A Structural Theorem for Local Algorithms with Applications to Coding, Testing, and Privacy

Marcel Dall’Agnol
University of Warwick
msagnol@pm.me

Tom Gur*
University of Warwick
tom.gur@warwick.ac.uk

Oded Lachish
Birkbeck, University of London
oded@dcs.bbk.ac.uk

Abstract

We prove a general structural theorem for a wide family of local algorithms, which includes property testers, local decoders, and PCPs of proximity. Namely, we show that the structure of every algorithm that makes q adaptive queries and satisfies a natural robustness condition admits a sample-based algorithm with $n^{1-1/O(q^2 \log^2 q)}$ sample complexity, following the definition of Goldreich and Ron (TOCT 2016). We prove that this transformation is nearly optimal. Our theorem also admits a scheme for constructing privacy-preserving local algorithms.

Using the unified view that our structural theorem provides, we obtain results regarding various types of local algorithms, including the following.

• We strengthen the state-of-the-art lower bound for relaxed locally decodable codes, obtaining an exponential improvement on the dependency in query complexity; this resolves an open problem raised by Gur and Lachish (SODA 2020).

• We show that any (constant-query) testable property admits a sample-based tester with sublinear sample complexity; this resolves a problem left open in a work of Fischer, Lachish, and Vasudev (FOCS 2015) by extending their main result to adaptive testers.

• We prove that the known separation between proofs of proximity and testers is essentially maximal; this resolves a problem left open by Gur and Rothblum (ECCC 2013, Computational Complexity 2018) regarding sublinear-time delegation of computation.

Our techniques strongly rely on relaxed sunflower lemmas and the Hajnal–Szemerédi theorem.

Keywords: local algorithms, sample-based algorithms, coding theory, property testing, adaptivity, sunflower lemmas.

*Tom Gur is supported by the UKRI Future Leaders Fellowship MR/S031545/1.
Contents

1. **Introduction**
 - 1.1 Robust local algorithms ... 1
 - 1.2 Main result .. 3
 - 1.3 Applications .. 4
 - 1.4 Discussion and open questions 6

2. **Technical overview**
 - 2.1 The relaxed sunflowers method 8
 - 2.2 The challenge of adaptivity .. 10
 - 2.3 Capturing adaptivity in daisy partitions 12
 - 2.4 Analysis using a volume lemma and the Hajnal–Szemerédi theorem .. 15
 - 2.5 Applications .. 18

3. **Preliminaries** .. 19

4. **Robust local algorithms**
 - 4.1 Definition ... 21
 - 4.2 Property testing ... 22
 - 4.3 Local codes ... 23
 - 4.4 PCPs of proximity ... 26

5. **Technical lemmas**
 - 5.1 Relaxed sunflowers .. 27
 - 5.2 Sampling daisies and the Hajnal-Szemerédi theorem 29
 - 5.3 The volume lemma ... 30
 - 5.4 Generic transformations .. 30

6. **Proof of Theorem 1**
 - 6.1 Construction .. 32
 - 6.2 Analysis .. 34
 - 6.3 Concluding the proof .. 41

7. **Applications**
 - 7.1 Query-to-sample tradeoffs for adaptive testers 42
 - 7.2 Stronger relaxed LDC lower bounds 43
 - 7.3 A maximal separation between testers and proofs of proximity ... 45

A. **Deferred proofs** .. 52
1 Introduction

Sublinear-time algorithms are central to the theory of algorithms and computational complexity. Moreover, with the surge of massive datasets in the last decade, understanding the power of computation in sublinear time rapidly becomes crucial for real-world applications. Indeed, in recent years this notion received a great deal of attention, and algorithms for a plethora of problems were studied extensively.

Since algorithms that run in sublinear time cannot even afford to read the entirety of their input, they are forced to make decisions based on a small local view of the input and are thus often referred to as local algorithms. Prominent notions of local algorithms include property testers [RS96, CGRR98], which are probabilistic algorithms that solve approximate decision problems by only probing a minuscule portion of their input; locally decodable codes (LDCs) [KT00] and locally testable codes (LTCs) [GS06], which are codes that, using a small number of queries to their input, admit algorithms that decode individual symbols and test the validity of the encoding, respectively; and probabilistically checkable proofs (PCPs) [FG91, AS92, ALM+92], which are encodings of NP-proofs that can be verified by examining only (say) 3 bits of the proof.

While the foregoing notions are often grouped under the umbrella term of local algorithms, they are in fact very distinct. Indeed, local algorithms perform fundamentally different tasks, such as testing, self-correcting, decoding, computing a local function, or verifying the correctness of a proof. Moreover, the tasks are often performed under different promises (e.g., proximity to a valid codeword in the case of LDCs, and deciding whether an object has a property or is far from having it in the case of property testing).

Nevertheless, despite the aforementioned diversity, one of our main conceptual contributions is capturing a fundamental structural property that is common to all of algorithms above and beyond, which in turn implies sufficient structure for obtaining our main result. We build on work of Fischer, Lachish and Vasudev [FLV15] as well as Gur and Lachish [GL20], which imply an essentially equivalent structure for non-adaptive testers and local decoders, respectively; our generalisation captures both and extends beyond them to the adaptive setting, as well as to other classes of algorithms.

More specifically, we first formalise the notion of local algorithms in the natural way: we define them simply as probabilistic algorithms that compute some function \(f(x) \), with high probability, by making a small number of queries to the input \(x \). We then observe that, except for degenerate cases, having a promise on the input is necessary for algorithms that make a sublinear number of queries to it. Finally, we formalise a natural robustness condition that captures this phenomenon and is shared by most reasonable interpretations of local algorithms.

1.1 Robust local algorithms

We say that a local algorithm is robust if its output remains stable under minor perturbations of the input. To make the discussion more precise, we define a \((\rho_0, \rho_1)\)-robust local algorithm \(M \) for computing a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) as a local algorithm that satisfies the following: for every input \(w \) that is \(\rho_0 \)-close to \(x \) such that \(f(x) = 0 \), we have \(M^w = 0 \) with high probability; and, for every \(w \) that is \(\rho_1 \)-close to \(x \) such that \(f(x) = 1 \), we have \(M^w = 1 \) w.h.p. We remark that our results extend to larger alphabets (see Section 4, where we formally define robust local algorithms).

We illustrate the expressivity of robust local algorithms via two examples: property testing and locally decodable codes. We remark that similarly, locally testable codes, locally correctable codes,
(a) A local decoder for the code C with decoding radius δ. Codewords whose i^{th} message bit equals 0 (resp. 1) for a fixed i comprise C_0 (resp. C_1). The decoder is robust in the $\delta/2$-neighbourhood of C, shaded blue and green. Inputs in the red area are within distance δ from C, but their $\delta/2$-neighbourhoods are not.

(b) An ε-tester for property Π. Inputs in the blue shaded area are 2ε-far from Π, where the tester is robust. While inputs in the red shaded area are rejected by the tester, this is not necessarily the case for their ε-neighbourhoods.

Figure 1: Casting local decoders and property testers as robust local algorithms.

relaxed LDCs, PCPs of proximity, and other notions can all be cast as robust local algorithms (see Sections 4.2 to 4.4).

Locally decodable codes. An LDC is a code that admits algorithms for decoding each individual bit of the message of a moderately corrupted codeword; that is, a code $C: \{0,1\}^k \rightarrow \{0,1\}^n$ with decoding radius δ for which there exists a probabilistic algorithm D that, given an index $i \in [k]$, makes queries to a string w promised to be δ-close to a codeword $C(x)$ and outputs $D^w(i) = x_i$ with high probability. Observe that D can be viewed as a $(\delta/2, \delta/2)$-robust local algorithm for local decoding with respect to decoding radius $\delta/2$. This is because the $\delta/2$-neighbourhood of any point that is $\delta/2$-close to a codeword is still within the decoding radius, and thus the algorithm decodes the same value when given either a codeword or a string in its neighbourhood; see Fig. 1a.

Property testing. The field of property testing deals with algorithms that solve approximate decision problems by only probing a minuscule part of their input; more precisely, an ε-tester for a property Π is an algorithm that queries a string x and, with high probability, outputs 1 if $x \in \Pi$, and outputs 0 if x is ε-far from Π. Here, unlike with local decoders, there is no robustness at all with respect to 1-inputs. Indeed, we can only cast an ε-tester as an $(\varepsilon, 0)$-robust local algorithm for 2ε-testing the property Π: doubling the proximity parameter ensures the ε-neighbourhood of each 0-input is still rejected (see Fig. 1b). We refer to such robustness as one-sided.

By the discussion above, our scope includes local algorithms that only exhibit one-sided robustness. Accordingly, we define robust local algorithms (without specifying the robustness parameters) as (ρ_0, ρ_1)-robust local algorithms where $\max\{\rho_0, \rho_1\} = \Omega(1)$.

\footnote{Although Theorem 1 assumes an algorithm satisfying this condition, we remark that a weaker one suffices. Supposing (without loss of generality) that $\rho_0 \geq \rho_1$, only a single input x must be such that $M^w = 0$ for every w that is $\Omega(1)$-close to x; then the result follows even for $\rho_0 = \Theta(n^{-1/q}) = o(1)$, where q is the query complexity of M.} We stress that while dealing with
one-sided robustness is significantly more technically involved, our results also hold for this type of local algorithm.

1.2 Main result

In this work, we capture structural properties that are common to all robust local algorithms and leverage this structure to obtain a transformation that converts them into sample-based algorithms; that is, algorithms that are provided with uniformly distributed labeled samples, or alternatively, are only allowed to query each coordinate independently with some fixed probability. Adopting the latter perspective, the sample complexity of such an algorithm is the expected number of coordinates that it samples. In the following, we use \(n \) to denote the input size.

Theorem 1 (informally stated, see Theorem 6.1). Every robust local algorithm with query complexity \(q \) can be transformed into a sample-based local algorithm with sample complexity \(n^{1-1/O(q^2 \log^2 q)} \).

It is important to point out that the robustness in Theorem 1 is only required on part of the input space (i.e., need only be one-sided); indeed, otherwise the structural properties captured become much more restrictive (and are not shared by, e.g., property testers).

Moreover, we prove that the transformation in Theorem 1 is optimal up to a quadratic factor in the dependency on the query complexity; that is, \(q \)-query robust local algorithms cannot be transformed into sample-based algorithms with sample complexity \(n^{1-1/o(q)} \) (see Section 7.3 for a more precise statement).

Our proof of Theorem 1 strongly relies on analysing the query behaviour of robust local algorithms by partitioning their local views into relaxed sunflowers and using volume lemmas that are implied by their robustness. We build on the Hajnal–Szemerédi theorem to analyse sampling from relaxed sunflowers (see Section 2 for a detailed technical overview).

By the generality of our definition, we can apply Theorem 1 to a wide family of well-studied algorithms such as locally testable codes, locally decodable and correctable codes, relaxed LDCs, universal LTCs, PCPs of proximity, and more (see Section 4 for details on how to cast these algorithms as robust local algorithms).

We note that [FLV15] and [GL20] obtain an essentially equivalent transformation for testers and decoders, respectively, through “lossy” versions of our relaxed sunflower lemmas (they extract one relaxed sunflower from the local views, rather than partition them) that only holds if the algorithm is non-adaptive; by a trivial transformation from adaptive to non-adaptive algorithms that incurs an exponential increase in the query complexity, these previous works show transformations whose sample-based algorithms have complexity \(n^{1-1/\exp(q)} \), which we reduce to \(n^{1-1/poly(q)} \) (indeed, as far down as \(n^{1-1/\tilde{O}(q^2)} \)).

Motivation. The notion of sample-based local algorithms was first defined in [GGR98], and its systematic study was initiated by Goldreich and Ron [GR16]. This notion is both intrinsically interesting as a natural and general model of computation, as well as due to its practical potential, as in many applications implementing full query access is impractical, but obtaining random samples is much easier. Moreover, sample-based local algorithms admit schemes for multi-computation (i.e., simultaneously computing multiple functions of the input using the same queries), as well as schemes for privacy-preserving local computation, on which we elaborate below.

Importantly, the strength and generality of Theorem 1 allows us to obtain applications and resolve several open problems in different settings, ranging from lower bounds on local codes to...
separations between the hardness of approximate decision versus verification. See Section 1.3 for a discussion of these applications.

Privacy-preserving local computation. We wish to highlight an interesting application of Theorem 1 to privacy. Suppose a client wishes to compute a function of data that is stored on a server, e.g., (relaxed) decode a symbol of a code or test whether the data has a certain property. Typically, the query behaviour of a local algorithm may leak information on which function the client attempts to compute. However, since sample-based algorithms probe their input uniformly, they can be used to compute the desired function without revealing any information on which function was computed, e.g., which coordinate was decoded or which property was tested.

Furthermore, since Theorem 1 transforms any robust local algorithm into a sample-based local algorithm that probes its input obliviously to the function it computes, then (after standard error-reduction) we can apply Theorem 1 to many algorithms at once and reuse the samples to obtain a local algorithm that computes multiple functions at the same time (see Section 1.3.2).

1.3 Applications

We proceed to present the main applications that we obtain from Theorem 1, which range over three fields of study: coding theory, property testing, and probabilistic proof systems. In the following, we state our results and discuss the context and motivation for our applications to each one of these fields. We remark that our main application to property testing follows as a direct corollary of Theorem 1 whereas our applications to coding theory and probabilistic proof systems require additional arguments.

1.3.1 Relaxed locally decodable codes

The notion of LDCs plays an important role in contemporary coding theory. Indeed, since the systematic study of LDCs was initiated in the highly influential work of Katz and Trevisan [KT00], these codes received much attention and made a profound impact on algorithms, cryptography, complexity theory, program checking, data structures, quantum computing, pseudorandomness, and other areas in theoretical computer science (see surveys [Tre04, Yek12, KS17] and references therein), as well as led to significant practical applications in distributed storage [HSX+12].

Despite the success and attention that LDCs received in the last two decades, the best construction of $O(1)$-query LDCs has a super-polynomial blocklength (cf. [Efr12], building on [Yek08]). This barrier has led to the study of relaxed LDCs, which were introduced in the seminal work of Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BGH+04]. In a recent line of research [GGK15, GG16, BDG17, GG18, GR18, GGR18, BGGZ18, CGS20, GL20] relaxed LDCs and their variants have been studied and used to obtain applications to PCPs [MR10, DHI13, RRR19], property testing [CG18], data structures [CGdW09], and probabilistic proof systems [GGK15, GG16, GR17, GR18].

Loosely speaking, this relaxation allows the local decoder to abort on a small fraction of the indices, yet crucially, still avoid errors. More accurately, a relaxed LDC $C: \{0, 1\}^k \rightarrow \{0, 1\}^n$ with decoding radius δ is a code that admits a probabilistic algorithm, a decoder, which on index $i \in [k]$ makes queries to a string $w \in \{0, 1\}^n$ that is δ-close to a codeword $C(x)$ and satisfies the following: (1) if the input is a valid codeword (i.e., $w = C(x)$), the decoder outputs x_i with high probability;
and (2) otherwise, with high probability, the decoder must either output \(x_i \) or a special “abort” symbol \(\perp \), indicating it detected an error and is unable to decode.\(^3\)

This seemingly modest relaxation allows for obtaining dramatically stronger parameters. Indeed, Ben-Sasson et al. [BGH+04] constructed a \(q \)-query relaxed LDC with blocklength \(n = k^{1+1/\Omega(\sqrt{q})} \), and raised the problem of whether it is possible to obtain a better rate; the best known construction, obtained in recent work of Asadi and Shinkar [AS20], improves it to \(n = k^{1+1/\Omega(q)} \). We stress that \textit{proving lower bounds on relaxed LDCs is significantly harder than on standard LDCs}, and indeed, the first non-trivial lower bound was only recently obtained in [GL20], which shows that, to obtain query complexity \(q \), the code must have blocklength

\[
 n \geq k^{1+O\left(\frac{1}{2^{\Omega(q^2 \log^2 q)}}\right)}.
\]

This shows that \(O(1) \)-query relaxed LDCs cannot obtain quasilinear length, a question raised in [Gol04], but still leaving exponential room for improvement in the dependency on query complexity (note that even for \(q = O(1) \) this strongly affects the asymptotic behaviour). Indeed, eliminating this exponential dependency was raised as the main open problem in [GL20].

Fortunately, our technical framework is general enough to capture relaxed LDCs as well, and in turn, our main application for coding theory resolves the aforementioned open problem by obtaining a lower bound with an \textit{exponentially} better dependency on the query complexity. Along the way, we also extend the lower bound to hold for relaxed decoders with \textit{two-sided error}, resolving another open problem left open in [GL20].

\textbf{Theorem 2} (informally stated, see Corollary 7.8). Any relaxed LDC \(C : \{0,1\}^k \to \{0,1\}^n \) with constant decoding radius \(\delta \) and query complexity \(q \) must have blocklength at least

\[
 n \geq k^{1+O\left(\frac{1}{2^{\Omega(q^2 \log^2 q)}}\right)}.
\]

This also makes significant progress towards resolving the open problem due to Ben-Sasson et al. [BGH+04], by narrowing the gap between lower and upper bounds to merely a quadratic factor.

1.3.2 Property testing

Property testers are one of the most widely studied types of sublinear-time algorithms (see, e.g., the recent textbook [Gol17]). Recall that an \(\varepsilon \)-tester for a property \(\Pi \) solves the approximate decision problem of accepting inputs in \(\Pi \) and rejecting inputs that are \(\varepsilon \)-far from \(\Pi \).

The standard definition of property testing endows the tester with the ability to make queries. An alternative definition, first presented in [GGR98], only provides the tester with uniformly distributed labeled samples (or, equivalently, it is only allowed to make uniformly and independently distributed queries). Such algorithms are called \textit{sample-based testers} and have received attention recently [GR16, FGL14, BGS15, FLV15, CFSS17, BMR19a, BMR19b], both because of their intrinsic interest as a natural model of computation, as well as due to their practical potential. Indeed, while sample-based testers are typically much less efficient than query-based testers, in many applications obtaining full query capacity is impractical, and random samples are much easier to obtain.

As an immediate corollary of [Theorem 1] we obtain that any constant-query testable property (\(o(\sqrt{\log n / \log \log n}) \)-query, in fact) admits a sample-based tester with sublinear sample complexity.

\(^3\)As observed in [BGH+04], these two conditions suffice for obtaining a third condition which guarantees that the decoder only outputs \(\perp \) on an arbitrarily small fraction of the coordinates.
This resolves a problem left open in a work of Fischer, Lachish, and Vasudev [FLV15], who showed a similar statement that only holds for non-adaptive testers, by extending it to the adaptive setting.

Theorem 3 (Informally stated; see Corollary 7.1). Any property that is \(\varepsilon \)-testable with \(q \) queries admits a sample-based \(2\varepsilon \)-tester with sample complexity \(n^{1-1/O(q^2 \log^2 q)} \).

This also admits an application to adaptive multi-testing, where the goal is to simultaneously test a large number of properties. In Section 4.2 we show that as a corollary of Theorem 3 we can multi-test, with sublinear query complexity, exponentially many properties, namely \(k = \exp \left(n^{1/\omega(q^2 \log^2 q)} \right) \), that are each testable with \(q \) adaptive queries.

1.3.3 Proofs of proximity

Proofs of proximity [EKK+00, BGH+04, DR06, RVW13, GR18] are probabilistic proof systems that allow for delegation of computation in sublinear time. These proof systems have been extensively studied in recent years and found applications to various local algorithms and cryptographic protocols (e.g., [FGL14, KR15, GGK15, GG16, GR17, BRV18, CG18, RRR19, BSCG+19, CGS20]).

In the non-interactive setting, we have a verifier that wishes to ascertain the validity of a given statement, using a short (sublinear length) explicitly given proof, and a sublinear number of queries to its input. Since the verifier cannot even read the entire input, it is only required to reject inputs that are far from being valid. Thus, the verifier is only assured of the proximity of the statement to a correct one. Such proof systems can be viewed as the NP (or more accurately MA) analogue of property testing, and are referred to as MA proofs of proximity (MAPs).

As such, one of the most fundamental questions regarding proofs of proximity is their relative strength in comparison to testers; that is, whether verifying a proof for an approximate decision problem can be done significantly more efficiently than solving it. One of the main results in [GR18] is that this is indeed the case. Namely, there exists a property \(\Pi \) which: (1) admits an adaptive MAP with proof length \(O(\log(n)) \) and query complexity \(q = O(1) \); and (2) requires at least \(n^{1-1/\Omega(q)} \) queries to be tested without access to a proof.

While the above shows a chasm between the power of testers and MAPs, it remained open whether the aforementioned sublinear lower bound on testing is an artefact of the techniques and it would possible to obtain a stronger separation, where the property is harder for testers (potentially requiring even \(\Omega(n) \) queries).

In Section 7.3 we use Theorem 1 to show that the foregoing separation is nearly tight.

Theorem 4 (Informally stated; see Theorem 7.11). Any property that admits an adaptive MAP with query complexity \(q \) and proof length \(p \) also admits a tester with query complexity \(p \cdot n^{1-1/O(q^2 \log^2 q)} \).

Interestingly, we remark that we rely on Theorem 4 to prove the (near) optimality of Theorem 1 (see Section 2.5 for details).

