each variant three times. The execution time and the power
draw reported here are averages of these three runs.

Here we discuss results for the fdtd, jacobi, and
bicgkernel SPAPT kernels. For fdtd, we selected two
different input sizes: 512 × 512 (henceforth referenced as
fdtd512) and 4096 × 4096 (fdtd4096). The selection
decision was driven by our desire to ensure that we have test
cases that stress the CPU and memory subsystem in different
ways. Indeed, the last level cache misses per instruction for the
base SPAPT case (no transformations) ranges from 1.8×10−4

for bicgkernel (making it a very compute-bound kernel)
to 0.03 for fdtd4096 (making it a memory-bound kernel).

The code transformations applied to the kernels and the
transformation spaces are taken as in [13]. However, we
supplement the SPAPT decision spaces with a CPU clock
frequency parameter. For each of the kernels, we select 300
(a number chosen simply to limit the time required for data
collection) randomly selected variants from the code trans-
formation space. Each of these variants is evaluated on all
available clock frequencies.

Results: Figure 6 shows the Pareto fronts for the objectives
time and total system power (as measured at the wall). The

Fig. 8. Pareto fronts (for each clock frequency) on Intel Xeon E5530 for
component-level power draws.

first observation that demonstrates the richness of the decision
space is that, for a given hardware frequency parameter, the
power range for the code variants is large. Tradeoffs between
time and system-level power draw are evident. The power
draw is lower for slower clock speeds, but this comes with
a slow-down of the computation. Especially interesting is
that the Pareto fronts show cases where one can reduce the
power draw and not impact the performance substantially.
Such behavior should be of high interest to co-design centers
designing power-limited hardware targeted to specific types of
computations.

We can also examine particular transformation variants.
Figure 7 shows the energy and time for the five highest-
performing (as measured at the fastest clock rate) variants. This
figure shows some interesting tradeoff decisions that we can
explore. For example, for variant v1 of the memory-bound
fdtd4096 kernel, we see that we can trade 0.8% loss in
performance with 7.5% decrease in the energy consumption
by running the kernel at the lowest frequency. The energy
savings amount is not as significant for the compute-bound
bicgkernel, where one can trade 1.2% loss in performance
with 2.8% decrease in the energy consumption by running
variant v1 at clock frequency 2.12GHz.

Figure 8 shows the Pareto fronts for each clock frequency
for component-level power draws of the fdtd4096 kernel.
When we analyze each of the fronts for different clock
frequencies in isolation, we see a clear tradeoff between DIMM
and CPU power draws for different code variants. We attribute
this behavior intuitively to the optimizations that impact data
motion. Code variants that have better data motion behavior
reduce the stress on DIMMs thereby lowering the DIMM
power. At the same time, better data motion leads to more
compute work for the CPU, thereby raising its power demand.
Such tradeoffs are of interest in studies for future architectures
where one may consider constraining CPU draw (e.g., for
thermal/fault considerations) and/or DIMM draw (e.g., as a
proxy for effective memory footprint or simulator of memory-
starved systems).

C. Vesta IBM Blue Gene/Q

Vesta is a developmental platform for Mira, a 10-petaflop
IBM Blue Gene/Q supercomputer [2] at Argonne. Vesta’s



Fig. 6. Pareto fronts (for each clock frequency) for SPAPT kernels on Intel Xeon E5530 for the objectives time and total system power. The shaded area shows
the Pareto front across all frequencies.

Fig. 7. Energy and time on Intel Xeon E5530 for the five highest-performing variants (v1–v5) from the SPAPT transformation space. The curves illustrate the
tradeoff behavior as clock frequency is changed.



architecture is the same as Mira’s except that it has two
compute racks (Mira has 48 racks). A rack has 32 node
boards, each of which holds 32 compute cards. Each compute
card comprises 16 compute cores of 1600 MHz PowerPC A2
processors with 16 GB RAM (1GB/core). In total, Vesta has
2,048 nodes (32,768 compute cores). The nodes are connected
via a proprietary 5-D torus network. The compute nodes
are water-cooled for thermal efficiency and run on CNK, a
proprietary, lightweight kernel that minimizes OS noise.

Setup and Measurement: For the power measurements in
BG/Q, we use a power profiling code that periodically samples
power draw [41]. Because of cabling and control system
limitations, the code requires a minimum partition size of 128
nodes, which spans 4 node boards. The profiler code runs one
thread on each node board and records the power on all the
domains every 0.25 seconds along with a time stamp. We refer
the reader to [41] for further details on the power profiling in
BG/Q.

We set the input size (controlling the box domain from
which a finite-element problem is assembled and solved) of
miniFE to nx = ny = nz = 1000. We considered a
decision space with four parameters: two generic parameters
that control the scaling behavior and two application-specific
parameters. The generic parameters are the number of nodes
({128, 256, 512, 1024}) and the number of threads per core
(either 8 (one thread every other core) or 16 (one thread per
core)). The two miniFE specific parameters are the percent-
age of unbalance in the decomposition ({5, 10, 20, 30, 40, 50,
60, 70, 80, 90}) and a Boolean decision parameter ({Yes, No})
that controls whether matrix-vector products are performed
with overlapping communication and computation. In total, we
had 160 code variants for the experimental analysis.

Results: The results in Figure 9 show that there are trade-
offs between time to completion and both power and energy.
As expected, increasing the node count decreases the time to
completion but increases the power draw. In addition to the
workload power, the significant increase in the power draw can
be attributed to the fact that each node board consumes an idle
power of roughly 1500 W [41]. The node count of 1024 uses
32 node boards, but 128 uses only 4 node boards. Concerning
energy, the best parameter configuration within each node
count provides a tradeoff between time to completion and
energy consumption. Within a given node count, however, the
fastest code variant consumes the least energy.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have provided a formalism for multi objec-
tive optimization studies of broad applicability in autotuning,
architecture design, and other areas of HPC. With a focus on
time, power, and energy, we illustrated that a multi objective
analysis provides richer insight than do constrained and single-
objective formulations. We have also contributed a significant
empirical study, spanning a diverse set of platforms, power
measurement technologies, kernels, and decision spaces. Our
findings showed that in some settings objectives are strictly
correlated and there is a single, “ideal” decision point; in
others, significant tradeoffs exist.

A key component in most autotuning frameworks is the
search algorithm that carefully orchestrates the selection and

Fig. 9. Power, energy, and time for miniFE on BG/Q.

evaluation of various parameters to optimize given (multiple)
objectives. Measuring the quality of a parameter configuration
in the decision space is crucial for any search algorithm.
Our multi objective optimization framework can enable the
search algorithm to compare the quality of the parameter
configurations in the context of conflicting multiple objectives.

Future work includes characterizing settings where em-
pirical tradeoffs agree with those predicted by models (e.g.,
the roofline work in [15]) and where relationships between
objectives are not as well understood. Significant opportunities
exist for studying the tradeoffs among additional objectives; we
especially mention resiliency since its relationship to power-
based and temperature-based objectives is expected to be a
prime concern in future extreme-scale systems [30].
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