1.4 Discussion and open questions

Our work leaves several interesting directions and open problems that we wish to highlight. Firstly, we stress that our structural theorem is extremely general, and indeed the robustness condition that

4We remark that the bound in [GR18] is stated in a slightly weaker form. However, it is straightforward to see that the proof achieves the bound stated above. See Section 7.3.
induces the structure required by Theorem 1 appears to hold for most reasonable interpretations of robust local algorithms. While we gave applications to coding theory, property testing, and probabilistic proof systems, it would be interesting to see whether our framework (or a further generalisation of it) could imply applications to other families of local algorithms, such as PAC learners, local computation algorithms (LCAs), and beyond.

Open question 1. Can Theorem 1 and the framework of robust local algorithms be used to obtain query-to-sample transformations for PAC learners and LCAs?

One promising area that we did not explore is achieving rate lower bounds on PCPs of proximity (PCPPs). Such bounds are notoriously hard to get, and indeed the only such bounds we are aware of are those in [BSHLM09], which are restricted to special setting of 3-query PCPPs. We remark that our framework captures PCPPs, and that in light of the rate lower bounds it allowed us to obtain for relaxed LDCs, it would be interesting to see if it could be used to show rate lower bounds on PCPPs.

Open question 2. Is it possible to obtain rate lower bounds on q-query PCPs of proximity for $q > 3$?

Another interesting question involves the optimality of our transformation. Recall that Theorem 1 transforms q-query robust local algorithms into sample-based local algorithms with sample complexity $n^{1-1/O(q^2 \log^2 q)}$, whereas in Section 7.3 we show that any such transformation must yield an algorithm with sample complexity $n^{1-1/\Omega(q)}$. This still leaves a quadratic gap in the dependency on query complexity. We remark that closing this gap could lead to fully resolving an open question raised in [BGH+04] regarding the power of relaxed LDCs.

Open question 3. What is the optimal sample complexity obtained by a transformation from robust local algorithms to sample-based local algorithms?

Finally, in Section 1.2 we discuss an application of our main result to privacy-preserving local computation, where one can compute one out of a large collection of functions without revealing any information regarding which function was computed. While Theorem 1 implies such a scheme that only requires probing the input in sublinear locations, the number of probes is quite high. Moreover, by the near-tightness of our result, we cannot expect a significant improvement of this scheme. Nevertheless, we find it very interesting to explore whether for structured families of functions (as, for example, admitted by the canonical tester for dense graphs in [GT03]), or for statistical or computational notions of privacy, the query complexity of this scheme can be significantly reduced.

Open question 4 (Private testing of small families). Do there exist schemes for privacy-preserving local computation with small query complexity?

Organisation

The rest of the paper is organised as follows. In Section 2, we provide a high-level technical overview of the proof of our main result and its applications. In Section 3, we briefly discuss the preliminaries for the technical sections. In Section 4, we present our definition of robust local algorithms and show how to cast various types of algorithms in this framework. In Section 5, we provide an arsenal of technical tools, including relaxed sunflower lemmas and a sampling lemma that builds on the Hajnal–Szemerédi theorem. In Section 6, we use the foregoing tools to prove Theorem 1. Finally, in Section 7, we derive our applications to coding theory, property testing, and proofs of proximity.
2 Technical overview

In this section, we outline the techniques used and developed in the course of proving Theorem 1 and its applications. Our techniques build on and simplify ideas from [FLV15, GL20], but are significantly more general and technically involved, and in particular, offer novel insight regarding adaptivity in local algorithms.

Our starting point, which we outline in Section 2.1, generalises the techniques of [GL20] (which are, in turn, inspired by [FLV15]) to the setting of robust local algorithms. Then, in Section 2.2, we identify a key technical bottleneck in previous works: adaptivity. We discuss the fundamental challenges that adaptivity imposes, and in Section 2.3 we present our strategy for meeting these challenges and the tools that we develop for dealing with them, as well as describe our construction. Subsequently, in Section 2.4, we provide an outline of the analysis of our construction, which relies on the Hajnal–Szemerédi theorem to sample from daisies. Finally, in Section 2.5, we sketch how to derive from Theorem 1 our applications to coding theory, property testing, and probabilistic proofs.

The setting. Recall that our goal is to transform a robust (query-based) local algorithm into a sample-based algorithm with sublinear sample complexity. Towards this end, let M be a (ρ_0, ρ_1)-robust local algorithm for computing a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$. Since we also need to deal with one-sided robustness, assume without loss of generality that $\rho_1 = 0$ and $\rho := \rho_0 = \Omega(1)$. Recall that the algorithm M receives query access to a string $x \in \{0, 1\}^n$, makes at most q queries to this string, flips at most r random coins and outputs $f(x) \in \{0, 1\}$ with probability at least $1 - \sigma$.

For simplicity of exposition, we assume that the error rate is $\sigma = \Theta(1/q)$, the query complexity is constant ($q = O(1)$), and the randomness complexity r is bounded by $\log(n) + O(1)$. We remark that the analysis trivially extends to non-constant values of q, and that we can achieve the other assumptions via simple transformations, which we provide in Section 5.4, at the cost of logarithmic factors. In the following, our aim is to construct a sample-based local algorithm N for computing the function f, with sample complexity $O(n^{1-1/(2q^2)})$.

2.1 The relaxed sunflowers method

As a warmup, we first suppose that the algorithm M is non-adaptive. In this case, we can simply represent M as a distribution μ over a collection of query sets S, where each $S \in S$ is a subset of $[n]$ of size q, and predicates $\{f_S : \{0, 1\}^q \rightarrow \{0, 1\}\}_{S \in S}$ as follows. The algorithm M draws a set $S \sim \mu$, queries S, obtains the local view $x|_S$ (i.e., x restricted to the coordinates in S), and outputs $f_S(x|_S)$. Note that by our assumption on the randomness complexity of M, the support of μ (i.e., the collection of query sets) has linear size.

Consider an algorithm N that samples each coordinate of the string x independently with probability $p = 1/n^{1/(2q^2)}$ (and aborts in the rare event that this exceeds the desired sample complexity).\footnote{We remark that in general, the function f may depend on an explicitly given parameter (e.g., an index for decoding in the case of (relaxed) LDCs), but for simplicity of notation, we omit this parameter in the technical overview. Furthermore, f may be defined over a larger alphabet, see Section 4.} Naively, we would have liked N^x to emulate an invocation of the algorithm M by sampling the restriction of x to a query set $S \sim \mu$.

Indeed, if the distribution μ is “well spread”, the probability of obtaining such a local view of M is high. Suppose, for instance, that all of the query sets are pairwise disjoint. In this case of (relaxed) LDCs, but for simplicity of notation, we omit this parameter in the technical overview. Furthermore, f may be defined over a larger alphabet, see Section 4.}
case, the probability of N sampling any particular local view is p^q, and we expect N to obtain $O(p^q n) = O(n^{1-1/2q})$ local views (recall that the number of query sets is $O(n)$). However, if μ is concentrated on a small number of coordinates, it is highly unlikely that N will obtain a local view of M. For example, if M queries the first coordinate of x with probability 1, then we can obtain a local view of M with probability at most p, which is negligible.

Fortunately, we can capitalise on the robustness condition to deal with this problem. We first illustrate how to do so for an easy special case, and then deal with the general setting.

Special case: sunflower query set. Suppose that μ is concentrated on a small coordinate set K and is otherwise disjoint, i.e., the support of μ is a sunflower with kernel K of size at most ρn; see Fig. 2a. Since the query sets are disjoint outside of K, by the discussion above we will sample many sets except for the coordinates in K (i.e., sample the petals of the sunflower). Recall that if x is such that $f(x) = 0$, then the $(\rho, 0)$-robust algorithm M outputs 0, with high probability, on any input y that is ρ-close to x. Thus, even if we arbitrarily assign values to K and use them to complete sampled petals into full local views, we can emulate an invocation of M that will output as it would on x.

If all inputs in the promise of M were robust (as is the case for LDCs, but not for testers, relaxed LDCs and PCPPs), then the above would suffice. However, recall that we are not ensured robustness when x is such that $f(x) = 1$. To deal with that, we can enumerate over all possible assignments to the kernel K, considering the local views obtained by completing sampled petals into full local views by using each kernel assignment to fill in the values that were not sampled. Observe that: (1) when the input x is a 1-input and N considers the kernel assignment that coincides with x, a majority of local views (a fraction of at least $1 - \sigma$) will lead M^x to output 1; and (2), when x is a 0-input, a minority of local views (a fraction of at most σ) will lead M^x to output 1 under any kernel assignment.

The sample-based algorithm N thus outputs 1 if and only if it sees, for some kernel assignment, a majority of local views that lead M to output 1. Recall that there is asymmetry in the robustness of M (while 0-inputs are robust, 1-inputs are not), which translates into asymmetric output conditions for N. Note, also, that correctness of this procedure for 0-inputs requires that not even a single kernel assignment would lead N to output incorrectly; but our assumption on the error rate ensures that the probability of sampling a majority of petals whose local views will lead to an error is sufficiently small to tolerate a union bound over all kernel assignments, as long as $|K|$ is small enough.

General case: extracting a heavy daisy from the query sets. Of course, the combinatorial structure of the query sets of a local algorithm is not necessarily a sunflower and may involve many complex intersections. While we could use the sunflower lemma to extract a sunflower from the collection of query sets, we stress that the size of such a sunflower is sublinear, which is not enough in our setting (as we deal with constant error rate).

Nevertheless, we can exploit the robustness of M even if its query sets only have the structure of a relaxed sunflower, referred to as a daisy, with a small kernel. Loosely speaking, a t-daisy is a sunflower in which the kernel is not necessarily the intersection of all petals, but is rather a small

7The type of robustness that relaxed LDCs admit is slightly more subtle, since it deals with a larger alphabet that allows for outputting \bot. See discussion in Section 7.2.
subset such that every element outside the kernel is contained in at most t petals; see Fig. 2b (and see Section 5.1 for a precise definition).

Using a daisy lemma [FLV15, GL20], we can extract from the query sets (the support of μ) of the robust local algorithm M a t-daisy \mathcal{D} with t roughly equal to $n^{i/q}$ and a kernel K of size roughly $n^{1-i/q}$, where $i \in [q]$ bounds the size of the petals of \mathcal{D}. Moreover, the weight $\mu(\mathcal{D}) = \sum_{S \in \mathcal{D}} \mu(S)$ is significantly larger than the error rate σ of M (recall that we assumed a sufficiently small $\sigma = \Theta(1/q)$). Thus, even if the daisy contains all local views that lead to an error, their total weight would still be small with respect to that of local views leading to a correct decision; hence, the query sets in the daisy \mathcal{D} well-approximate the behaviour of M, and we can disregard the sets in the support of μ that do not belong to \mathcal{D} at the cost of a negligible increase to the error rate.

Crucially, the intersection bound t implies that sampling a daisy is similar to sampling a sunflower: since petals do not intersect heavily, with high probability many of them are fully queried (as is the case with sunflowers). The bound on $|K|$, on the other hand, allows us to implement the sampling-based algorithm we discussed for the sunflower case, except with respect to a daisy. The kernel is sufficiently small so that the output of M remains stable (i.e., does not change) with respect to changes in the assignment to K, and suffices to tolerate a union bound when considering all possible assignments to K.

It follows that the daisy \mathcal{D} provides enough “sunflower-like” structure for the sample-based algorithm N defined previously to succeed, with high probability, when it only considers the query sets in \mathcal{D} and enumerates over all assignments to its kernel.

2.2 The challenge of adaptivity

Let us now attempt to apply the transformation laid out in the previous section to a robust local algorithm M that makes q adaptive queries. In this case, M may choose to query distinct coordinates depending on the answers to its previous queries, and thus there is no single distribution μ that captures its query behaviour.

Observe that now, rather than inducing a distribution on sets, the algorithm M induces a distribution over decision trees of depth q, as the behaviour of a randomised query-based algorithm M^* can be described by choosing a decision tree according to its random string, then performing the

8In Definition 5.1, a t-daisy has t as a function from $[q]$ to \mathbb{N} and allows for a tighter bound on the number of intersecting petals. We use the simplified definition of [GL20] in this technical overview.
Figure 3: Decision tree of a 3-local algorithm. When the input x is such that $x_1 = 1$, $x_3 = 0$ and $x_5 = 0$, the branch highlighted in blue queries $\{1, 3, 5\}$ and outputs 1. When $x_1 = 0$ and $x_4 = 1$, this tree induces the query set $\{1, 2, 4\}$; when $x_1 = 1$ and $x_3 = 0$, it induces the set $\{1, 3, 5\}$. This “collapsing” of the query behaviour is illustrated on either side of the tree.

adaptive queries according to the evaluation of that tree on the input $x \in \{0, 1\}^n$. By our assumption on the randomness complexity of M, this distribution is supported on $\Theta(n)$ decision trees. Note that for any fixed input x, the decision tree collapses to a path, and hence the distribution over decision trees induces a distribution over query sets, which we denote μ_x (see Fig. 3).

A naive way of transitioning from decision trees to sets is by querying all of the branches of each decision tree. Alas, doing so would increase the query complexity of M exponentially from q to (more than) 2^q, which would in turn lead to a sample-based algorithm with a much larger sample complexity than necessary. Thus, we need to deal with the far more involved structure induced by distributions over decision trees, which imposes significant technical challenges. For starters, since our technical framework inherently relies on a combinatorial characterisation of algorithms, we first need to find a method of transitioning from decision trees to (multi-)sets without increasing the query complexity of the local algorithm M.

To this end, a key idea is to enumerate over all random strings and their corresponding decision trees, and extract all q-sets (i.e., sets of size q) corresponding to each branch of each tree. This leaves us with a combinatorial multi-set S (as multiple random strings may lead to the same decision tree, and branches of distinct decision trees may query the same set) with $\Theta(2^q \cdot n) = \Theta(n)$ query sets, of size q each, corresponding to all possible query sets induced by all possible input strings \hat{S}. Note that S contains the elements of the support of μ_x for all inputs $x \in \{0, 1\}^n$ and that, for any fixed input x, the vast majority of these query sets may not be relevant to this input: each $S \in S \setminus \text{supp}(\mu_x)$ corresponds to a branch of a decision tree that the bits of x would have not led to query.

This already poses a significant challenge to our approach, as we would have liked to extract a heavy daisy D from the collection S which well-approximates the query sets of M independently of any input. However, it could be the case that the sets that are relevant to an input x (i.e., $\text{supp}(\mu_x)$) induce a completely different daisy (with potentially different kernels over which we’ll need to enumerate) than the relevant sets for a different input y that differs from x on the values in the kernel, and so it is not clear at all that there exists a single daisy that well-approximates the query behaviour of the adaptive algorithm M for all inputs.

Furthermore, the above also causes problems with the kernel enumeration process. For each

\footnote{We remark that this treatment of multi-sets allows us to significantly simplify the preparation for combinatorial analysis that was used in previous works involving sunflowers and daisies.}
assignment \(\kappa \) to the kernel \(K \), denote by \(x_\kappa \in \{0,1\}^n \) the word that takes the values of \(\kappa \) in \(K \) and the values of \(x \) outside of \(K \). Recall that the crux of our approach is to simulate executions of \(M^{x_\kappa} \), for each kernel assignment \(\kappa \), using the values of the sampled petals and plugging in the kernel assignment to complete these petals into local views. Hence, since relevant sets corresponding to different kernel assignments may be distinct, it is unclear how to rule according to the local views that each of them induce.

We overcome these challenges in the next section with a more sophisticated extraction of daisies that, crucially, does not discard any query sets of the adaptive algorithm \(M \). Specifically, we will partition the (multi-)collection of all possible query sets into a collection of daisies and simultaneously analyse all daisies in the partition to capture the adaptive behaviour of the algorithm.

2.3 Capturing adaptivity in daisy partitions

Relying on techniques from [FLV15, GL20], we can not only extract a single heavy daisy, but rather partition a (multi-)collection of query sets into a family of daisies, with strong structural properties on which we can capitalise. This allows us to apply our combinatorial machinery without dependency on a particular input, and analyse all daisies simultaneously.

Daisy partition lemma. A refinement of the daisy lemma in [GL20], which we call a daisy partition lemma (Lemma 5.2), partitions a multi-set of \(q \)-sets into \(q+1 \) daisies \(\{D_i : 0 \leq i \leq q\} \) (see Fig. 4) with the following structural properties.

1. \(D_1 \) is a \(n^{1/q} \)-daisy, and for \(i > 1 \), each \(D_i \) is a \(t \)-daisy with \(t = n^{(i-1)/q} \);
2. The kernel \(K_0 \) of \(D_0 \) coincides with that of \(D_1 \), and, for \(i > 0 \), the kernel \(K_i \) of \(D_i \) satisfies \(|K_i| \leq q|S| \cdot n^{-i/q} \);
3. The petal \(S \setminus K_i \) of every \(S \in D_i \) has size exactly \(i \).

Moreover, the kernels form an incidence chain \(K_q = \emptyset \subseteq K_{q-1} \subseteq \cdots \subseteq K_1 = K_0 \). Note that \(D_0 \) is vacuously a \(t \)-daisy for any \(t \), since its petals are empty; and that our assumption on the randomness complexity of \(M \) implies \(|K_i| = O(n^{1-i/q}) \) when \(i > 0 \).

We may thus apply the daisy partition lemma to \(S \) and assert that, for any input \(x \), there exists some \(i \in \{0, \ldots, q\} \) such that \(\mu_x(D_i) \) is larger than \(1/q \) (recall that, for all \(x \), the support of \(\mu_x \) is contained in \(S \)); that is, each input may lead to a different heavy daisy, but there will always be at least one daisy that well-approximates the behaviour of the algorithm on input \(x \). Alas, with only a local view of the input word, we are not able to tell which daisies are heavy and which are not.

It is clear, then, that a sample-based algorithm that makes use of the daisy partition has to rule not only according to a single daisy, but rather according to all of them. But how exactly it should do so is a nontrivial question to answer, given that there are multiple daisies (and kernels) potentially interfering with one another.

Adaptivity in daisy partitions. A natural approach for dealing with multiple daisies simultaneously is by enumerating over every assignment to all kernels (i.e., to \(\cup_i K_i \)) and, for each such assignment, obtaining local views from all daisies and ruling according to the aggregated local views. Note that the incidence chain structure implies that enumerating over assignments to \(K_0 \) suffices, since each assignment to \(K_0 \) induces assignments to \(K_i \) for all \(i \).
(a) A collection \mathcal{S} of 3-sets before being partitioned.

(b) The collection \mathcal{S} partitioned into 4 daisies: \mathcal{D}_0 (shaded in grey), \mathcal{D}_1 (green), \mathcal{D}_2 (yellow) and \mathcal{D}_3 (purple).

(c) \mathcal{D}_0, whose sets are entirely contained in the kernel K_0.

(d) \mathcal{D}_1 with $K_1 = K_0$, where each $S \in \mathcal{D}_1$ has a petal $S \setminus K_1$ of size 1.

(e) \mathcal{D}_2 with $K_2 \subseteq K_1$, where each $S \in \mathcal{D}_2$ has a petal $S \setminus K_2$ of size 2.

(f) \mathcal{D}_3, with (empty) kernel $K_3 = \emptyset$. Each query set $S \in \mathcal{D}_3$ has a petal $S \setminus K_3 = S$ of size 3.

Figure 4: Daisy partition.

However, this approach leads to fundamental difficulties. Recall that correctness of the sample-based algorithm on 0-inputs depends on no kernel assignment causing an output of 1. Although for any assignment to K_i this happens with sufficiently small probability to ensure this is unlikely to happen on all $2^{|K_i|}$ assignments simultaneously, this does not hold true for assignments to larger kernels. More precisely, since $|K_{i-1}|$ may be larger than $|K_i|$ by a factor of $n^{1/q}$, an error rate that is preserved by $2^{|K_i|}$ assignments becomes unbounded if the number of assignments increases to $2^{|K_i-1|}$. This leads us to only consider, for query sets in \mathcal{D}_i, assignments to K_i rather than to the union of all kernels.

Put differently, we construct an algorithm that deals with each daisy independently, and whose correctness follows from a delicate analysis that aggregates local views taken from all daisies, which we outline in Section 2.4. We begin by considering a sample-based local algorithm N that extends the strategy we used for a single daisy as follows. On input $x \in \{0, 1\}^n$, it: (1) samples each coordinate of the string x independently with probability $p = 1/n^{1/(2q^2)}$; (2) for each $i \in \{0, \ldots, q\}$ and each assignment κ to the kernel K_i of the daisy \mathcal{D}_i, outputs 1 if a majority of local views leads M to output 1; and (3) outputs 0 if no such majority is ever found.

First, note that since the algorithm N is constructed in a whitebox way, it has access to the description of all decision trees induced by the query-based algorithm M. Hence N^x is able to determine which local views correspond to a valid execution of M. Denoting by Q the set of coordinates that were sampled, an assignment κ to K_i induces, for each query set $S \subset Q \cup K_i$, the assignment $x_{\kappa|S}$; the sample-based algorithm N can check whether each such S is a relevant query set (i.e., belongs to the support of μ_{x_n}) by verifying it arises from some branch of a decision tree.
of M that x_κ would have led to query. This allows N to ignore the non-relevant query sets and overcome the difficulty pointed out in the previous section.\footnote{We remark that in the accurate description of our construction (see Section 6.1), we capture all the information contained in the decision trees via \textit{tuples} that contain, besides the query set, the assignment that led to it being queried as well as the output of the algorithm when it does so. The daisy partition lemma then allows to partition these tuples based on the structure of the sets they contain.}

However, we remain with the issue that motivated searching for heavy daisies in the first place: there is no guarantee that every \mathcal{D}_i well-approximates the algorithm M on all inputs. Therefore, if x is a 0-input and $\mu_x(\mathcal{D}_i)$ is smaller than the error rate σ, even when N considers the correct kernel assignment $x|_{K_i}$ with respect to x, it may find a majority of local views that leads M^x to output 1; indeed, nothing prevents all the “bad” query sets, which lead M^x to erroneously output 1, from being placed in the same daisy \mathcal{D}_i.

To this end, we set a \textit{threshold} for the number of local views needed to lead to an output of 1. Then, a majority of “bad” query sets in a daisy is not enough to cause an incorrect output, and N rules according to the number, rather than proportion, of local views it sees. The weight of bad query sets is at most σ, allowing us to bound the number of such sets; this prevents them from causing an incorrect output even if no local view leads to the correct one. Note that different thresholds are necessary for daisies with petals of different sizes, since the probability of sampling petals decreases as the size of the petal increases. The thresholds τ_i must thus be carefully set to take this into account.

Finally, note that whenever the daisy \mathcal{D}_0 leads to an output of 1, this happens (almost) \textit{independently of the input}: the assignment to every $S \in \mathcal{D}_0$ is determined solely by the assignment to K_0, because $S \subseteq K_0$. Therefore, the sample-based algorithm N disregards \mathcal{D}_0 in its execution.

\textbf{The algorithm.} By the discussion above, we obtain the following description for the sample-based algorithm N^x (with some parameters that we will set later).

1. Sample each coordinate of x independently with probability $p = 1/n^{1/(2q^2)}$. If the number of samples exceeds the desired sample complexity, abort.

2. For every $i \in [q]$ and every assignment κ to K_i, perform the following steps.

 (a) Count the number of sets in \mathcal{D}_i with local views that lead M to output 1, which are \textit{relevant for the assignment κ} and the queried values. If $i = 1$, discard the sets whose petals are shared by at least α local views.\footnote{The extra condition for $i = 1$ is necessary to deal with the looser intersection bound $t = n^{1/q} > n^{(i-1)/q}$ on \mathcal{D}_1. We discuss this in the next section.}

 (b) If the number is larger than the threshold τ_i, output 1.

3. If every assignment to every kernel failed to trigger an output of 1, then output 0.

In the next section we will present key technical tools that we develop and apply to analyse this algorithm, as well as discuss the parameters $\tau_i = \gamma_i \cdot np^i$ (where $\gamma_i = \Theta(1)$) and $\alpha = \Theta(1)$, and show it indeed suffices for the problem we set out to solve.
2.4 Analysis using a volume lemma and the Hajnal–Szemerédi theorem

To establish the correctness of the aforementioned sample-based algorithm, we shall first need two technical lemmas about sampling daisies. We will then proceed to provide an outline of the analysis of our algorithm.

2.4.1 Two technical lemmas

We sketch the proofs of two simple, yet important technical lemmas that will be paramount to our analysis: (1) a lemma that allows us to transition from arguing about probability mass to arguing about combinatorial volume; and (2) a lemma that allows us to efficiently analyse sampling petals of daisies with complex intersection patterns.

The volume lemma. We start by showing how to derive from the probability mass of query sets (i.e., the probability under μ_x when the input is x) a bound on the volume that the union of these query sets cover. This is provided by the following volume lemma, which captures what is arguably the defining structural property of robust local algorithms.

Recall that the sample-based algorithm N uses the query sets of a $(\rho, 0)$-robust algorithm M with error rate σ, which comprise the support of the distributions μ_x for all inputs x. Intuitively, these sets cannot be too concentrated (i.e., cover little volume), as otherwise slightly corrupting a word (in less than ρn coordinates) could require M to output differently, a behaviour that is prevented by the robustness of M. This intuition is captured by the following volume lemma.

Lemma 2.1 (Lemma 5.6, informally stated). Let $x \in \{0, 1\}^n$ be a non-robust input (a 1-input in our case) and S be a subcollection of query sets in the support of μ_x. If S covers little volume (i.e., $\cup S < \rho n$), then it has small weight (i.e., $\mu_x(S) < 2\sigma$).

We stress that the robustness of the 0-inputs yields the volume lemma for 1-inputs. Note that the contrapositive of the volume lemma yields a desirable property for our sample-based algorithm: for any (non-robust) 1-input x, the query sets in $\text{supp}(\mu_x)$ must cover a large amount of volume, so that we can expect to sample many such sets.

The Hajnal–Szemerédi theorem. Once we establish that a daisy covers a large volume, it remains to argue how this affects the probability of sampling petals from this large daisy, which is a key component of our algorithm. Recall that sampling the petals of a sunflower is trivial to do. However, with the complex intersection patterns that the petals of a daisy could have, we need a tool to argue about sampling petals of daisies.

First, recall that the daisy partition lemma ensures that each D_i is a t-daisy where $t = r_i^{\max\{1,i\}}/q$, for all i. Observe that if D_i is a 1-daisy (which we call a simple daisy), that is, each point outside the kernel K_i is contained in at most one set $S \in D_i$, then the sets in D_i have pairwise disjoint petals, so sampling them is exactly like sampling petals of a sunflower: these petals are sampled independently from one another, and we expect their number to be concentrated around the expectation of $p^i|D_i|$ (recall that all petals have size i).

12This is a rather subtle consequence of adaptivity; in the nonadaptive setting a symmetric volume lemma for b-inputs can be shown using robustness on b-inputs, for $b \in \{0, 1\}$. 15
Of course, there is no guarantee that \(D_i \) is a simple daisy, though we expect it to contain a simple daisy if it is large enough. Indeed, greedily removing intersecting sets yields a simple daisy of size \(\Theta(|D_i|/t) \), but this does not suffice for our purposes because most of the sets in \(D_i \) are discarded.

Instead, we rely on the Hajnal–Szemerédi theorem to obtain a “lossless” transition from a \(t \)-daisy to a collection of simple daisies, from which sampling petals is easy. The Hajnal–Szemerédi theorem shows that for every graph \(G \) with \(m \) vertices and maximum degree \(\Delta \), and for any \(k \geq \Delta + 1 \), there exists a \(k \)-colouring of the vertices of \(G \) such that every colour class has size either \(\lfloor m/k \rfloor \) or \(\lceil m/k \rceil \). By applying this theorem to the incidence graph of the petals of query sets (i.e., the graph with vertex set \(D_i \) where we place an edge between \(S \) and \(S' \) when \((S \cap S') \setminus K_i \neq \emptyset\)), we obtain a partition of \(D_i \) into \(\Theta(t) \) simple daisies of the same size (up to an additive error of 1), and hence obtain stronger sampling bounds.

2.4.2 Analysis

Note that the probability that \(N \) samples too many coordinates (thus aborts) is exponentially small, hence we assume hereafter that this event did not occur.

We proceed to sketch the high-level argument of the correctness of the sampled-based algorithm \(N \), described in the previous section, making use of tools above. This follows from two claims that hold with high probability: (1) correctness on non-robust inputs, which ensures that when \(x \) is a 1-input (i.e., non-robust), there exists \(i \in [q] \) such that when \(N \) considers the kernel assignment \(x_{|K_i} \) (which coincides with the input), the number of local views that lead to output 1 crosses the threshold \(\tau_i \); and (2) correctness on robust inputs, which, on the other hand, ensures that when \(x \) is a 0-input (i.e., robust), for every kernel \(K_i \) and every kernel assignment, the number of local views that lead to output 1 does not cross the threshold \(\tau_i \).

In the following, we remind that when the sample-based algorithm \(N \) considers a particular assignment \(\kappa \) to a kernel and counts the number of local views that lead to output 1, the algorithm only considers views that are relevant to \(x_\kappa \) (the input \(x \) where the values of its kernel are replaced by \(\kappa \)); that is, local views that arise from some branch of a decision tree of the adaptive algorithm \(M \) that would have led it to query these local views. While \(N \) does not know all of \(x \), after collecting samples from \(x \) and considering the kernel assignment \(\kappa \), it can check which local views are relevant to \(x_\kappa \) (see discussion in Section 2.3).

Correctness on non-robust inputs. We start with the easier case, where \(x \) is a non-robust input (in our case, \(f(x) = 1 \)). We show that there exists \(i \in [q] \) such that when \(N \) considers the kernel assignment \(x_{|K_i} \), the number of local views that lead to output 1 crosses the threshold \(\tau_i = \gamma_i \cdot np^i \). We begin by recalling that \(N \) disregards the daisy \(D_0 \), whose query sets are entirely contained in the kernel \(K_0 \), and arguing that this leaves sufficiently many query sets that lead to output 1. Indeed, while we could not afford this if \(D_0 \) was heavily queried by \(M \) given the 1-input \(x \) (i.e., if \(\mu_x(D_0) \) is close to \(1 - \sigma \)), an application of the volume lemma shows this is not the case: since \(|K_0| = o(n) \), this volume is smaller than \(pn \), implying \(\mu_x(D_0) < 2\sigma \) for all 1-inputs \(x \).

Apart from \(D_0 \), the query sets in the daisy \(D_1 \) whose petals are shared by at least \(\alpha \) local views (for a parameter \(\alpha \) to be discussed shortly) are also discarded, and we need to show that the loss incurred by doing so is negligible as well. This is accomplished with a slightly more involved application of the volume lemma: since the sets of \(D_1 \) have petals of size 1, the subcollection \(C \subseteq D_1 \) of sets that are discarded covers a volume of at most \(|K_1| + |C|/\alpha \). For a sufficiently large choice of a constant \(\alpha > 0 \), we have \(|C|/\alpha \leq \rho n/2 \) (recall that \(C \subseteq \text{supp}(\mu_x) \) and \(\text{supp}(\mu_x) = \Theta(n) \) by the
assumption on the randomness complexity of M). Since $|K_1| = o(n)$ and in particular $|K_1| < mn/2$, applying the volume lemma to C shows that $\mu_2(C) < 2\sigma$.

Finally, the total weight of all query sets in $\text{supp}(\mu_x)$ that lead to output 0 is at most σ (by definition of the error rate σ). This implies that the subcollection of $\text{supp}(\mu_x)$ that leads to output 1 and is not disregarded has weight at least $1 - 2\sigma - 2\sigma - \sigma = 1 - 5\sigma$, and, for a sufficiently small value of σ (recall that $\sigma = \Theta(1/q)$), we have $1 - 5\sigma \geq 1/2$.

We now shift perspectives, and in effect use the volume lemma in the contrapositive direction: large weights imply large volumes. By a simple averaging argument, it follows that at least one daisy D_i has weight at least $(1 - 5\sigma)/q \geq 2\sigma$, and thus, by the volume lemma, covers at least ρn coordinates. Therefore, since $|\text{supp}(\mu_x)| = \Theta(n)$ and μ_x is uniform over a multi-collection of query sets, this daisy contains $\Theta(n)$ “good” sets (that lead to output 1 and were not discarded). For the analysis, using the Hajnal–Szemerédi theorem, we partition the t-daisy D_i into $\Theta(t)$ simple daisies of size $\Theta(n/t)$. Each such simple daisy has disjoint petals of size i, so that $\Omega(np^i/t)$ petals will be sampled with probability $\exp(-\Omega(np^i/t))$. Finally, this implies that, when N considers the kernel assignment $x|_{K_i}$ to K_i, at least $\tau_i = \gamma_i \cdot np^i$ petals are sampled except with probability

$$O(t) \cdot \exp \left(-\Omega \left(\frac{np^i}{t} \right) \right) = \exp \left(-\Omega \left(n^{1 - \max\{1,i-1\}/q - \frac{i}{2q^2}} \right) \right) = o(1).$$

(Recall that $t = n^{\max\{1,i-1\}/q}$ and the sampling probability is $p = 1/n^{1/(2q^2)}$.)

Correctness on robust inputs. It remains to show the harder case: when x is a robust input (in our case, $f(x) = 0$), then all kernel assignments to all daisies will make the local views that lead to output 1 fail to cross the threshold. This case is harder since, by the asymmetry of N with respect to robust and non-robust inputs, here we need to prove a claim for all kernel assignments to all daisies, whereas in the non-robust case above we only had to argue about the existence of a single assignment to a single kernel.

We begin with a simple observation regarding D_0, then analyse the daisies D_i for $i > 1$, and deal with the more delicate case of D_1 last. Recall that D_0 is disregarded by the algorithm N, and that by the asymmetry of N with respect to 0- and 1-inputs, this only makes the analysis on robust inputs easier. Indeed, N^x is correct when no kernel assignment to any of the D_i’s leads to crossing the threshold τ_i of local views on which the query-based algorithm M outputs 1. Thus, by discarding the query sets in D_0, we only increase the probability of not crossing these thresholds.

Fix $i > 0$ and an arbitrary kernel assignment κ to K_i. Then, the relevant sets that N may sample are those in the support of $\mu_{x,\kappa}$ (recall that x_κ is the word obtained by replacing the bits of x whose coordinates lie in K_i by κ). Since $|K_i| = o(n)$, it follows by the robustness of x that x_κ is ρ-close to x, and thus the weight of the collection $\mathcal{O} \subseteq \text{supp}(\mu_{x,\kappa})$ of query sets that lead to output 1 is at most σ. For the sake of this technical overview, we focus on the worst-case scenario, where all of these “bad” sets are in the daisy D_i (i.e., $\mathcal{O} \subseteq D_i$) and $|\mathcal{O}|$ is as large as possible (i.e., $|\mathcal{O}| = \Theta(n)$), and show that even that will not suffice to cross the threshold τ_i.

By the randomness complexity of the algorithm M, the size of \mathcal{O} is $\Theta(n)$. We apply the Hajnal–Szemerédi theorem and partition \mathcal{O} into $\Theta(t)$ simple daisies of size $\Theta(n/t)$. Recall that the petals of query sets in D_i have size i and are disjoint; therefore, each of these simple daisies has $\Omega(np^i/t)$ sampled petals with probability only $\exp(-\Omega(np^i/t))$. By an averaging argument, the

\[^{13}\text{We stress that the constants hidden byody-notation are smaller in the robust case than in the non-robust one. This}\]
two-sided (see Section 7.2 for details). We remark that, although standard LDCs have (see Corollary 7.1 for details). We remark that in Section 7.1 we show an additional application to
\[\alpha \]
by at most \(1 \Theta(M) \) with probability at most \(\exp(-\Omega(\Theta(M))) \). Since the
daisy partition lemma yields a bound of \(O(n^{i-1/q}) \) for the size of the kernel \(K_i \), a union bound over all \(2^{K_i} \) kernel assignments ensures the threshold is crossed with probability \(o(1) \).\(^{14}\)

We now analyse \(D_1 \) and stress that the need for a separate analysis arises from the looser intersection bound on this daisy: \(D_1 \) is a \(t \)-daisy with \(t = n^{i/q} \), whereas for all other \(i \) the bound is \(t = n^{(i-1)/q} \). This implies that there is no “gap” between the expected number of queried petals in each simple daisy \(\Theta(np/t) = \Theta(n^{1/q-1/(2q^2)}) = o(n^{1/q}) \) and the size of the kernel \(|K_1| = O(n^{1/q}) \), so a union bound as in the case \(i > 1 \) does not suffice.

This is precisely what the “capping” performed by \(N \) on \(D_1 \) is designed to address: the query
sets \(O \subseteq \text{supp}(\mu_{x_*}) \) that lead to output 1 will only be counted by \(N \) if their petals are shared by at most \(\alpha \) query sets. Then, by the Hajnal–Szemerédi theorem, we partition \(O \) into \(\alpha = \Theta(1) \) simple daisies of size \(\Theta(n) \). Each simple daisy will have more than \(\tau_i/\alpha = \Theta(np) \) queried petals with probability at most \(\exp(-\Omega(np)) \), so that the total number of such petals across all simple daisies exceeds \(\tau_i \) with probability at most \(\exp(-\Omega(np)) \). This provides the necessary gap: as \(\Theta(np) = \Omega(n^{1-1/(2q^2)}) \) and \(|K_1| = O(n^{1/q}) \), a union bound over all \(2^{K_1} \) assignments to \(K_1 \) shows the threshold is crossed with probability \(o(1) \). This concludes the high-level overview of the proof of
correctness (see Section 6.2 for the full proof).

2.5 Applications

We conclude the technical overview by briefly sketching how to derive our main applications from Theorem 1 see Section 1.3 for details. Recall that above we assumed the local algorithm \(M \) we start with had suitable error rate and randomness complexity; the results that follow remove this assumption at the cost of an increase of the query complexity of \(M \), from \(q \) to \(O(q \log q) \).

Query-to-sample tradeoffs for adaptive testers. The application to property testing is an
immediate corollary of Theorem 1. Namely, an \(\varepsilon \)-tester is a \((\varepsilon, 0)\)-robust algorithm for the problem of testing with proximity parameter \(2\varepsilon \). Therefore, by Theorem 1 any \(\varepsilon \)-tester making \(q \) adaptive
queries can be transformed into a sample-based \(2\varepsilon \)-tester with sample complexity \(n^{1-1/O(q^2 \log^2 q)} \)
(see Corollary 7.1 for details). We remark that in Section 7.1 we show an additional application to multi-testing.

Relaxed LDC lower bound. By a straightforward extension of our definition of robust local
algorithms to allow for outputting a special failure symbol \(\perp \), our framework captures relaxed LDCs
(see Section 7.2 for details). We remark that, although standard LDCs have two-sided robustness,
is what allows us to show the total number of queried petals is at least \(\tau_i = \gamma_i np^i \) with probability \(\exp(-\Omega(np^i/t)) \) in the robust case but \(1 - \exp(-\Omega(np^i/t)) \) in the non-robust, for the same constant \(\gamma_i \).

\(^{14}\)Recall that we set the sampling probability to be \(p = 1/n^{1/q} \) with \(\beta = 2q^2 \). This choice is justified as follows: the
union bound requirement that \(2^{|K_1|} \) multiplied by the probability of crossing the threshold be small translates into
\(1/q - i/\beta > 0 \) for all \(i \in [q-1] \). Then \(i = q-1 \) requires \(\beta = \Omega(q^2) \).
the treatment of relaxed LDCs is analogous to one-sided robust algorithms, owing to its relaxed output behaviour.

By applying [Theorem 1](#) to a relaxed local decoder *once for each bit to be decoded*, we obtain a global decoder that decodes uncorrupted codewords with \(n^{1-1/O(q^2 \log^2 q)} \) queries; by a simple information-theoretical argument, we obtain a rate lower bound of \(n = k^{1+1/O(q^2 \log^2 q)} \) for relaxed LDCs (see Corollaries 7.8 and 7.9).

Tightness of the separation between MAPs and testers. [Theorem 1](#) applies to the setting of *Merlin-Arthur proofs of proximity* (MAPs) via a description of MAPs as coverings by partial testers, which are, in turn, robust local algorithms. In Section 7.3, we show that the existence of an adaptive MAP for a property \(\Pi \) with query complexity \(q \) and proof length \(p \) implies the existence of a sample-based tester for \(\Pi \) with sample complexity \(p \cdot n^{1-1/O(q^2 \log^2 q)} \). This implies that there exists no property admitting a MAP with query complexity \(q = O(1) \) and logarithmic proof length (and, in fact, much longer proof length) that requires at least \(n^{1-1/\omega(q^2 \log^2 q)} \) queries for testers without a proof, showing the (near) tightness of the separation between the power of MAPs and testers from [GR18](#).

Optimality of [Theorem 1](#). Interestingly, as a direct corollary of the tightness of the aforementioned separation between MAPs and testers of [GR18](#), we obtain that the general transformation in [Theorem 1](#) is optimal, up to a quadratic gap in the dependency on the sample complexity. This follows simply because a transformation with smaller sample complexity could have been used to transform the MAP construction of the aforementioned MAPs-vs-testers separation, yielding a tester with query complexity that contradicts the lower bound in that result (see Theorem 7.12).

3 Preliminaries

Throughout this paper, constants are denoted by greek lowercase letters, such as \(\alpha, \beta \) and \(\gamma \); capital letters of the latin alphabet generally denote sets (e.g. \(P \) and \(S \)) or algorithms (e.g., \(M \) and \(N \)). For each \(n \in \mathbb{N} \), we denote by \([n] \) the set \(\{1, \ldots, n\} \). Sets \(S \) such that \(|S| = q \) are called \(q \)-sets. The complement of \(S \) is denoted \(\overline{S} \). We will use \(\Sigma \) to denote an alphabet.

As integrality issues do not substantially change any of our results, equality between an integer and an expression (that may not necessarily evaluate to one) is assumed to be rounded to the nearest integer.

Multi-sets of sets. To prevent ambiguity, we call (multi-)sets comprised of objects other than points (such as sets, trees or tuples) (multi-)collections in this work, and denote them by the calligraphic capitals \(\mathcal{D}, \mathcal{S}, \mathcal{T} \).

Distance and proximity. We denote the *absolute distance* between two strings \(x, y \in \Sigma^n \) (over the alphabet \(\Sigma \)) by \(\Delta(x, y) := |\{i \in [n] : x_i \neq y_i\}| \) and their relative distance (or simply distance) by \(\Delta(x, y) := \frac{\Delta(x, y)}{n} \). If \(\Delta(x, y) \leq \epsilon \), we say that \(x \) is \(\epsilon \)-close to \(y \), and otherwise we say that \(x \) is \(\epsilon \)-far from \(y \). The (Hamming) ball of radius \(\epsilon \) around \(x \) is \(B_\epsilon(x) = \{y \in \Sigma^n : y \text{ is } \epsilon \text{-far from } x\} \), and the ball \(B_\epsilon(S) \) around a set \(S \subseteq \Sigma^n \) is the union over \(B_\epsilon(x) \) for each \(x \in S \).
Probability. The uniform distribution over a set S is denoted U_S. We write $X \sim \mu$ to denote a random variable X with distribution μ; the probability of event $[X = s]$ is interchangeably referred to as weight, and is denoted $\Pr[X = s]$ (the underlying distribution will be clear from context), and the expected value of X is $\mathbb{E}[X]$. We also write $|\mu|$ as shorthand for $|\text{supp}(\mu)|$, the support size of μ. Below is the version of the Chernoff bound that will be used in this work.

Lemma 3.1 (Chernoff bound). Let X_1, \ldots, X_k be independent Bernoulli random variables distributed as X. Then, for every $\delta \in [0, 1]$,

$$
\Pr \left[\frac{1}{k} \sum_{i=1}^{k} X_i \geq (1 + \delta)\mathbb{E}[X] \right] \leq e^{-\frac{\delta^2 \mathbb{E}[X]}{2}} \quad \text{and} \\
\Pr \left[\frac{1}{k} \sum_{i=1}^{k} X_i \leq (1 - \delta)\mathbb{E}[X] \right] \leq e^{-\frac{\delta^2 \mathbb{E}[X]}{2}}.
$$

Algorithms. We denote by $M^x(z)$ the output of algorithm M given direct access to input z and query access to string x. Probabilistic expressions that involve a randomised algorithm M are taken over the inner randomness of M (e.g., when we write $\Pr[M^x(z) = s]$, the probability is taken over the coin tosses of M). The number of coin tosses M makes is its randomness complexity. The maximal number of queries M performs over all strings x and outcomes of its coin tosses is interchangeably referred to as its query complexity or locality q. When $q = o(n)$, where n is the length of the string x, we say M is a (q-)local algorithm. If the queries performed by M are determined in advance (so that no query depends on the result of any other query), M is non-adaptive; otherwise, it is adaptive. Finally, if M queries each coordinate independently with some probability p, we say it is a sample-based algorithm. Since we will want to have an absolute bound on the sample complexity (i.e., the number of coordinates sampled) of sample-based algorithms, we allow them to cap the number of coordinates they sample.

Notation. We will use the following, less standard, notation. An assignment to a set S (over alphabet Σ) is a function $a : S \to \Sigma$, which may be equivalently seen as a vector in $\Sigma^{|S|}$ whose coordinates correspond to elements of S in increasing order. Its restriction to $P \subseteq S$ is denoted $a_{|P}$. If x is an assignment to S and κ is an assignment to $P \subseteq S$, the partially replaced assignment $x_\kappa \in \Sigma^n$ is that which coincides with κ in P and with x in $S \setminus P$ (i.e., $x_\kappa|_P = \kappa$ and $x_\kappa|_{S \setminus P} = x_{S \setminus P}$).

Adaptivity. Adaptive local algorithms are characterised in two equivalent manners: a standard description via decision trees and an alternative that makes more direct use of set systems. Let M be a q-local algorithm for a decision problem (i.e., which outputs an element of $\{0, 1\}$) with oracle access to a string over alphabet Σ and no access to additional input (what follows immediately generalises by enumerating over explicit inputs).

The behaviour of M is completely characterised by a collection $\{(T_s, s) : s \in \{0, 1\}^r\}$ of decision trees, where r is the randomness complexity of M; the trees are $|\Sigma|$-ary, have depth q, edges labeled by elements of Σ, inner nodes labeled by elements of $[n]$ and leaves labeled by elements of $\{0, 1\}$. The execution of M^x proceeds as follows. It (1) flips r random coins, obtains a string $s \in \{0, 1\}^r$ and chooses the decision tree T_s to execute; (2) beginning at the root, for q steps, queries the coordinate given by the label at the current vertex and follows the edge whose label is the queried value; and (3) outputs the bit given by the label of the leaf thus reached.
Although this offers a complete description of an adaptive algorithm, we choose to use an alternative that is amenable to *daisy lemmas* (see Section 5.1). This is obtained by describing each decision tree with the collection of its branches. More precisely, from \(\{(T_s, s) : s \in \{0, 1\}^r\}\) we construct \(\{(S_{st}, a_{st}, b_{st}, s, t) : s \in \{0, 1\}^r, t \in [\mid \Sigma \mid]\}\), where \(t\) identifies which branch the tuple is obtained from. \(S_{st}\) is the \(q\)-set queried by the \(t\)th branch of \(T_s\), while \(a_{st}\) is the assignment to \(S_{st}\) defined by the edges of this branch and \(b_{st} \in \{0, 1\}\) is the output at its leaf. We remark that the decision trees may be reconstructed from their branches, so that this description is indeed equivalent (though we will not need this fact).

We now define the distribution of an algorithm, as well as its distribution under a fixed input.

Definition 3.2 (Induced distribution). Let \(M\) be a \(q\)-local algorithm with randomness complexity \(r\) described by the collection of decision trees \(\{T_s : s \in \{0, 1\}\}\). The distribution \(\tilde{\mu}^M\) of \(M\) is given by sampling \(s \in \{0, 1\}^r\) uniformly at random and taking \(T_s\).

Fix an arbitrary input \(x\) to \(M\) and, for all \(s \in \{0, 1\}^r\), let \((S_{st}, x|S_{st}, b_{st}, s, t)\) be the unique tuple defined by the branch of \(T_s\) followed on input \(x\). We may thus discard \(t\) and the tuple \((S_s, x|S_s, b_s, s)\) is well defined. The distribution \(\mu^M_x\) is given by sampling \(s \in \{0, 1\}^r\) uniformly at random and taking the set \(S_s\) (the first element of the tuple \((S_s, x|S_s, b_s, s)\)).

We note that the contents of the tuple \((S_s, x|S_s, b_s, s)\) describe exactly how \(M\) will behave on input \(x\) and random string \(s\).

4 Robust local algorithms

We now introduce robust local algorithms, a natural notion that captures a wide class of sublinear-time algorithms, ranging from property testing to locally decodable codes. Our main result (**Theorem 1**) holds for any robust local algorithm, and indeed, we obtain our results for coding theory, testing, and proofs of proximity as direct corollaries.

While local algorithms, i.e., algorithms that only probe a minuscule portion of their input, are very well studied, their definition is typically context-dependent, where they are required to perform different tasks (e.g., test, self-correct, decode, perform a local computation) under different promises (proximity to encoded inputs, being either “close” to or “far” from sets, etc.).

Indeed, except for degenerate cases, having a promise on the input is necessary for algorithms that only make a sublinear number of queries to their input. We capture this phenomenon by defining a robustness condition, which is shared by most natural sublinear-time algorithms. Loosely speaking, we say that a local algorithm is robust if its output remains stable in the presence of small perturbations.

In the next subsection, we provide a precise definition of robust local algorithms. Then, in the subsequent subsection, we show how this notion captures property testing, locally testable codes, locally decodable and correctable codes, PCPs of proximity, and other local algorithms.

4.1 Definition

We begin by defining local algorithms, which are probabilistic algorithms that receive query access to an input \(x\) and explicit parameter \(z\) and are required to compute a partial function \(f(z, x)\) (which represents a promise problem) by only making a small number of queries to the input \(x\).
Definition 4.1 (Local algorithms). For sets Σ, Z, let f be a partial function $f : Z \times \Sigma^n \rightarrow \{0, 1\}$. A q-local algorithm M for computing f with error rate σ receives query access to an input $x \in \Sigma^n$ and explicit access to $z \in Z$. The algorithm makes at most q queries to x, and satisfies

$$\Pr[M^z(x) = f(z, x)] \geq 1 - \sigma.$$

The parameter q is called the query complexity of M, to which we also refer as locality. Throughout, when we refer to a local algorithm, we mean a q-local algorithm with $q = o(n)$. Another important parameter is the randomness complexity of M, defined as the maximal number of coin tosses it makes over all $z \in Z$ and $x \in \Sigma^n$.

The following definition formalises the aforementioned natural notion of robustness, which is the structural property that underlies local computation. Loosely speaking, a local algorithm M is robust if its outputs are “stable” in small neighbourhoods of its 0-inputs or 1-inputs.

Definition 4.2 (Robustness). Let $\rho > 0$. A local algorithm M for computing f is ρ-robust at point $x \in \Sigma^n$ if $\Pr[M^w(z) = f(z, x)] \geq 1 - \sigma$ for all $w \in B_\rho(x)$, $z \in Z$. We say that M is (ρ_0, ρ_1)-robust if, for every $z \in Z$ and $b \in \{0, 1\}$, M is ρ_0-robust at any point x such that $f(z, x) = b$.

If a local algorithm M is (ρ_0, ρ_1)-robust and $\max\{\rho_0, \rho_1\} = \Omega(1)$ (independent of n), we simply call M robust. Note that non-trivial robustness is only possible since f is a partial function; that is, the local algorithm M solves a promise problem. Indeed, for every parameter z, the algorithm is promised to receive an input $P_z \triangleq f^{-1}(z, 0)$ on which it should output 0, or an input $P_{z,1} \triangleq f^{-1}(z, 1)$ on which it should output 1.

Remark 4.3 (One-sided robustness). For our main result (Theorem 1), it suffices to have one-sided robustness, i.e., (ρ_0, ρ_1)-robustness where only one of ρ_0, ρ_1 is non-zero. For example, in the setting of property testing with proximity parameter ε we only have $(\varepsilon, 0)$-robustness (see Section 4.2 for details). To simplify notation, we refer to $(\rho, 0)$-robust local algorithms as ρ-robust.

Remark 4.4 (Larger alphabets). The definition of local algorithms can be further generalised to a constant-size output alphabet Γ, in which case the partial function is $f : \Sigma^n \rightarrow \Gamma$; we assume $\Gamma = \{0, 1\}$ for simplicity of exposition, but note that our results extend to larger output alphabets in a straightforward manner.

We proceed to show how to capture various well-studied families of sublinear-time algorithms (such as testers, local decoders, and PCPs) using the notion of robust local algorithms.

4.2 Property testing

Property testing [RS96, GGR98] deals with probabilistic algorithms that solve approximate decision problems by making a small number of queries to their input. More specifically, a tester is required to decide whether its input is in a set Π (i.e., has the property Π) or whether it is ε-far from any input in Π.

Definition 4.5 (Testers). An ε-tester with error rate σ for a property $\Pi \subseteq \Sigma^n$ is a probabilistic algorithm T that receives query access to a string $x \in \Sigma^n$. The tester T performs at most $q = q(\varepsilon)$ queries to x and satisfies the following two conditions.

1. If $x \in \Pi$, then $\Pr[T^x = 1] \geq 1 - \sigma$.

22
2. For every x that is ε-far from Π (i.e., $x \in B_\varepsilon(\Pi)$), then $\Pr[T^x = 0] \geq 1 - \sigma$.

We are interested in the regime where $\varepsilon = \Omega(1)$ (i.e., ε is a fixed constant independent of n), and assume it to be the case in the remainder of this discussion.

Note that testers are not robust with respect to inputs in the property Π, as one change to an input $x \in \Pi$ could potentially lead to an input outside Π. Moreover, an ε-tester does not immediately satisfy one-sided robustness, as inputs that are on the boundary of the ε-neighbourhood of Π are not robust (see figure Fig. 1b).

However, by increasing the value of the proximity parameter by a factor of 2, we can guarantee that every point that is 2ε-far from Π satisfies the robustness condition. The following claim formalises this statement and shows that testers can be cast as robust local algorithms.

Claim 4.6. An ε-tester T for property $\Pi \subseteq \Sigma^n$ is an $(\varepsilon, 0)$-robust local algorithm, with the same parameters, for computing the function f defined as follows.

$$f(x) = \begin{cases} 1, & \text{if } x \in \Pi \\ 0, & \text{if } x \text{ is } 2\varepsilon \text{-far from } \Pi. \end{cases}$$

Proof. By definition, the tester T is a local algorithm for computing f; denote its error rate by σ. We show it satisfies (one-sided) robustness with respect to f. Let $x \in \Sigma^n$ be an input that is 2ε-far from Π, and consider $y \in B_\varepsilon(x)$. By the triangle inequality, we have that y is ε-far from Π. Thus, $\Pr[T^y = 0] \geq 1 - \sigma$, and so T is an $(\varepsilon, 0)$-robust local algorithm for f. \square

Remark 4.7 (Robustness vs proximity tradeoff). The notion of a tester with proximity parameter ε and that of an ε-robust tester with proximity parameter 2ε coincide. Moreover, there is a tradeoff between the size of the promise captured by the partial function f and the robustness parameter ρ: taking any $\varepsilon' > \varepsilon$, the tester T is a ρ-robust local algorithm with $\rho = \varepsilon' - \varepsilon$ for computing the function

$$f(x) = \begin{cases} 1, & \text{if } x \in \Pi \\ 0, & \text{if } x \text{ is } \varepsilon' \text{-far from } \Pi. \end{cases}$$

As ε' increases, the robustness parameter ρ increases and the size of the domain of definition of f decreases. In particular, taking $\varepsilon' = \varepsilon$ makes T a $(0, 0)$-robust algorithm (i.e., an algorithm that is not robust).

4.3 Local codes

We consider error-correcting codes that admit local algorithms for various tasks, such as testing, decoding, correcting, and computing functions of the message. Recall that a code $C: \{0, 1\}^k \rightarrow \{0, 1\}^n$ is an injective mapping from messages of length k to codewords of blocklength n. The rate of the code C is defined as k/n. The relative distance of the code is the minimum, over all distinct messages $x, y \in \Sigma^k$, of $\Delta(C(x), C(y))$. We shall sometimes slightly abuse notation and use C to denote the set of all of its codewords $\{C(x) : x \in \Sigma^k\} \subset \Sigma^n$. Note that we focus on binary codes, but remind that the extension to larger alphabets is straightforward. In the following, we show how to cast the prominent notions of local codes as robust local algorithms.
4.3.1 Locally testable codes

Locally testable codes (LTCs) [GS06] are codes that admit algorithms that distinguish codewords from strings that are far from being valid codewords, using a small number of queries.

Definition 4.8 (Locally Testable Codes (LTCs)). A code $C: \{0,1\}^k \to \{0,1\}^n$ is *locally testable*, with respect to proximity parameter ε and error rate σ, if there exists a probabilistic algorithm T that makes q queries to a purported codeword w such that:

1. If $w = C(x)$ for some $x \in \{0,1\}^k$, then $\Pr[T^w = 1] \geq 1 - \sigma$.

2. For every w that is ε-far from C, we have $\Pr[T^x = 0] \geq 1 - \sigma$.

Note that the algorithm T that an LTC admits is simply an ε-tester for the property of being a valid codeword of C. Thus, by Claim 4.6 we can directly cast T as a robust local algorithm.

4.3.2 Locally decodable codes

Locally decodable codes (LDCs) [KT00] are codes that admit algorithms for decoding each individual bit of the message of a moderately corrupted codeword by only making a small number of queries.

Definition 4.9 (Locally Decodable Codes (LDCs)). A code $C: \{0,1\}^k \to \{0,1\}^n$ is *locally decodable* with decoding radius δ and error rate σ if there exists a probabilistic algorithm D that, given index $i \in [k]$, makes q queries to a string w promised to be δ-close to a codeword $C(x)$, and satisfies

$$\Pr[D^w(i) = x_i] \geq 1 - \sigma.$$

Note that local decoders are significantly different from local testers and testing in general. Firstly, decoders are given a promise that their input is close to a valid codeword (whereas testers are promised to either receive a perfectly valid input, or one that is far from being valid). Secondly, a decoder is given an index as an explicit parameter and is required to perform a different task (decode a different bit) for each parameter (see Fig. 1a).

Nevertheless, local decoders can also be cast as robust local algorithms. In fact, unlike testers, they satisfy two-sided robustness (i.e., both 0-inputs and 1-inputs are robust). In the following, note that since inputs near the boundary of the decoding radius are not robust, we reduce the decoding radius by a factor of 2.

Claim 4.10. A local decoder D with decoding radius δ for the code $C: \{0,1\}^k \to \{0,1\}^n$ is a $(\delta/2, \delta/2)$-robust local algorithm for computing the function f defined as follows.

$$f(z, w) = x_z, \text{ if } x \in \{0,1\}^k \text{ is such that } w \text{ is } \delta/2\text{-close to } C(x).$$

Proof. Take any $w \in \{0,1\}^n$ that is $\delta/2$-close to $C(x)$. Then, (w, z) is in the domain of definition of f for all explicit inputs $z \in [k]$. Now let $w' \in B_{\delta/2}(w)$ and note that w' is still within the decoding radius of D. Hence, the decoder D outputs x_z with probability $1 - \sigma$, as required. Moreover, this holds regardless whether $x_z = 0$ or $x_z = 1$, and so D is $(\delta/2, \delta/2)$-robust.

Remark 4.11 (Robustness vs decoding radius tradeoff). A local decoder has decoding radius δ if and only if it is δ-robust with decoding radius $\delta/2$, and a tradeoff between promise size and robustness parameter likewise holds in this case: for any $\delta' < \delta$, the decoder D is a $(\delta - \delta', \delta - \delta')$-robust algorithm for the restriction of f to the δ'-neighbourhood of the code C. In particular, D is a (δ, δ)-robust algorithm with the domain of f defined to be the code C.

24
4.3.3 Relaxed locally decodable codes

Relaxed locally decodable codes (relaxed LDCs) \cite{BGH+04} are codes that admit a natural relaxation of the notion of local decoding, in which the decoder is allowed to output a special abort symbol \(\perp\) on a small fraction of indices, indicating it detected an inconsistency, but never erring with high probability.

Definition 4.12 (Relaxed LDC, informally stated). A relaxed LDC is a code that admits a decoder \(D\) with the same correctness requirement as a standard local decoder, except that if \(w\) is a corrupted codeword, there exists a subset \(I_w \subseteq [k]\) of size \(\xi k\), for a constant \(\xi\), where the requirement for \(i \in I_w\) is relaxed to

\[
\Pr[D^w(i) \in \{x_i, \perp\}] \geq 1 - \sigma.
\]

A precise definition of relaxed LDCs is stated in Section 7.2, where we apply our transformation to obtain improved rate lower bounds on relaxed LDCs.

Note that strictly speaking, the special abort symbol makes it so that relaxed local decoders do not fully fit Definition 4.1, as the input-output mapping \(f\) becomes one-to-many. Nevertheless, a trivial generalisation of local algorithms, which allows an additional abort symbol, enables us to capture relaxed LDCs as robust local algorithms as well. We show this in Section 7.2.

4.3.4 Locally correctable codes

The notion of locally correctable codes (LCCs) is closely related to that of LDCs, except that rather than admitting an algorithm that can decode any individual message bit, LCCs admit an algorithm that can correct any corrupted codeword bit of a moderately corrupted codeword.

Definition 4.13 (Locally Correctable Codes (LCCs)). A code \(C: \{0,1\}^k \rightarrow \{0,1\}^n\) is locally correctable with correcting radius \(\delta\) and error rate \(\sigma\) if there exists a probabilistic algorithm \(D\) that, given index \(j \in [n]\), makes \(q\) queries to a string \(w\) promised to be \(\delta\)-close to a codeword \(C(x)\) and satisfies

\[
\Pr[D^w(j) = C(x)_j] \geq 1 - \sigma.
\]

A straightforward adaptation of Claim 4.10 yields the following claim.

Claim 4.14. A local corrector \(D\) with correcting radius \(\delta\) for the code \(C: \{0,1\}^k \rightarrow \{0,1\}^n\) is a \((\delta/2, \delta/2)\)-robust local algorithm for computing the function \(f\) defined as follows.

\[
f(z, w) = C(x)_z, \text{ if } x \in \{0,1\}^k \text{ is such that } w \text{ is } \delta/2\text{-close to } C(x).
\]

4.3.5 Universal locally testable codes

Universal locally testable codes (universal LTCS) \cite{GG18} are codes that admit local tests for membership in numerous possible subcodes, allowing for testing properties of the encoded message.

Definition 4.15 (Universal LTCS). A universal LTC \(C: \{0,1\}^k \rightarrow \{0,1\}^n\) for a family of functions \(F = \{f_i : \{0,1\}^k \rightarrow \{0,1\}\}_{i \in [M]}\) is a code such that for every \(i \in [M]\) the subcode \(\{C(x) : f_i(x) = 1\}\) is locally testable.

Note that ULTCs trivially generalise LTCs, as well as generalise relaxed LDCs (see details in \cite{GG18}, Appendix A). Since universal testers can be viewed as algorithms that receive an explicit parameter \(i \in [M]\) and invoke an \(\epsilon\)-tester for the property \(\{C(x) : f_i(x) = 1\}\), then by applying Claim 4.6 to each value of the parameter \(i\) they can be cast as robust local algorithms.
4.4 PCPs of proximity

PCPs of proximity (PCPPs) \[\text{BGH} + 04 \] are probabilistically checkable proofs wherein the verifier is given query access not only to the proof, but also to the input. The PCPP verifier is then required to probabilistically check whether the statement is correct by only making a constant number of queries to both input and proof.

Definition 4.16. A PCP of proximity (PCPP) for a language \(L \), with respect to proximity parameter \(\varepsilon \) and error rate \(\sigma \), consists of a probabilistic algorithm \(V \), called the verifier, that receives query access to both an input \(x \in \Sigma^n \) and a proof \(\pi \in \{0,1\}^m \). The algorithm \(V \) is allowed to make \(q \) queries to \(x \) and to \(\pi \) and satisfies the following:

1. for every \(x \in L \) there exists a proof \(\pi \) such that \(\Pr[V(x,\pi) = 1] \geq 1 - \sigma \); and
2. for every \(x \) that is \(\varepsilon \)-far from \(L \) and every proof \(\pi \) it holds that \(\Pr[V(x,\pi) = 0] \geq 1 - \sigma \).

We observe that PCPs of proximity with canonical proofs \[\text{GS06} \] (i.e., such that the verifier rejects statement-proof pairs that are far from being a valid statement with a valid proof for it) admit verifiers that are robust local algorithms. Using the tools of \[\text{DGG19} \], who show that PCPPs can be endowed with the canonicity property at the cost of polynomial blowup in proof length, we can cast general PCPPs as robust local algorithms.

Claim 4.17. A PCPP for a language \(L \subseteq \Sigma^n \), with respect to proximity parameter \(\varepsilon > 0 \), can be transformed into a PCPP for \(L \), with respect to proximity parameter \(2\varepsilon \), with a verifier that is an \((\varepsilon,0)\)-robust local algorithm with the same query complexity and error rate.

Sketch of proof. Let \(V \) be a PCPP verifier with proximity parameter \(\varepsilon \) and soundness \(\sigma \) for language \(L \subseteq \Sigma^n \), that makes at most \(q \) queries to its input and proof. By \[\text{DGG19}, \text{Section 3} \], there exists a a PCPP verifier \(V' \) for \(L \) with the same parameters, except proof length that is polynomial in the proof length of \(V \), such that the soundness of \(V' \) is with respect to a set of canonical proofs \(\{\Pi(x)\}_{x \in L} \); that is, \(V' \) accepts pairs \((x,y)\) where \(x \in L \) and \(y \in \Pi(x) \) and rejects pairs \((x,y)\) that are \(\varepsilon \)-far from being such that \(x \in L \) and \(y \in \Pi(x) \).

Observe that \(V' \) is an \((\varepsilon,0)\)-robust local algorithm with error rate \(\sigma \) and query complexity \(q \) for computing the function \(f \) defined as follows.

\[
f(x,y) = \begin{cases}
1, & \text{if } x \in L \text{ and } y \in \Pi(x), \\
0, & \text{if } x \text{ is } 2\varepsilon\text{-far from all pairs } (x,y) \text{ such that } x \in L \text{ and } y \in \Pi(x).
\end{cases}
\]

By definition, \(V' \) is a \(q \)-local algorithm for computing \(f \) with the parameters in the statement. If the pair \((x,y)\) is \(2\varepsilon \)-far from being a valid pair and \((x',y')\) is \(\varepsilon \)-close to \((x,y)\), then \((x',y')\) is \(\varepsilon \)-far from valid, and thus \(\Pr[V'(x',y') = 0] \geq 1 - \sigma \).

Non-interactive proofs of proximity. MA proofs of proximity (MAPs) \[\text{GR18}, \text{FGL14} \] are proof systems that can be viewed as a property testing analogue of NP proofs. The setting of MAPs is very similar to that of PCPPs, with the distinction that the purported proof is of sublinear size and is given explicitly, i.e., the MAP verifier can read the entire proof. We remark that an equivalent description of a MAP as covering by partial testers \[\text{FGL14} \] is used in this work, so that every fixed proof string defines a tester, and \[\text{Claim 4.6} \] applies. We cover this in \[\text{Section 7.3} \].

26
5 Technical lemmas

In the section we provide an arsenal of technical tools for analysing robust local algorithms, which we will then use to prove our main result in Section 6. The order in which we present the tools is according to their importance, starting with the most central lemmas.

Specifically, in Section 5.1 we discuss the notion of relaxed sunflowers that we shall need, called daisies, then state and prove a daisy partition lemma for multi-collections of sets. In Section 5.2, we apply on the Hajnal-Szemerédi theorem to derive a sampling lemma for daisies. In Section 5.3, we prove a simple yet vital volume lemma for robust local algorithms, which will be used throughout our analysis. Finally, in Section 5.4 we adapt generic transformations (amplification and randomness reduction) to our setting of robust local algorithms.

5.1 Relaxed sunflowers

We discuss the central technical tool used in the transformation to sample-based algorithms, which is a relaxation of combinatorial sunflowers, referred to as daisies [FLV15, GL20]. We extend the definition of daisies to multi-sets, then state and prove the particular variant of a daisy lemma that we shall need.

Definition 5.1 (Daisy). Suppose S is a multi-collection of subsets of $[n]$ (subsets may repeat). S is an h-daisy (where $h : \mathbb{N} \rightarrow \mathbb{N}$) with petals of size j and kernel $K \subseteq [n]$ if the following holds. Every $S \in S$ has a petal $S \setminus K$ with $|S \setminus K| = j$ and, for every $k \in [j]$, there exists a subset $P_k \subseteq S \setminus K$ with $|P_k| \geq k$ whose elements are contained in at most $h(k)$ sets from S. A daisy with pairwise disjoint petals (1-daisy) is referred to as a simple daisy.

We remark that the notion of a daisy relaxes the standard definition of a sunflower in two ways: (1) the kernel is not required to equal the pairwise intersection of all sets in the collection, rather, its structure is unconstrained; and (2) the petals $P = \{S \setminus K : S \in D\}$ need not be pairwise disjoint, but rather each point outside of the kernel can be contained in at most $h(j)$ sets from S; see Fig. 2b. Note that Definition 5.1 applies to multi-sets, as opposed to sunflowers (for which pairwise disjointness disallows multiple copies of a same set).

These relaxations, unlike in the case of sunflowers, allow us to arbitrarily partition any collection of subsets into a collection of daisies with strong structural properties, as Lemma 5.2 shows.

Lemma 5.2 (Daisy partition lemma for multi-collections). Let S be a multi-collection of q-sets of $[n]$, and define the function $h : \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$h(k) = n\frac{\max\{1,k-1\}}{q}.$$

Then, there exists a collection $\{D_j : 0 \leq j \leq q\}$ such that

1. $\{D_j\}$ is a partition of S, i.e., $\bigcup_{j=0}^{q} D_j = S$ and $D_j \cap D_k = \emptyset$ when $j \neq k$.

2. For every $0 \leq j \leq q$, there exists a set $K_j \subseteq [n]$ of size $|K_j| \leq q|S| \cdot n^{-\max\{1,j\}/q}$ such that D_j is an h-daisy with kernel K_j and petals of size j. Moreover, the kernels form an incidence chain $\emptyset = K_q \subseteq K_{q-1} \subseteq \cdots \subseteq K_1 = K_0$.

Proof. We construct the collections $\{D_j : 0 \leq j \leq q\}$ in a greedy iterative manner, as follows.
1. Define $S_0 := S$.

2. Inductively define, for each $0 \leq j \leq q - 1$:

 (a) **Kernel construction**:
 Define K_j as the set of points in $[n]$ that are contained in at least
 $h(j + 1)$ sets from S.

 (b) **Daisy construction**:
 Set D_j to be all the sets $S \in S_j$ such that $|S \setminus K_j| = j$.

 (c) Set S_{j+1} to be $S_j \setminus D_j$.

3. Finally, set $D_q = S_q$ and $K_q = \emptyset$.

We now prove that this construction yields daisies with the required properties. For ease of notation, let d_i be the number of sets in S containing i for each $i \in [n]$. By definition, $S_q \subseteq S_{q-1} \subseteq \cdots \subseteq S_0$ and $D_j \subseteq S_j$ for all j. Since $D_{j-1} \cap S_j = \emptyset$ for all $j \in [q]$, it follows that $D_j \cap D_k = \emptyset$ when $j \neq k$. Also, since $S = S_q \cup \bigcup_{0 \leq j < q} D_j$ and $S_q = D_q$, we have $S = \bigcup_{0 \leq j \leq q} D_j$.

Since S is comprised of q-sets,
\[
\sum_{i \in [n]} d_i = q|S|.
\]

By the kernel construction, for each $j \in \{0, 1, \ldots, q\}$, K_j is the set of all $i \in [n]$ such that $d_i \geq h(j+1)$, which implies $\sum_{i \in K_j} d_i \geq |K_j| \cdot h(j+1)$. Therefore,
\[
q|S| = \sum_{i \in [n]} d_i \geq \sum_{i \in K_j} d_i \geq |K_j| \cdot h(j+1)
\]
and thus $|K_j| \leq q|S|/h(j+1) = q|S| \cdot n^{-\max(1,j)/q}$. Note, also, that the kernel construction ensures not only $K_j \subseteq K_{j-1}$ when $j \in [q]$, but also $K_0 = K_1$ because $h(1) = h(2)$.

Since the petals of each $S \in D_j$ have size exactly j by construction, all that remains to be proven is the intersection condition on the petals that makes D_j an h-daisy; namely, that for every $k \in [j]$, there exists a subset $P_k \subseteq S \setminus K$ with $|P_k| \geq k$ whose elements are contained in at most $h(k)$ sets from D_j. Assume for the sake of contradiction that this condition does not hold.

Let $j \in [q]$ be the smallest value for which D_j is not an h-daisy and $S \in D_j$ be a set that violates the intersection condition; then take $k \leq j$ to be the smallest subset size such that every $P_k \subseteq S \setminus K_j$ with size k has an element $i \in P_k$ with $d_i > h(k)$ (equivalently said, j and k are minimal such that the subset $L \subseteq S \setminus K_j$, comprised of all i with $d_i \leq h(k)$, has size at most $k-1$).

Suppose first that $k = 1$. Then, every $i \in S \setminus K_j$ is such that $d_i > h(2) = h(1)$ and thus $S \setminus K_j \subseteq K_0$. But this implies $S \in D_0$ (since $|S \setminus K_0| = 0$), a contradiction because the intersection condition holds by vacuity on empty petals.

Suppose now that $k > 1$. The subset
\[
L := \{i \in S \setminus K_j : d_i \leq h(k)\}
\]
contains at most $k - 1$ points; however, by minimality of k, at least $k - 1$ distinct points $i \in L$ satisfy $d_i \leq h(k - 1) \leq h(k)$. Therefore, $|L| = k - 1$ and
\[
L = \{i \in S \setminus K_j : d_i \leq h(k - 1)\}.
\]

By the definition of L, every $i \in S \setminus (K_j \cup L)$ satisfies $d_i > h(k)$, so that $i \in K_{k-1}$; therefore, $S \subseteq K_{k-1} \cup K_j \cup L$. Since the kernels form an incidence chain, $K_j \subseteq K_{k-1}$ and thus $S \setminus K_{k-1} = L$. 28
But then $|S \setminus K_j| = |L| = k - 1$, so that $S \in D_{k-1}$, contradicting the fact that $S \in D_j$ (because $k - 1 < j$ and \{D_j\} is a partition).

The following claim shows an upper bound on the total number of sets in an h-daisy that may intersect a given petal. It will be useful in order to partition a daisy into simple daisies, as the next section will show.

Claim 5.3. Let S be a multi-collection of q-sets and \{D_j : 0 \leq j \leq q\} be a daisy partition obtained by an application of Lemma 5.2. Then, for every $j \in [q]$ and $S \in D_j$, the number of sets in D_j whose petals intersect $S \setminus K_j$ is at most $2h(j) - 1 = 2n^{\max\{1, j-1\}/q - 1}$.

Proof. Let S be an arbitrary set in D_j. We name the elements in $S \setminus K_j$ by u_1, u_2, \ldots, u_j (by Lemma 5.2 every $S \in D_j$ satisfies $|S \setminus K_j| = j$). For every $k \in [j]$, let d_k be the number of sets of D_j that u_k is a member of.

Assume without loss of generality that $d_k \leq d_\ell$ for every k and ℓ in $[j]$ such that $k < \ell$, as otherwise we can rename u_1, u_2, \ldots, u_j so that this holds.

By the definition of an h-daisy, for every $\ell \in [j]$, there exist a set of ℓ elements $k \in [j]$ that satisfy $d_k \leq h(\ell)$. Thus, $[\ell]$ is such a set and we know that $d_\ell \leq h(\ell)$. As the number of petals that intersect $S \setminus K_j$ is at most $\sum_{k=1}^j d_k$, we get that

$$\sum_{k=1}^j d_k \leq \sum_{k=1}^j h(k) = \sum_{k=1}^j n^{\max\{1, k-1\}/q} \leq 2h(j).$$

The last equality follows directly from the value of $h(k)$.

5.2 Sampling daisies and the Hajnal-Szemerédi theorem

Concentration of measure is an essential ingredient in our proofs, which we first illustrate via a simplified example. Consider a collection of singletons that comprise the petals of a combinatorial sunflower: sets P_1, \ldots, P_k, all disjoint and of size 1, contained in the ground set $[n]$. If we perform binomial sampling of the ground set (sampling each $i \in [n]$ independently with probability p), the Chernoff bound ensures that the number of sampled petals is close to its expectation. Defining X_i as the random variable that indicates whether P_i was sampled, we have lower and upper tail bounds that guarantee the number of queried petals is concentrated around pn except with exponentially small probability. Note, too, that the same holds for larger petals: if P_i is a j-set for all i, the number of queried petals is concentrated around $p^j n$.

Now consider the case where P_1, \ldots, P_k are petals of a daisy. In this case the Chernoff bound does not apply, since the indicator random variables X_i are no longer independent; however, the structure of a daisy ensures there is not too much intersection among these petals, which gives means to control the correlation between these random variables. It is thus reasonable to expect that sampling a daisy is similar to sampling a sunflower. This intuition is formalised by making use of the Hajnal-Szemerédi theorem \cite{HS70}, which we state next.

Theorem 5.4. Let G be a graph with m vertices and maximum degree Δ. Then, for any $k \geq \Delta + 1$, there exists a k-colouring of the vertices of G such that every colour class has size either $\lfloor m/k \rfloor$ or $\lceil m/k \rceil$.

29
We remind that integrality does not cause issues in our analyses, and we thus assume all colour classes have size \(n/k \). By encoding the sets of a daisy as the vertices of an “intersection graph”, the fact that petals have bounded intersection translates into a graph with bounded maximum degree. Applying the Hajnal-Szemerédi theorem to this graph, we are able to partition the original daisy into a small number of large simple daisies.

Lemma 5.5. A daisy \(D \) with kernel \(K \), such that each one of its petals has a non-empty intersection with at most \(t \) other petals, can be partitioned into \(t + 1 \) simple daisies with the same kernel, each of size \(\frac{|D|}{t+1} \).

Proof. Construct a graph \(G \) with vertex set \(D \) by placing an edge between vertices \(S \) and \(S' \) when \((S \cap S') \setminus K \neq \varnothing \). By definition, the maximum degree of \(G \) is \(\Delta(G) \leq t \). The Hajnal-Szemerédi theorem implies \(G \) is colourable with \(t + 1 \) colours, where each colour class has size \(\frac{|G|}{t+1} \). This partition of the vertex set corresponds to a partition of the daisy \(D \) into simple daisies \(\{S_j : j \in [t+1]\} \), each of size \(\frac{|D|}{t+1} \).

5.3 The volume lemma

This section proves a key lemma that makes use of daisies to prove a certain structure on the sets that a robust local algorithm may query. Loosely speaking, the volume lemma ensures that in order for a collection of sets to be queried with high enough probability, it must cover a sufficiently large fraction of the input’s coordinates.

Let \(M \) be a \(q \)-local algorithm that computes a partial function \(f \) with error rate \(\sigma \) (we assume the explicit input to be fixed and omit it). Recall that, for each input \(x \in \Sigma^n \), the algorithm \(M \) queries according to a distribution \(\mu_x \) over a multi-collection of \(q \)-sets, as defined in Definition 3.2.

Lemma 5.6 (Volume lemma). Fix \(x \in \Sigma^n \) in the domain of \(f \). If there exists a \(\rho \)-robust \(y \in \Sigma^n \) such that \(f(y) \neq f(x) \), then every collection \(S \subseteq \text{supp}(\mu_x) \) such that \(|\cup S| = |\cup_{S \in S} S| < \rho n \) satisfies \(\mu_x(S) \leq 2\sigma \).

Proof. Suppose, by way of contradiction, that there exists \(S \subseteq \text{supp}(\mu_x) \) such that \(\mu_x(S) > 2\sigma \) and \(|\cup S| < \rho n \).

For notational simplicity, assume without loss of generality that \(f(x) = 1 \), and take a \(\rho \)-robust \(y \in \Sigma^n \) such that \(f(y) = 0 \). Define \(w \) to match \(x \) in the coordinates covered by \(\cup S \), and to match \(y \) otherwise. Then \(w \) is \(\rho \)-close to \(y \), so that \(M \) outputs 0 when its input is \(w \) with probability at least \(1 - \sigma \).

When the algorithm samples a decision tree that makes it query \(S \in \mathcal{S} \), then \(M \) behaves exactly as it would on input \(x \), which happens with probability at least \(\mu_x(S) > 2\sigma \). But the algorithm outputs 1 on input \(x \) with probability at most \(\sigma \), and thus outputs 0 on input \(w \) with probability greater than \(\sigma \), in contradiction with the robustness of \(y \).

Remark 5.7. The volume lemma requires an arbitrary \(\rho \)-robust \(y \) with \(f(y) \neq f(x) \). It thus suffices that a single such \(\rho \)-robust point exists for the volume lemma to hold for every \(x' \) such that \(f(x') = f(x) \).

5.4 Generic transformations

This section provides two standard transformations that improve parameters of an algorithm: error reduction (Claim 5.8) and randomness reduction (Claim 5.9). These apply generally to randomised
algorithms for decision problems, and, when applied to robust local algorithms, both transformations compute the same function and preserve robustness. We defer their proofs to Appendix A.

The following claim is an adaptation of a basic fact regarding randomised algorithms: performing independent runs and selecting the output via a majority rule decreases the error probability exponentially.

Claim 5.8 (Error reduction). Let \(M \) be a \((\rho_0, \rho_1)\)-robust algorithm for computing a function \(f : Z \times \Sigma^n \rightarrow \{0, 1\} \) with error rate \(\sigma \leq 1/3 \), query complexity \(q \) and randomness complexity \(r \).

For any \(\sigma' > 0 \), there exists a \((\rho_0, \rho_1)\)-robust algorithm \(N \) for computing the same function with error rate \(\sigma' \), query complexity \(O(q \log(1/\sigma')/\sigma) \) and randomness complexity \(O(q r \log(1/\sigma')/\sigma) \).

Next, we state a transformation that yields an algorithm with twice the error rate and significantly reduced randomness complexity. This, in turn, provides an upper bound on the number of \(q \)-sets queried by the algorithm, such that an application of Lemma 5.2 to this multi-collection yields daisies with kernels of sublinear size. Such a bound on the size of the kernels is crucial to ensure correctness of the sample-based algorithm we construct in Section 6.1. Our proof adapts the technique of Goldreich and Sheffet [GS10], which in turn builds on the work of Newman [New91].

Claim 5.9 (Randomness reduction). Let \(M \) be a \((\rho_0, \rho_1)\)-robust algorithm for computing a function \(f : Z \times \Sigma^n \rightarrow \{0, 1\} \) with error rate \(\sigma \), query complexity \(q \) and randomness complexity \(r \).

There exists a \((\rho_0, \rho_1)\)-robust algorithm \(N \) for computing the same function with error rate \(2\sigma \) and query complexity \(q \), whose distribution \(\tilde{\mu}^N \) has support size \(3n \ln |\Sigma|/\sigma \). In particular, the randomness complexity of \(N \) is bounded by \(\log(n/\sigma) + \log \log |\Sigma| + 2 \).

In the next section, we need a combination of error reduction and randomness reduction. Recall that we begin with a \(\rho \)-robust \(\ell \)-local algorithm \(M \) with explicit access to \(z \) and query access to a string in \(\Sigma^n \). Its error rate is \(1/3 \), and it may have arbitrarily large randomness complexity.

We now apply both transformations in order, omitting mention of parameters that are left unchanged.

1. Apply Claim 5.8 (error reduction) to \(M \), obtaining a new algorithm \(M'' \) with error rate \(\sigma'' = 1/(16q) \) and query complexity \(q = O(\ell \log(1/\sigma'')) = O(\ell \log(16q)) \) (as well as larger randomness complexity).

2. Apply Claim 5.9 (randomness reduction) to \(M'' \), thereby obtaining a new algorithm \(M' \) with error rate \(\sigma = 2\sigma'' = 1/8q \) and support size \(3n \ln |\Sigma|/\sigma'' = 6n \ln |\Sigma|/\sigma \) on its distribution over decision trees.

We thus derive the following lemma.

Lemma 5.10. Assume there exists a \(\rho \)-robust algorithm \(M \) for computing \(f \) with query complexity \(\ell \), error rate \(1/3 \) and arbitrary randomness complexity. Then there exists a \(\rho \)-robust \(q \)-local algorithm \(M' \) with error rate

\[
\sigma = 1/(8q)
\]

such that \(q \log_{16q} = O(\ell) \), or, equivalently,

\[
q = O(\ell \log \ell).
\]

Moreover, the distribution of \(M' \) is uniform over a multi-collection of decision trees of size \(6n \ln |\Sigma|/\sigma \).
6 Proof of [Theorem 1]

This section contains the main technical contribution of our work: a proof that every robust local algorithm with query complexity \(q \) can be transformed into a sample-based local algorithm with sample complexity \(n^{1-1/O(q^2 \log^2 q)} \). We begin by providing a precise statement of [Theorem 1] in the following, we remind that when the error rate of an algorithm is not stated, it is assumed to be 1/3.

Theorem 6.1 ([Theorem 1] restated). Suppose there exists a \((\rho_0, \rho_1)\)-robust local algorithm \(M \) for computing the function \(f : Z \times \Sigma^n \rightarrow \{0, 1\} \) with query complexity \(\ell \) and \(\max\{\rho_0, \rho_1\} = \Omega(1) \). Then, there exists a sample-based algorithm \(N \) for \(f \) with sample complexity \(\gamma \cdot n^{1-1/(2q^2)} \), where \(q = O(\ell \log \ell) \) and \(\gamma = O(|\Sigma|^q \ln |\Sigma|) \).

Note that when \(q = \Omega(\sqrt{\log n}) \) or \(|\Sigma|^q = \Omega(n^{1/(2q^2)})\), the algorithm we obtain samples linearly many coordinates, and the statement becomes trivial. Therefore, hereafter we assume that the query complexity of \(M \) satisfies \(\ell = o(\sqrt{\log n / \log \log n}) \) (so \(q = o(\sqrt{\log n}) \)) and the alphabet size satisfies \(|\Sigma| = n^{1/\omega(e^2 \log^2 \ell)} \) (so \(|\Sigma|^q = n^{1/\omega(q^2)}\)).

We proceed to prove Theorem 6.1. Specifically, in Section 6.1 we construct a sample-based local algorithm \(N \) from the \((\rho_0, \rho_1)\)-robust local algorithm \(M \) in the hypothesis of Theorem 6.1; in Section 6.2, we analyse our sample-based algorithm \(N \); and in Section 6.3 we conclude the proof by showing the lemmas proved throughout the analysis indeed imply correctness of \(N \).

6.1 Construction

Hereafter, let \(f : Z \times \Sigma^n \rightarrow \{0, 1\} \) be the function in the hypothesis of Theorem 6.1. As the treatment that follows is the same for all explicit inputs \(z \in Z \), we assume it to be fixed and omit it from the notation. We also assume without loss of generality that \(\rho_0 \) is a constant strictly greater than 0 (if this is not the case we simply exchange the 0 and 1 values in the truth table of \(f \)). We set \(\rho = \rho_0 \).

Let \(M \) be the algorithm in the hypothesis of Theorem 6.1. We apply Lemma 5.10 and obtain a \((\rho_0, \rho_1)\)-robust local algorithm \(M' \) for the same problem, with query complexity \(q = O(\ell \log \ell) \) and error rate \(\sigma = 1/(8q) \). The algorithm \(N \) we describe below has white box access to the local algorithm \(M' \). We next explain how it extracts information from it.

Upon execution, \(M' \) chooses a decision tree uniformly at random according to the outcome of its coin flips; this uniform distribution is denoted \(\tilde{\mu} = \tilde{\mu}^{M'} \), whose support size is \(|\tilde{\mu}| \). For every decision tree and every one of its branches, define a description tuple \((S, a_S, b, s)\), where \(s \) is the random string that will cause the use of this tree, \(S \) is the set of all the queries in this branch, \(a_S \) is the assignment to these queries that will result in \(M' \) using this specific branch and \(b \) is the value \(M' \) returns when this occurs (as per Definition 3.2).

We assume that for every description-tuple \((S, a_S, b, s)\) the size of \(S \) is exactly \(q \). This can be assumed without loss of generality since it is possible to convert \(M' \) into an algorithm such that every decision tree and every one of its branches makes \(q \) distinct queries: if the same query appears more than once on a branch of a tree, all but the first appearance can be removed by choosing the continuation that follows the (already known) value that leads to the algorithm using this branch. In addition, a tree can be expanded by adding queries, so that every branch has exactly \(q \) distinct queries. Both of these changes do not change any of the parameters of the algorithm beyond ensuring that it will query exactly \(q \) queries.
The algorithm N we describe next is only interested in description tuples (S, a_S, b, s) such that $b = 1$. To this end we set

$$\mathcal{T} = \{(S, a_S, b, s) : (S, a_S, b, s) \text{ is a description tuple such that } b = 1\}.$$

Algorithm N also requires the multi-collection \mathcal{S} defined as follows:

$$\mathcal{S} = \{S : (S, a_S, b, s) \in \mathcal{T}\}.$$

Specifically, it applies Lemma 5.2 to get a daisy partition of \mathcal{S}. When the algorithm extracts \mathcal{T} and \mathcal{S} from M' and computes a daisy partition for \mathcal{S}, it preserves the information that allows it to associate the set of a tuple of (S, a_S, b, s) to the unique daisy S is contained in.

The construction proceeds in two stages: preprocessing and execution. Recall that, for any input $x \in \Sigma^n$ and assignment κ to a subset $S \subseteq [n]$, we denote by x_κ the word that assigns the same values as κ on S and the same values as x on $[n] \setminus S$.

Preprocessing. N has access to M', with which it computes \mathcal{T} and \mathcal{S}. Applying Lemma 5.2 to \mathcal{S}, the algorithm obtains the daisy partition

$$\mathcal{D} = \{D_j : 0 \leq j \leq q\},$$

so that each tuple in \mathcal{T} is associated with D_j for exactly one $j \in \{0, \ldots, q\}$. Set

$$p := \gamma \cdot n^{-1/(2q^2)},$$

the sampling probability, where $\gamma = 48|\Sigma|^q \ln |\Sigma|$; and, for every $j \in [q]$, set

$$\tau_j := \frac{|\tilde{\mu}|}{4q} \cdot p^j,$$

the thresholds, which will be used in the execution stage.

Execution. When N receives query access to a string $x \in \Sigma^n$, it performs the following sequence of steps.

1. **Sampling:** Select each element in $[n]$ independently with probability p. Denote by Q the set of all coordinates thus obtained. If $|Q| \geq 2pn$, then N outputs arbitrarily. Otherwise, N queries all the coordinates in Q.

2. **Enumeration:** For every $j \in [q]$ and kernel assignment κ to K_j perform the following steps. Set a counting variable v to 0 before each iteration.

 (a) **Local view generation and vote counting:** For every tuple $(S, a_S, 1, s) \in \mathcal{T}$ such that $S \in D_j$, increment v if $S \subset Q \cup K_j$ and a_S assigns on S the same values as x_κ does.

 In the case $j = 1$, if $12 \ln |\Sigma|/(\rho \cdot \sigma)$ sets have the same point outside K_1, disregard them in the count.\footnote{This is required for technical purposes when dealing with K_1.}

 (b) **Threshold check:** If $v \geq \tau_j$, output 1.

3. If the condition $v \geq \tau_j$ was never satisfied, then output 0.

We proceed to analyse this construction.

\footnote{Note that the algorithm does not iterate over the case $j = 0$. We will show in Section 6.2 that this has a negligible effect.}
6.2 Analysis

We remind that the explicit input \(z \) is assumed to be fixed and is omitted from the notation. For the analysis, we are interested in the behaviour of the algorithm \(M' \) on a fixed input \(x \). For this purpose, we use the distribution \(\mu_x \) from Definition 3.2.

For \(x \in \Sigma^n \) we define \(\mu_x \) to be the uniform distribution over the multi-collection of sets

\[
\{ S : (S, a_S, b, s) \text{ is a description tuple such that } a_S = x|_S \},
\]

(6.1)

where a description tuple is as appears in Section 6.1. We note that this implies that \(\text{supp}(\mu_x) \) has exactly one set for each decision tree \(M' \) may use, since when both the randomness and the input are fixed exactly one branch of the decision tree is used by \(M' \). Therefore,

\[|\mu_x| = |\tilde{\mu}|. \]

We now list the relevant parameters in the analysis with reference to where they are obtained. By Lemma 5.10, \n
\[\sigma = \frac{1}{8q}, \]

(6.2)

and, for every \(x \in \Sigma^n \),

\[|\mu_x| = |\tilde{\mu}| = 6n \ln |\Sigma|/\sigma. \]

(6.3)

The construction of \(N \) in the previous section sets the parameters

\[\gamma = 48|\Sigma|^q \ln |\Sigma|, \]

(6.4)

\[p = \gamma \cdot n^{-1/(2q^2)}, \]

(6.5)

and, for all \(j \in [q] \),

\[\tau_j = \frac{|\tilde{\mu}|}{4q} \cdot p^j = \frac{|\mu_x|}{4q} \cdot p^j, \]

(6.6)

(the second equality holds for all \(x \in \Sigma^n \) by Eq. (6.3)). Finally, the size of the collection of tuples \(T \), which by the construction in Section 5.4 is the same as that of \(S \), is bounded by the total number of branches over all decision trees in \(\text{supp}(\tilde{\mu}) \). Thus,

\[|S| = |T| \leq |\Sigma|^q \cdot |\tilde{\mu}| = |\Sigma|^q \cdot |\mu_x|, \]

(6.7)

for every \(x \in \Sigma^n \).

For our result we need an upper bound on the sizes of the kernels algorithm \(N \) enumerates over.

Claim 6.2. Let \(\{ K_i : 0 \leq i \leq q \} \) be the kernels of the daisy partition \(\{ D_i \} \) of \(S \) used by the algorithm \(N \). Then, for every \(i \in \{0, 1, \ldots, q\} \), the kernel \(K_i \) is such that \(|K_i| \leq \gamma \cdot q^2 \cdot n^{1-\max\{1,i\}/q} \) and, for \(n \) sufficiently large, \(|K_i| < \rho n/2. \)

Proof. By Lemma 5.2, for every \(i \in \{0, 1, \ldots, q\} \),

\[|K_i| \leq q|S|n^{-\max\{1,i\}/q} \]

\[\leq q|\Sigma|^q \cdot |\mu_x|n^{-\max\{1,i\}/q} \]

(by Eq. (6.7), \(|S| \leq |\Sigma|^q \cdot |\mu_x| \))

\[\leq q|\Sigma|^q \cdot (6n \ln |\Sigma|/\sigma)n^{-\max\{1,i\}/q} \]

(by Eq. (6.3), \(|\mu_x| \leq 6n \ln |\Sigma|/\sigma \))

\[= 48|\Sigma|^q \cdot \ln |\Sigma| \cdot q^2 \cdot n^{-\max\{1,i\}/q} \]

(by 6.2, \(\sigma = 1/(8q) \))

\[= \gamma \cdot q^2 \cdot n^{1-\max\{1,i\}/q} \]

(by Eq. (6.4), \(\gamma = 48|\Sigma|^q \ln |\Sigma| \))
It remains to prove the second part of the claim. By the calculation above, since \(\rho \) is constant and
\[|\Sigma|^q \ln |\Sigma| \cdot q^2 = o(n^{-1/q}) \] (recall that \(|\Sigma| = n^{1/\omega(q^2)} \) and \(q = o(\sqrt{n}) \)), for sufficiently large \(n \),
\[|K_0| \leq \gamma \cdot q^2 \cdot n^{1-1/q} = \left(48 |\Sigma|^q \ln |\Sigma| \cdot q^2 \cdot n^{-1/q} \right) n \leq \rho n. \tag{6.8} \]
By Lemma 5.2, \(K_q \subseteq K_{q-1}, \ldots, K_1 = K_0 \), and hence the claim follows.

Next, we provide a number of definitions emanating from algorithm \(N \). We define, for every \(x \in \Sigma^n \), the multi-collection
\[O^x := \{ S : (S,a_S,1,s) \in \mathcal{T} \text{ and } x|_S = a_S \}, \]
where \(\mathcal{T} \) is defined as in Section 6.1. Note that the definition of this collection depends only on the algorithm \(M \) and not on the function \(f \) it computes. Hence, it is well-defined for every \(x \), and in particular for points that are \(\rho \)-close to a \(\rho \)-robust point of the domain (unlike \(f \)). We note that, since \(\mu_x \) is defined over the collection in (6.1) we know that
\[O_x \subseteq \text{supp}(\mu_x). \tag{6.9} \]

Since the “capping parameter” \(12 \ln |\Sigma|/(\rho \cdot \sigma) \) is used numerous times, we set
\[\alpha = 12 \ln |\Sigma|/(\rho \cdot \sigma). \tag{6.10} \]

We refer to the act of incrementing \(v \) as counting a vote. For each \(j \in [q] \), we define the vote counting function \(v_j : \Sigma^n \to \mathbb{N} \) to be a random variable over the value of \(Q \) as follows. If \(j > 1 \),
\[v_j(x) := |\{ S \in O^x \cap \mathcal{D}_j : S \subseteq Q \cup K_j \}|, \]
and \(v_1(x) \) is defined likewise, with the exception that, when more than \(\alpha \) sets intersect in a point outside \(K_1 \), they are discarded.

Claim 6.3. Let \(x \in \Sigma^n \), \(j \in [q] \) and \(\kappa \) an assignment to \(K_j \). Then \(v_j(x_\kappa) \) is equal (as a function of \(Q \)) to the maximum value of the counter \(v \) computed by \(N \) on input \(x \) with kernel \(K_j \) and the kernel assignment \(\kappa \) to \(K_j \).

Proof. Fix \(x \in \Sigma^n \). Recall that when algorithm \(N \) computes \(v \) for a \(j \in \{2, 3, \ldots, q\} \) and a kernel assignment \(\kappa \) to \(K_j \) in Step 2a, it only increases \(v \) if it encounters a tuple \((S,a_S,1,s) \) where \(S \in \mathcal{D}_j \), \(S \subseteq Q \cup K_j \) and \(a_S \) assigns on \(S \) the same values as \(x_\kappa \) does. Thus, by the definition of \(O_x \), the algorithm \(N \) counts exactly all the tuples \((S,a_S,1,s) \) such that \(S \in O^x \) and \(S \subseteq Q \cup K_j \). These are precisely the sets that comprise the collection whose cardinality is \(v_j(x_\kappa) \). Note that the same holds when \(j = 1 \) due to the additional condition in Step 2a and the corresponding restriction in the definition of \(v_1(x_\kappa) \).

We now proceed to the main claims. The algorithm \(N \) only counts votes for output 1, i.e. tuples with 1 as their third value, and hence it suffices to prove that: (1) when \(f(x) = 1 \), when the kernel assignment is \(\kappa = x|_{K_j} \) (the value of \(x \) on the indices in \(K_j \)) for some daisy \(D_j \), the number of votes is high enough to cross the threshold \(\tau_j \); and that (2) when \(f(x) = 0 \), then every kernel assignment \(\kappa \) is such that the number of votes is smaller than the threshold. These conditions are shown to hold with high probability in Claim 6.4 and Claim 6.5 respectively, and we show how the theorem follows from them in the next section.
Claim 6.4 (Correctness on non-robust inputs). Let Q be the coordinates sampled by N and fix $x \in \Sigma^n$ such that $f(x) = 1$. There exists $j \in [q]$ such that, with the kernel assignment $\kappa = x|_{K_j}$, the vote counting function satisfies $v_j(x_\kappa) \geq \tau_j$ with probability at least $9/10$.

Proof. For ease of notation, let us fix x as in the statement and denote $\mathcal{O} := \mathcal{O}^x = \mathcal{O}^{x*}$. When $j > 1$, define the subcollection of \mathcal{O} in D_j by $\mathcal{O}_j := \mathcal{O}^x \cap D_j$; when $j = 1$, define $\mathcal{O}_1 := (\mathcal{O}^x \cap D_1) \setminus \mathcal{C}$, where $\mathcal{C} \subseteq \mathcal{O}^x \cap D_1$ contains every $S \in \mathcal{O}^x \cap D_1$ for which there exist at least $\alpha - 1$ other sets in $S' \in \mathcal{O}^x \cap D_1$ that have the same petal as S, i.e., such that $S \setminus K_1 = S' \setminus K_1$. We also take n to be sufficiently large when necessary for an inequality to hold.

For the claim to hold we require the existence of $j \in [q]$ such that \mathcal{O}_j is a sufficiently large portion of \mathcal{O}. Since $\bigcup_{0 < j \leq q} \mathcal{O}_j = \mathcal{O} \setminus (\mathcal{O}_0 \cup \mathcal{C})$, in order to achieve this goal, we only need to bound the sizes of both \mathcal{O}_0 and \mathcal{C}. As a first step, we bound $\mu_x(\mathcal{O}_0)$ and $\mu_x(\mathcal{C})$, which give us a lower bound on $\mu_x \left(\bigcup_{0 < j \leq q} \mathcal{O}_j \right)$, which we then use in order to lower bound $|\bigcup_{0 < j \leq q} \mathcal{O}_j|$.

We start with $\mu_x(\mathcal{O}_0)$. All the sets in D_0 are subsets of K_0, and $|K_0| < \rho n/2$ by Claim 6.2. This implies that the cardinality of $\cup \mathcal{O}_0$ (the union of all sets in \mathcal{O}_0) is strictly less than ρn, and consequently, by the volume lemma (Lemma 5.6), which applies because μ non-robust input), we have $\mu_x(\mathcal{O}_0) \leq 2 \sigma$.

We now proceed to bound $\mu_x(\mathcal{C})$. As $\mathcal{C} \subseteq D_1$, every set in \mathcal{C} repeats at least α times and has exactly one element in $[n] \setminus K_1$, so the cardinality of $\cup \mathcal{C}$ is at most $|K_1| + \frac{|\mathcal{C}|}{\alpha}$. By Claim 6.2, $|K_1| < \rho n/2$, and it follows that

$$|K_1| + \frac{|\mathcal{C}|}{\alpha} < \frac{\rho n}{2} + \frac{|\mathcal{O}|}{\alpha}$$

(by (6.9), $\mathcal{O} = \mathcal{O}_x \subseteq \text{supp}(\mu_x)$)

$$\leq \frac{\rho n}{2} + \frac{|\mu_x|}{\alpha}.$$

(by $|\mu_x| = 2 \sigma$)

$$\leq \frac{\rho n}{2} + \frac{|\mu_x|}{\alpha} \cdot \frac{\rho \cdot \sigma}{12 \ln |\Sigma|}.$$

(by Eq. (6.10), $\alpha^{-1} = \frac{\rho \cdot \sigma}{12 \ln |\Sigma|}$)

$$= \frac{\rho n}{2} + \frac{6n \ln |\Sigma|}{\sigma} \cdot \frac{\rho \cdot \sigma}{12 \ln |\Sigma|}.$$

(by Eq. (6.3), $|\mu_x| = 6n \ln |\Sigma|/\sigma$)

$$\leq \rho n.$$

Consequently, by the volume lemma (Lemma 5.6), $\mu_x(\mathcal{C}) \leq 2 \sigma$.

By the definition of error rate, $\mu_x(\mathcal{O}) \geq 1 - \sigma$. Since $\{\mathcal{O}_j : 0 \leq j \leq q\}$ is a partition of \mathcal{O} (because $\{D_j\}$ is a partition),

$$\mu_x \left(\bigcup_{0 < j \leq q} \mathcal{O}_j \right) = \mu_x(\mathcal{O}) - \mu_x(\mathcal{O}_0) - \mu_x(\mathcal{C}) \geq 1 - 5 \sigma.$$

As μ_x is uniform, each element of the multi-collection \mathcal{O} has weight exactly $1/|\mu_x|$. Therefore,

$$\sum_{j=1}^{q} |\mathcal{O}_j| = |\mu_x| \cdot \mu_x(\cup_{j \in [q]} \mathcal{O}_j) \geq |\mu_x|(1 - 5 \sigma) \geq |\mu_x|/2,$$

where the last inequality follows from the assumption that $5 \sigma \leq 1/2$. Let j be such that

$$|\mathcal{O}_j| \geq |\mu_x|/(2q);$$

(6.11)
by averaging, such a \(j \) indeed exists. Our goal now is to show that with probability at least 9/10, there are at least \(\tau_j \) sets \(S \in \mathcal{O}_j \) whose petal is in \(Q \), i.e., such that \(S \setminus K_j \subseteq Q \).

Instead of proving this directly on \(\mathcal{O}_j \), we do so on collections that form a partition of \(\mathcal{O}_j \) and have a useful structure. The sets in \(\mathcal{O}_j \) are also in \(\mathcal{D}_j \), so that \(\mathcal{O}_j \) is also a daisy with kernel \(K_j \).

By Claim 5.3, for every set \(S \in \mathcal{O}_j \), there exist at most \(2n^{\max(1,j-1)/q} - 1 \) sets \(S' \in \mathcal{O}_j \) whose petals have a non-empty intersection with the petal of \(S \), i.e., such that \((S \cap S') \setminus K_j \neq \emptyset \). This enables us to apply Lemma 5.5 to \(\mathcal{O}_j \), partitioning it into \(\{ S_i : i \in [2t] \} \), simple daisies of equal sizes, where

\[
t \leq 2n^{\max(1,j-1)/q}.
\]

Thus,

\[
\text{for every } i \in [2t], \quad |S_i| = \frac{\mathcal{O}_j}{2t}.
\]

Let \(\mathcal{O}_j' \) be the multi-collection of all sets \(S \in \mathcal{O}_j \) such that \(S \setminus K_j \subseteq Q \). In the same manner, for every \(i \in [2t] \), let \(\mathcal{S}_i' \) be the multi-collection of all sets \(S \in \mathcal{S}_i \) such that \(S \setminus K_j \subseteq Q \).

By construction, the collections \(\{ \mathcal{S}_i' \} \) are pairwise disjoint. Also, by the definition of \(v_j \), we have \(v_j(x) = |\mathcal{O}_j'| = \sum_{i=1}^{2t} |\mathcal{S}_i'| \). Therefore, the event that \(v_j(x) \leq \tau_j \) can only occur if there exists \(i \in [2t] \) such that \(|\mathcal{S}_i'| \leq \tau_j/(2t) \).

Consequently, we obtain

\[
\Pr[v_j(x) \leq \tau_j] \leq \Pr[|\mathcal{S}_i'| \leq \frac{\tau_j}{2t} \text{ for some } i \in [2t]]
\leq \sum_{i=1}^{2t} \Pr[|\mathcal{S}_i'| \leq \frac{\tau_j}{2t}]
\leq 2t \Pr[|\mathcal{S}_i'| \leq \frac{\tau_j}{2t}].
\]

(union bound)

(20)

(all \(S_i \) have equal size)

We show afterwards that the probability of the event \(|\mathcal{S}_i'| \leq \frac{\tau_j}{2t} \) is strictly less than \(1/(20t) \), which by the inequality above implies the claim.

We later use the Chernoff bound with \(\mathcal{S}_1 \), and hence we start by bounding \(\mathbb{E}[|\mathcal{S}_1'|] \) from below. Recall that the petal of every set \(S \in \mathcal{S}_1 \subseteq \mathcal{D}_j \) has size \(j \) (i.e., \(|S \setminus K_j| = j \)), and therefore is in \(\mathcal{S}_1 \) with probability exactly \(p^j \). So

\[
\mathbb{E}[|\mathcal{S}_1'|] = |\mathcal{S}_1|p^j = \frac{\mathcal{O}_j|p^j}{2t} \quad \text{(by Eq. (6.13)) \quad } |\mathcal{S}_1| = |\mathcal{O}_j|/2t
\]

(20)

\[
\geq \frac{\mu_x |p^j}{4tq} \quad \text{(by Eq. (6.11))}
\]

(6.14)

\[
\geq \frac{\tau_j}{2t}. \quad \text{(by Eq. (6.11) and Eq. (6.6)) \quad } |\mathcal{O}_j| \geq \frac{|\mu_x}{2q} \quad \text{and} \quad \tau_j = \frac{|\mu_x|}{4q} \cdot p^j
\]

Thus,

\[
\Pr[|\mathcal{S}_1'| \leq \frac{1}{2} \mathbb{E}[|\mathcal{S}_1'|]] \geq \Pr[|\mathcal{S}_1'| \leq \frac{\tau_j}{2t}].
\]

Next we show that the probability of the event \(|\mathcal{S}_1'| \leq \frac{1}{2} \mathbb{E}[|\mathcal{S}_1'|] \) is at most \(1/(20t) \), which concludes the proof. Since \(\mathcal{S}_1 \) is a simple daisy, the petals of sets in \(\mathcal{S}_1 \) are pairwise disjoint and hence the
We also take n where the last inequality follows because $\ln(\cdot)$.

Claim 6.5

$S \in O$ element of the multi-collection has O size of $O\alpha$ assignments, $|v_f|$ overall improvement in our results.

$= 1$ can be improved significantly (as will be necessary in Claim 6.5), but this does not yield \jmath in N events S.

For ease of notation, fix $j := (\text{exponentially small}, \text{Claim 6.4 yields a much stronger result: the failure probability is exponentially small})$. If $\kappa_j > 0$, then, for every $j \in [q]$ and every assignment κ to the kernel K_j, the vote count satisfies $v_j(x_\kappa) < \tau_j$ with probability at least $1 - |\Sigma|^{\kappa_j}/(10q)$.

Proof. For ease of notation, fix $j \in [q]$, an assignment κ to K_j and x as in the statement. Let $O := O^{x_\kappa}$. If $j > 1$, define the subcollection of O in D_j by $O_j := O^{x_\kappa} \cap D_j$; if $j = 1$, define $O_1 := (O^{x_\kappa} \cap D_1) \setminus C$, where $C \subseteq O^{x_\kappa} \cap D_1$ contains every $S \in O^{x_\kappa} \cap D_1$ for which there exist at least $\alpha - 1$ other sets $S' \in O^{x_\kappa} \cap D_1$ that have the same petal as S, i.e., such that $S \setminus K_1 = S' \setminus K_1$. We also take n to be sufficiently large when necessary for an inequality to hold.

Note that x_κ may not be in the domain of f, but the robustness of x allows us to bound the size of O^{x_κ} regardless. Moreover, since $f(x) = 0$, we know that $\mu_x(O) \leq \sigma$. As μ_x is uniform, each element of the multi-collection has O weight exactly $1/|\mu_x|$. Therefore,

$$\text{for every } i \in [q], |O_i| \leq \sigma |\mu_x|.$$ \hspace{1cm} (6.15)

Our goal now is, for every $j \in [q]$, to upper bound the probability that there are at most τ_j sets $S \in O_1$ whose petal is in Q, i.e., such that $S \setminus K_j \subseteq Q$. 1

38
For every \(j \in [q] \), let \(\beta_j \) be such that for every set \(S \in \mathcal{O}_j \) there exist at most \(\beta_j - 1 \) other distinct sets \(S' \in \mathcal{O}_j \) whose petal intersects the petal of \(S \), i.e., \((S \setminus K_1) \cap (S' \setminus K_1) \neq \emptyset \).

For the time being let us fix \(j \in [q] \). By applying Lemma 5.5 we partition \(\mathcal{O}_j \) into \(\{S_i : i \in [\beta_j]\} \), such that

\[
\text{for every } i \in [\beta_j], |S_i| = \frac{|\mathcal{O}_i|}{\beta_j} \leq \frac{\sigma |\mu_x|}{\beta_j}, \tag{6.16}
\]

where the inequality follows from (6.15), and each \(S_i \) is a simple daisy of size \(|\mathcal{O}_1|/\beta_j \).

Let \(\mathcal{O}'_j \) be the multi-collection of all sets \(S \in \mathcal{O}_j \) such that \(S \setminus K_j \subseteq Q \). In the same manner, for every \(i \in [\beta_j] \), let \(S'_i \) be the multi-collection of all sets \(S \in \mathcal{S}_i \) such that \(S \setminus K_j \subseteq Q \). By the definition of \(v_j \) and the fact that \(\{S_i\} \) is a partition, \(v_j(x_*) = |\mathcal{O}'_j| = \sum_{i=1}^{\beta_j} |S'_i| \).

Since the event that \(v_1(x_*) \geq \tau_j \) can only occur if \(|S'_i| \geq \frac{\tau_j}{\beta_j} \) for some \(i \in [\beta_j] \), we obtain

\[
\Pr [v_j(x) \geq \tau_j] \leq \Pr \left[|S'_i| \geq \frac{\tau_j}{\beta_j} \text{ for some } i \in [\beta_j] \right] \leq \sum_{i=1}^{\beta_j} \Pr \left[|S'_i| \geq \frac{\tau_j}{\beta_j} \right] \leq \beta_j \cdot \Pr \left[|S'_1| \geq \frac{\tau_j}{\beta_j} \right]. \tag{union bound}
\]

Now our goal is to show that the event that \(|S'_1| \geq \frac{\tau_j}{\beta_j} \) happens with probability at most \(\frac{|\Sigma| - |K_1|}{10q^2} \).

Note that this is sufficient for proving the claim because plugging this into the previous equation gives \(\Pr [v_j(x) \geq \tau_j] \leq \frac{|\Sigma| - |K_1|}{10q^2} \).

Since the sets in \(S_1 \) are pairwise disjoint, we can and do use the Chernoff bound. In order to do so we first bound the value of \(\mathbb{E}[|S'_1|] \) from above. Recall that the petal of every set \(S \in S_j \subseteq D_j \) has size \(j \) (i.e., \(|S \setminus K_j| = j \)), and therefore \(S \) is in \(S'_j \) with probability exactly \(p^j \). So,

\[
\mathbb{E}[|S'_1|] = |S_1| \cdot p^j \leq \frac{\sigma |\mu_x| \cdot p^j}{\beta_j} \leq \frac{\tau_j}{2\beta_j}. \tag{by Eq. (6.16)}
\]

We now use the Chernoff bound, we stop at a partial result and provide separate analysis for the cases that \(j = 1 \) and \(j > 1 \).
\[
\Pr \left[|S'_1| \geq \frac{\tau_j}{\beta_j} \right] = \Pr \left[|S'_1| \geq \frac{\tau_j}{\beta_j} \mathbb{E}[|S'_1|] \mathbb{E}[|S'_1|] \right] \\
\leq \exp \left(- \left(\frac{\tau_j}{\beta_j} \mathbb{E}[|S'_1|] - 1 \right)^2 \cdot \frac{\mathbb{E}[|S'_1|]}{3} \right) \quad \text{(Chernoff bound)}
\]
\[
\leq \exp \left(- \frac{\tau_j}{6\beta_j} \right) \quad \text{(explained afterwards)}
\]
\[
\leq \exp \left(- \frac{\mu_x \cdot p^j}{24q\beta_j} \right) \quad \text{(by Eq. (6.6), } \tau_j = \frac{\mu_x}{4q} \cdot p^j \text{)}
\]
\[
\leq \exp \left(- \ln \frac{\mathbb{E}[|S'_1|]}{4q\beta_j \cdot \sigma} \right), \quad \text{(by Eq. (6.3), } |\mu_x| = 6n \ln |\Sigma| / \sigma \text{)}
\]

where the second inequality follows from \(\left(\frac{\tau_j}{\beta_j} \mathbb{E}[|S'_1|] - 1 \right)^2 \cdot \frac{\mathbb{E}[|S'_1|]}{3} \) being minimal when \(\mathbb{E}[|S'_1|] \) is at its upper bound of \(\frac{\tau_j}{2\beta_j} \). We next proceed to the first of the two cases.

Now, take \(j = 1 \). In this case, by the construction of the daisy partition [Lemma 5.2], every set \(S \in \mathcal{O}_1 \) has a petal \(S \setminus K_1 \) of cardinality exactly 1. By the definition of \(\mathcal{O}_1 \), each set \(S \in \mathcal{O}_1 \) has at most \(\alpha - 1 \) other sets \(S' \in \mathcal{O}_1 \) whose petal intersects the petal of \(S \), i.e., \((S \setminus K_1) \cap (S' \setminus K_1) \neq \emptyset \) (and thus \(S \setminus K_1 = S' \setminus K_1 \), since both petals have size 1). So at most \(\beta_1 - 1 = \alpha - 1 \) distinct sets of \(\mathcal{O}_1 \) intersect each \(S \in \mathcal{O}_1 \), which follows from [Eq. (6.10)]. Now,

\[
\exp \left(- \ln \frac{|\Sigma|np^j}{4q\alpha \cdot \sigma} \right) = \exp \left(- \frac{n \cdot p \cdot \rho}{48q} \right) \quad \text{(by } 6.10 \text{, } \alpha = 12 \ln |\Sigma| / (\rho \cdot \sigma))
\]
\[
= \exp \left(- \gamma \cdot \frac{\rho}{48q} n^{1 - 1/(2q^2)} \right) \quad \text{(} p = \gamma \cdot n^{-1/(2q^2)} \text{)}
\]
\[
= \frac{1}{10q} \exp \left(- \gamma \cdot n^{1 - 1/q} \cdot \frac{\rho \cdot n^{1/2} \cdot 2^{1/2}}{48q} + \ln(10q) \right)
\]
\[
\leq \frac{1}{10q} \exp \left(- \ln |\Sigma| \cdot \gamma \cdot q^2 \cdot n^{1 - 1/q} \right) \quad \text{(large enough } n) \]
\[
= |\Sigma|^{-1/|K_1|} / (10q),
\]

where the last inequality follows because \(K_1 \leq \gamma \cdot q^2 \cdot n^{1 - 1/q} \) by [Claim 6.2].

Now, take \(j > 1 \). By [Claim 5.3] \(\beta_j = 2h(j - 1) = 2n^{(j-1)/q} \), which implies the first equality in
the following.

\[
\exp \left(-\frac{\ln |\Sigma| np^j}{4q\beta_j \cdot \sigma} \right) = \exp \left(-\frac{\ln |\Sigma| np^j}{8q \cdot \sigma} \cdot n^{-(j-1)/q} \right) \\
= \exp \left(-\ln |\Sigma| p^j \cdot n^{1-(j-1)/q} \right) \\
= \exp \left(-\ln |\Sigma| \cdot \gamma^j \cdot n^{\frac{1}{q} - \frac{j}{q}} \right) \\
\leq \frac{1}{10^q} \exp \left(-\ln |\Sigma| \cdot \gamma \cdot n^{1-j/q} \cdot n^{\frac{1}{q} - \frac{j}{q}} + \ln(10q) \right) \\
\leq \frac{1}{10^q} \exp \left(-\ln |\Sigma| \cdot \gamma \cdot q \cdot n^{1-j/q} \right) \\
\leq |\Sigma|^{-|K_j|}/(10q),
\]

where the last inequality follows because \(K_j \leq \gamma \cdot q \cdot n^{1-j/q} \) by Claim 6.2.

\[\square \]

6.3 Concluding the proof

We conclude the proof of Theorem 6.1 by applying the two previous claims. Recall that we transformed a \(\rho \)-robust local algorithm \(M \) for a function \(f \), with query complexity \(\ell \), into a \(\rho \)-robust local algorithm \(M' \) with query complexity \(q = O(\ell \log \ell) \) and suitable error rate. Then we transformed \(M' \) into a sample-based algorithm \(N \) with sample complexity \(n^{1-1/O(q^2)} = n^{1-1/O(\ell^2 \log \ell)} \), an upper bound guaranteed by the sampling step [Step 1] in the construction of \(N \). It remains to show correctness of the algorithm on every input in the domain of \(f \).

We first consider errors that may arise in the sampling step. By the Chernoff bound, it chooses more than \(2pn = 2n^{1-j/(2q^2)} \) points to query and thus outputs arbitrarily with probability at most 1/10. Otherwise, it proceeds to the next steps.

In the next part of the proof we analyse \(v_j(x) \) instead of analyzing \(v \) (of Step 2a) in algorithm \(N \); this is sufficient, since by Claim 6.3 they are distributed identically over \(Q \).

Suppose the input \(x \in \Sigma^n \) is such that \(f(x) = 0 \). Since \(x \) is \(\rho \)-robust, it is in particular \(|K_1|/n \)-robust (because \(|K_1| = o(n) \)). Then Claim 6.5 ensures that, for every \(j \in [q] \) and kernel assignment \(\kappa \) to \(K_j \), the vote count satisfies \(v_j(x, \kappa) \geq \tau_j \) with probability at most \(|\Sigma|^{-|K_j|}/(10q) \). A union bound over all \(j \in [q] \) and \(|\Sigma|^{-|K_j|} \) assignments to the kernel \(K_j \) ensures the probability this happens, causing \(N \) to output 1 in the threshold check step [Step 2b], is at most 1/10; otherwise, \(N \) will enumerate over every assignment and then (correctly) output 0 in Step 3.

Now suppose \(x \in \Sigma^n \) is such that \(f(x) = 1 \). Then Claim 6.4 ensures that, for some \(j \in [q] \), the kernel assignment \(\kappa = x_{K_j} \) will make the vote count satisfy \(v_j(x) \geq \tau_j \) with probability at least 9/10, in which case \(N \) (correctly) outputs 1 in the threshold check step [Step 2b].

Therefore, \(N \) proceeds beyond the sampling step with probability 9/10 and outputs correctly (due to Claim 6.5 and Claim 6.4) with probability at least 9/10 − 1/10 ≥ 2/3. This concludes the proof of Theorem 6.1.

Remark 6.6. Notice that the claims actually prove a stronger statement: the failure probability is not merely 1/3, but exponentially small. For each \(j \in [q] \), the error probability is \(\exp \left(-\Omega \left(n^{1-\frac{j}{q} + \frac{2j}{q^2}} \right) \right) \), but it must withstand a union bound over \(\exp \left(O \left(n^{1-\frac{j}{q}} \right) \right) \) events (corresponding to the assignments to the kernel \(K_j \)). The smallest slackness is in the case \(j = q \), where the
success probability is still \(\exp\left(-\Omega\left(n^{\frac{1}{2q^2}}\right)\right)\); this implies that correctness holds for \(\exp\left(O\left(n^{\frac{1}{2q^2}}\right)\right)\) many runs of the algorithm. Therefore, the same samples can be reused for exponentially many runs of possibly different algorithms.

7 Applications

In this section, we derive applications from Theorem 6.1 which range over three fields of study: property testing, coding theory, and probabilistic proof systems. We remind that our main application to property testing follows as a direct corollary of Theorem 6.1, whereas our applications to coding theory and probabilistic proof systems require additional arguments.

7.1 Query-to-sample tradeoffs for adaptive testers

Recall that a property tester \(T\) for property \(\Pi \subseteq \Sigma^n\) is an algorithm that receives explicit access to a proximity parameter \(\varepsilon > 0\), query access to \(x \in \Sigma^n\) and approximately decides membership in \(\Pi\): it accepts if \(x \in \Pi\) and rejects if \(x\) is \(\varepsilon\)-far from \(\Pi\), with high probability.

By Claim 4.6, an \(\varepsilon/2\)-tester with \(\varepsilon \in (0, 1)\) is an \(\varepsilon/2\)-robust local algorithm for problem \(f : \Sigma^n \rightarrow \{0, 1\}\) defined as follows.

\[
f(x) = \begin{cases}
1, & \text{if } x \in \Pi \\
0, & \text{if } x \in B_\varepsilon(\Pi).
\end{cases}
\]

Note, moreover, that a local algorithm that solves \(f\) is by definition an \(\varepsilon\)-tester, accepting elements of \(\Pi\) and rejecting points that are \(\varepsilon\)-far from it with high probability. A direct application of Theorem 6.1 thus yields the following corollary, which improves upon the main result of [FLV15], by extending it to the two-sided adaptive setting.

Corollary 7.1. For every fixed \(\varepsilon > 0, q \in \mathbb{N}\), any \(\varepsilon/2\)-testable property of strings in \(\Sigma^n\) with \(q\) queries admits a sample-based \(\varepsilon\)-tester with sample complexity \(n^{1-1/O(q^2\log^2 q)}\).

This also immediately extends an application to multitesters in [FLV15]. By standard error reduction, for any \(k \in \mathbb{N}\), an increase of the sample complexity by a factor of \(O(\log k)\) ensures each member of a collection of \(k\) sample-based testers errs with probability \(1/(3k)\). A union bound allows us to reuse the same samples for all testers, so that all will output correctly with probability 2/3. Taking \(k = \exp\left(n^{1/\omega(q^2\log^2 q)}\right)\), the sample complexity becomes \(n^{1-1/O(q^2\log^2 q)} \cdot n^{1/\omega(q^2\log^2 q)} = o(n)\), which yields the following corollary.

Corollary 7.2. If a property \(\Pi \subseteq \Sigma^n\) is the union of \(k = \exp\left(n^{1/\omega(q^2\log^2 q)}\right)\) properties \(\Pi_1, \ldots, \Pi_k\), each \(\varepsilon/2\)-testable with \(q\) queries, then \(\Pi\) is \(\varepsilon\)-testable via a sample-based tester with sublinear sample complexity.

A tester for the union simply runs all (sub-)testers, accepting if and only if at least one of them accepts. A proof for a generalisation of this corollary, which holds for partial testers, is given in the Section 7.3.
7.2 Stronger relaxed LDC lower bounds

Relaxed LDCs are codes that relax the notion of LDCs by allowing the local decoder to abort on a small fraction of the indices, yet crucially still avoid errors. This seemingly modest relaxation turns out to allow for dramatically better parameters (an exponential improvement on the rate of the best known $O(1)$-query LDCs). However, since these algorithms are much stronger, obtaining lower bounds on relaxed LDCs is significantly harder than on standard LDCs. Indeed, the first lower bound on relaxed LDCs [GL20] was only shown more than a decade after the notion was introduced; this bound shows that to obtain query complexity q, a relaxed LDC $C : \{0, 1\}^k \to \{0, 1\}^n$ must have blocklength

$$\sum \geq k^{1+O(\log^4 n)},$$

In this section, we use Theorem 6.1 to obtain an improved lower bound with an exponentially better dependency on the query complexity (note that even for $q = O(1)$ this strongly affects the asymptotic behaviour). We begin by providing a precise definition of relaxed LDCs.

Definition 7.3 (Relaxed LDCs). A code $C : \{0, 1\}^k \to \{0, 1\}^n$ whose distance is δ_C is a q-local relaxed LDC with success rate ρ and decoding radius $\delta \in (0, \delta_C/2)$ if there exists a randomised algorithm D, known as a relaxed decoder, that, on input $i \in [k]$, makes at most q queries to an oracle w and satisfies the following conditions.

1. **Completeness:** For any $i \in [k]$ and $w = C(x)$, where $x \in \{0, 1\}^k$,
 $$\Pr[D^w(i) = x_i] \geq 2/3.$$

2. **Relaxed Decoding:** For any $i \in [k]$ and any $w \in \{0, 1\}^n$ that is δ-close to a (unique) codeword $C(x)$,
 $$\Pr[D^w(i) \in \{x_i, \perp\}] \geq 2/3.$$

3. **Success Rate:** There exists a constant $\rho > 0$ such that, for any $w \in \{0, 1\}^n$ that is δ-close to a codeword $C(x)$, there exists a set $I_w \subseteq [k]$ of size at least pk such that for every $i \in I_w$,
 $$\Pr[D^w(i) = x_i] \geq 2/3.$$

We define the error rate σ of a relaxed LDC as the maximum among $\Pr[D^w(x)(i) \neq x_i]$ and $\Pr[D^w(i) \notin \{x_i, \perp\}]$, over all messages $x \in \{0, 1\}^k$ and words $w \in \{0, 1\}^n$ that are δ-close to $C(x)$.

Remark 7.4. The first two conditions imply the latter, as shown by [BGH+04]. Therefore, it is not necessary to show the success rate condition when verifying that an algorithm D is a relaxed local decoder.

Note that, whenever D^w outputs \perp, it detected that the input is not valid, since it is inconsistent with any codeword $C(x)$. In order to capture this behaviour, we slightly generalise the definition of local algorithms and robustness as follows.

Definition 7.5 (Relaxed local algorithm). An algorithm M is said to be a relaxed local algorithm for computing a function f with error rate σ and valid input set V if it satisfies the conditions of Definition 4.1, but with the expression $\Pr[M^x(z) = f(z, x)] \geq 1 - \sigma$ replaced by

$$\Pr[M^x(z) \in \{f(z, x), \perp\}] \geq 1 - \sigma,$$
for each input \(x \not\in V \). The subset \(V \subseteq \Sigma^n \) of the domain of \(f \) where \(M \) is guaranteed never to output \(\bot \) comprises the valid inputs.

We shall also need to generalise the notion of robustness accordingly.

Definition 7.6 (Robustness). A local algorithm \(M \) for computing \(f \) is \(\rho \)-robust at point \(x \in \Sigma^n \) if
\[
\Pr\left[M^w(z) \in \{ f(z,x), \bot \} \right] \geq 1 - \sigma \quad \text{for all } w \in B_\rho(x).
\]

We remark that robustness for algorithms that allow aborting allows the correct value to change to \(\bot \) (but, crucially, not to the wrong value) even if only one bit is changed. This makes the argument more involved than an argument for LDCs, and indeed, our theorem for relaxed LDCs relies on the full machinery of Theorem 6.1.

Note that an algorithm that ignores its input and always outputs \(\bot \) fits both definitions above, but has no valid inputs and clearly does not display any interesting behaviour. We also remark that the set of valid inputs captures completeness (but not the success rate) in the case of relaxed LDCs.

With these extensions, a relaxed local decoder \(D \) with decoding radius \(\delta \) fits the definition of a (relaxed) local algorithm that receives \(i \in [k] \) as explicit input, where the code \(C \) comprises the valid inputs and every \(x \in C \) is \(\delta \)-robust for \(D \).

While a relaxed local algorithm is very similar in flavour to a standard local algorithm, it may not be entirely clear whether a transformation analogous to Theorem 6.1 holds in this case as well. We next show that one indeed does: with small modifications to the algorithm constructed in Section 6.1, we may leverage the same analysis of Section 6.2 to prove the following variant of Theorem 6.1.

Theorem 7.7. Suppose there exists a \((\rho_0, \rho_1) \)-robust relaxed local algorithm \(M \) for computing the function \(f : Z \times \Sigma^n \to \{0, 1\} \) with query complexity \(\ell = O(1) \) and \(\rho_0, \rho_1 = \Omega(1) \). Let \(V \subseteq \Sigma^n \) be the valid inputs of \(M \). Then, there exists a sample-based relaxed local algorithm \(N \) for \(f \) with sample complexity \(n^{1-1/O(\ell^2 \log^2 \ell)} \) with the same valid inputs \(V \).

Proof. Throughout the proof, we assume the explicit input to be fixed and omit it from the notation. First, note that error reduction (Claim 5.8) and randomness reduction (Claim 5.9) apply in the relaxed setting: the analysis is identical on valid inputs, and holds likewise for the remainder of the domain of \(f \) (with correctness of \(M \) relaxed to be \(M^x \in \{ f(x), \bot \} \)). Thus Lemma 5.10 enables the transformation of \(M \) into another robust algorithm \(M' \) with small error rate that uniformly samples a decision tree from a multi-collection of small size.

Recall that the construction of the sample-based algorithm in Section 6.1 uses a collection of triplets obtained from the behaviour of \(M' \) when it outputs 1. A corresponding collection can be obtained for the case where \(M' \) outputs 0. Denote by \(T_b \) the collection that corresponds to output \(b \in \{0, 1\} \), and let \(N_b \) be the sample-based algorithm that

- uses the triplets \(T_b \) to construct its daisy partition in the preprocessing step;
- outputs \(b \) if the counter crosses the threshold in \textbf{Step 2b} and
- outputs \(\bot \) in \textbf{Step 3} if the threshold is never reached;

but is otherwise the same as the construction of Section 6.1.

The analysis of Section 6.2 applies to \(N_b \): if \(x \in V \), the analysis of Claim 6.4 is identical; while if \(x \) is robust and \(f(x) = \neg b \), Claim 6.5 requires a lower bound on the probability that \(M' \) outputs \(b \).
when its input is x (and enables an application of the volume lemma), which holds by the definition of error rate of a relaxed local algorithm. Therefore, $N^x_δ$ outputs arbitrarily in the sampling step with probability at most $1/10$, and outputs $⊥$ (resp. b) when $f(x) = b$ (resp. when x is robust and $f(x) = −b$) with probability at most $1/10$.

Finally, the relaxed sample-based algorithm N simply executes the sampling step of $N_δ$, then the enumeration steps of N_0 and N_1 on these samples, outputting b if one of $N_δ$ outputs b and outputting $⊥$ otherwise. Then, $N^x = f(x)$ if $x \in V$ and $N^x = ⊥$ if $x \notin V$, with probability $7/10 ≥ 2/3$. □

By casting a relaxed decoder as a robust relaxed local algorithm and applying Theorem 7.7, we obtain the following corollary.

Corollary 7.8. Any binary code $C : \{0,1\}^k \rightarrow \{0,1\}^n$ that admits a relaxed local decoder D with decoding radius $δ/2$ and query complexity $q = O(1)$ also admits a sample-based relaxed local decoder D' with decoding radius $δ$ and sample complexity $n^{1−1/O(δ^2 q^2)}$.

We are now ready to state the following corollary, which improves on the previous best rate lower bound for relaxed LDCs [GL20] by an application of the theorem above to the setting of relaxed local decoding. This follows from the construction of a global decoder (which is able to decode the entire message) that is only guaranteed to succeed with high probability when its input is a perfectly valid codeword.

Corollary 7.9. Any code $C : \{0,1\}^k \rightarrow \{0,1\}^n$ that is relaxed locally decodable with $q = O(1)$ queries satisfies

$$n = k^{1 + O(1/q^2 \log^2 q)}.$$

Proof. Let D' be the sample-based relaxed LDC with sample complexity q' obtained by Corollary 7.8 from a relaxed LDC with query complexity q for the code C. Reduce the error rate of D' to $1/(3k)$ by repeating the algorithm $O(\log k)$ times and taking the majority output, thus increasing the sample complexity to $O(q' \cdot \log k) = n^{1−1/t}$ with $t = O(q^2 \log^2 q)$.

Now, consider the global decoder G defined as follows: on input w, execute the sampling stage once and the enumeration stages of $D^w(1), \ldots, D^w(k)$ on the same samples. A union bound ensures that, with probability at least $2/3$, the outputs satisfy $D^w(i) = x_i$ for all i if $w = C(x)$.

The global decoder G obtains k bits of information from $n^{1−1/t}$ bits with probability above $1/2$. Information theoretically, we must have

$$k \leq \frac{n^{1−1/t}}{2} = \frac{n^{1−1/t}}{2},$$

so that $n ≥ 4k^{1+1/(t−1)}$. Since $t = O(q^2 \log^2 q)$, it follows that $n = k^{1+1/O(q^2 \log^2 q)}$. □

7.3 A maximal separation between testers and proofs of proximity

Recall that a Merlin-Arthur proof of proximity (MAP, for short) for property $Π$ is a local algorithm that receives explicit access to a proximity parameter $ε > 0$ and a purported proof string $π$, as well as query access to a string $x ∈ Σ^n$. It uses the information encoded in $π$ to decide which coordinates of x to query, accepting if $x ∈ Π$ and $π$ is a valid proof for x, and rejecting if x is $ε$-far from $Π$. In particular, a MAP with proof length 0 is simply a tester. The complexity of a MAP is defined as the
sum of its proof length and query complexity. For simplicity, we consider the proximity parameter ε to be a fixed constant in the following discussion.

A partial tester T is a relaxation of the standard definition of a tester, that accepts inputs inside a property Π_1 and rejects inputs that are far from a larger property Π_2 that contains Π_1 (standard testing is the case where $\Pi_2 = \Pi_1$). We first formalise an observation raised in [FGL14], which shows an equivalence between MAPs and coverings by partial testers.

Claim 7.10. A MAP T for property $\Pi \subseteq \Sigma^n$ with proof complexity m, error rate σ and query complexity $q = q(\varepsilon)$ is equivalent to a collection of partial testers $\{T_i : i \in |\Sigma|^m\}$. Each $T_i(\varepsilon)$ accepts inputs in the property Π_i and rejects inputs that are ε-far from Π, with the same query complexity q and error rate σ as T. The properties Π_i satisfy $\Pi_i \subseteq B_{\varepsilon}(\Pi)$ and $\Pi \subseteq \bigcup_i \Pi_i$.

Proof. Consider a MAP T with parameters as in the statement, and define $T_i(\varepsilon) := T(\varepsilon, i)$ for each purported proof $i \in |\Sigma|^m$. Clearly the query complexity and error rate of T_i match those of T, and these testers reject points that are ε-far from Π. The property Π_i is, by definition, the set of inputs that T_i accepts (with probability at least $1 - \sigma$), which may possibly be empty. But since the definition of a MAP guarantees that for each $x \in \Pi$ there exists a proof i such that $T_i(x)$ accepts (with probability $1 - \sigma$), we have $\Pi \subseteq \bigcup_i \Pi_i$.

Consider, now, a collection of testers $\{T_i : i \in |\Sigma|^m\}$ as in the statement, and define a MAP T that simply selects the tester indexed by the received proof string; i.e., $T(\varepsilon, i) := T_i(\varepsilon)$. Then, with probability at least $1 - \sigma$, the MAP T rejects inputs that are ε-far from Π and accepts $x \in \Pi$ when its proof string is $i \in |\Sigma|^m$ such that $x \in \Pi_i$.

As discussed in the introduction, one of the most fundamental questions regarding proofs of proximity is their relative strength in comparison to testers; that is, whether verifying a proof for an approximate decision problem can be done significantly more efficiently than solving it. This can be cast as an analogue of the P versus NP question for property testing.

Fortunately, in the setting of property testing, the problem of verification versus decision is very much tractable. Indeed, one of the main results in [GR18] is that this is indeed the case. Namely, that there exists a property Π which: (1) admits a MAP with proof length $O(\log(n))$ and query complexity $q = O(1)$; and (2) requires at least $n^{1 - 1/\Omega(q)}$ queries to be tested without access to a proof. (We remark that in [GR18], for simplicity, the lower bound is stated in a slightly weaker form. However, it is straightforward to see that the stronger form holds; see discussion at the end of this section.)

While this implies a nearly exponential separation between the power of testers and MAPs, it remained open whether the aforementioned sublinear lower bound on testing is an artefact of the techniques, or whether it is possible to obtain a stronger separation, where the property is harder for testers, potentially requiring even a linear number of queries.

Claim 7.10 and Theorem 6.1 allow us to prove the following corollary, which shows that the foregoing separation is nearly tight.

Theorem 7.11. If a property $\Pi \subseteq \Sigma^n$ admits a MAP with query complexity q, proof length m and proximity parameter $\varepsilon/2 = \Omega(1)$, then it admits a sample-based ε-tester with sample complexity $m \cdot n^{1 - 1/O(q^2 \log^2 q)}$.

Applying Theorem 7.11 to the special case of MAPs with logarithmic proof length, we obtain a sample-based tester with sample complexity $n^{1 - 1/O(q^2 \log^2 q)}$, showing that the separation in [GR18]
is nearly optimal, and in particular that there cannot be a fully exponential separation between MAPs and testers.

Proof (of Theorem 7.11). Let \(\Pi \) be a property and \(T \) be a MAP with proof length \(m \) as in the statement. By Claim 7.10, there exists a collection of partial testers \(\{ T_i : i \leq |\Sigma|^m \} \) with query complexity \(q \) that satisfy the following. Each \(T_i \) accepts inputs in a property \(\Pi_i \) and rejects inputs that are \(\varepsilon/2 \)-far from \(\Pi \), with \(\Pi \subseteq \bigcup_i \Pi_i \). By applying Proposition 7.1 to each of these testers, we obtain a collection of sample-based testers \(\{ S_i \} \) with sample complexity \(q' = n^{1-1/O(q^2 \log^2 q)} \) for the same partial properties, but which only reject inputs that are \(\varepsilon \)-far from \(\Pi \).

The execution of each of the \(S_i \) proceeds in two steps, as defined in Section 6.1: sampling (Step 1) and enumeration (Step 2). Note that the sampling step is exactly the same for every \(S_i \).

Let \(k = O(m \log |\Sigma|) = O(m) \) such that taking the majority output from \(k \) repetitions of \(S_i \) yields an error rate of \(1/(3|\Sigma|^m) \). We define a new sample-based algorithm \(S \) that repeats the following steps \(k \) times:

1. Execute both steps of \(S_1 \) (sampling and enumeration), recording the output.

2. For all \(1 < i \leq |\Sigma|^m \), only execute the enumeration step of \(S_i \) on the samples obtained in Item 1 and record the output.

After all \(k \) iterations have finished, check if at least \(k/2 \) outputs of \(S_i \) were 1 for some \(i \). If so, output 1, and output 0 otherwise.

First suppose \(S \) receives an input \(x \in \Pi \), and let \(i \leq |\Sigma|^m \) such that \(x \in \Pi_i \). Then the majority output of the enumerations steps of \(S_i \) is 1 with probability \(1 - 1/(3|\Sigma|^m) \geq 2/3 \). Now suppose \(S \) receives an input \(x \) that is \(\varepsilon \)-far from \(\Pi \). Then, for each \(i \), the majority output of the enumeration step of \(S_i \) is 1 with probability at most \(1/(3|\Sigma|^m) \). A union bound over all \(i \leq |\Sigma|^m \) ensures this happens with probability at least \(1/3 \), in which case \(S \) correctly outputs 0.

\(S \) is therefore an \(\varepsilon \)-tester for the property \(\Pi \), and as its sample complexity is \(k \cdot q' = m \cdot n^{1-1/O(q^2 \log^2 q)} \), the theorem follows.

Interestingly, as a direct corollary of Theorem 7.11, we obtain that the general transformation in Proposition 6.1 is optimal, up to a quadratic gap in the dependency on the sample complexity, as a transformation with a smaller sample complexity could have been used to transform the MAP construction in the MAPs-vs-testers separation of [GR18], yielding a tester with query complexity that contradicts the lower bound in that result.

Theorem 7.12. There does not exist a transformation that takes a robust local algorithm with query complexity \(q \) and transforms it into a sample-based local algorithm with sample complexity at most \(n^{1-1/o(q)} \).

Proof. Let \(\Pi \) be the encoded intersecting messages property considered in [GR18] Section 3.1, for which it was shown that \(\Pi \) has a MAP with query complexity \(q \) and logarithmic proof complexity, but every tester for \(\Pi \) requires at least \(n^{1-1/O(q^2)} \) queries. Suppose towards contradiction that a transformation as in the hypothesis exists. Then, applying the transformation to the aforementioned MAP (as in Theorem 7.11) yields a tester for \(\Pi \) with query complexity \(n^{1-1/o(q)} \), in contradiction to our assumption.
On the lower bound in [GR18]. The separation between MAPs and testers in [GR18] is proved with respect to a property of strings that are encoded by relaxed LDCs; namely, the *encoded intersecting messages property*, defined as

\[EIM_C = \{ (C(x), C(y)) : x, y \in \{0, 1\}^k, k \in \mathbb{N} \text{ and } \exists i \in [k] \text{ s.t. } x_i \neq 0 \text{ and } y_i \neq 0 \}, \]

where \(C : \{0, 1\}^k \rightarrow \{0, 1\}^n \) is a code with linear distance, which is both a relaxed LDC and an LTC. In [GR18] it is shown that there exists a MAP with proof length \(O(\log(n)) \) and query complexity \(q = O(1) \), and crucially for us, that any tester requires \(\Omega(k) \) queries to be tested without access to a proof. The best constructions of codes that satisfy the aforementioned conditions [BGH+04, CGS20, AS20] achieve blocklength \(n = O(k^{1+1/q}) = k^{1+1/\Omega(q)} \), and hence the stated lower bound follows.

References

A Deferred proofs

In this appendix, we provide the proofs of two claims that were deferred in Section 5, namely, Claim 5.8 which provides an amplification procedure for local algorithms, and Claim 5.9 which provides a randomness reduction procedure for local algorithms. We remark that both claims follow from a straightforward adaptation of standard techniques, and include these proofs for completeness. We begin with the amplification procedure.

Claim A.1 (Claim 5.8 restated). Let \(M \) be a \((\rho_0, \rho_1)\)-robust algorithm for computing a function \(f : \mathbb{Z} \times \Sigma^n \rightarrow \{0, 1\} \) with error rate \(\sigma \leq 1/3 \), query complexity \(q \) and randomness complexity \(r \).

For any \(\sigma' > 0 \), there exists a \((\rho_0, \rho_1)\)-robust algorithm \(N \) for computing the same function with error rate \(\sigma' \), query complexity \(108q \log(1/\sigma')/\sigma \) and randomness complexity \(108qr \log(1/\sigma')/\sigma \).

Proof. Define \(N \) as the algorithm that makes \(t = 108 \log(1/\sigma')/\sigma \) independent runs of \(M \) and outputs the most frequent symbol, resolving ties arbitrarily. The query and randomness complexities of \(N \) clearly match the statement, and we must now prove that the error rate is indeed \(\sigma' \) and that \(N \) is \((\rho_0, \rho_1)\)-robust.

Fix \(z \in \mathbb{Z} \) and \(x \in \Sigma^n \) in the domain of \(f \) and let \(b := f(z, x) \). As \(M \) is \(\rho_0 \)-robust at \(x \), the algorithm satisfies \(\Pr[M^y(z) = b] \geq 1 - \sigma \) for all \(y \in B_{\rho_0}(x) \). By the Chernoff bound,

\[\Pr[M^y(z) \neq b \text{ for at least } (\sigma + 1/6)t \text{ runs}] \leq e^{-\frac{at}{36}} = e^{-\log \frac{1}{\sigma'}} < 2^{-\log \frac{1}{\sigma'}} = \sigma'. \]

The majority rule will thus yield outcome \(b \) with probability at least \(1 - \sigma' \), since at least \(1 - (\sigma + 1/6)t \geq t/2 \) runs output \(b \) (except with probability at most \(\sigma' \)). As \(x, z \) and \(y \in B_{\rho_0}(x) \) are arbitrary, the result follows. \(\square \)

We proceed to the randomness reduction transformation.

Claim A.2 (Claim 5.9 restated). Let \(M \) be a \((\rho_0, \rho_1)\)-robust algorithm for computing a function \(f : \mathbb{Z} \times \Sigma^n \rightarrow \{0, 1\} \) with error rate \(\sigma \), query complexity \(q \) and randomness complexity \(r \).

There exists a \((\rho_0, \rho_1)\)-robust algorithm \(N \) for computing the same function with error rate \(2\sigma \) and query complexity \(q \), whose distribution \(\tilde{\mu}^N \) has support size \(3n \ln |\Sigma|/\sigma \). In particular, the randomness complexity of \(N \) is bounded by \(\log(n/\sigma) + \log |\Sigma| + 2 \).

Proof. Fix any explicit input \(z \in \mathbb{Z} \). Let \(\{x_j\} \) be an enumeration of the inputs in \(\Sigma^n \) such that \(\Pr[M^{x_j}(z) = b_j] \geq 1 - \sigma \) for some \(b_j \in \{0, 1\} \). Note that this includes points in the neighbourhood of a point at which \(M \) is robust which are not necessarily in the domain of \(f \), so it suffices to show \(\Pr[N^{x_j}(z) = b_j] \geq 1 - 2\sigma \) to prove the claim for \(N \) with the required query complexity and distribution.

Define the \(2^r \times |\{x_j\}| \) matrix \(E \) with entries in \(\{0, 1\} \) as follows. Denote by \(b_{ij} \in \{0, 1\} \) the output of \(M^{x_j}(z) \) when it executes according to the decision tree indexed by (the binary representation of) \(i \in [2^r] \). Then,

\[E_{ij} = \begin{cases} 1, & \text{if } b_{ij} \neq b_j \\ 0, & \text{otherwise.} \end{cases} \]

Note that \(E_{ij} \) simply indicates whether \(M^{x_j}(z) \) outputs incorrectly on input when the outcome of the algorithm’s coin flips is (the binary representation of) \(i \). By construction, for each fixed \(j \), a fraction of at most \(\sigma \) indices \(i \in [2^r] \) are such that \(E_{i,j} = 1 \).
Let $t = 3n \ln |\Sigma|/\sigma$ and I_1, \ldots, I_t be independent random variables uniformly distributed in $[2^r]$. For each fixed $j \leq |\{x_j\}| \leq |\Sigma|^n$ and $k \leq t$, we have $\mathbb{E}[E_{I_k,j}] \leq \sigma$. By the Chernoff bound,

$$
\Pr \left[\sum_{k=1}^{t} E_{I_k,j} \geq 2\sigma t \right] \leq e^{-\frac{\sigma^2 t}{3}} = e^{-n\ln|\Sigma|} < |\Sigma|^{-n}.
$$

Applying the union bound over all $j \leq |\{x_j\}| \leq |\Sigma|^n$, we obtain

$$
\Pr \left[\sum_{k=1}^{t} E_{I_k,j} \geq 2\sigma t \text{ for some } j \right] < 1.
$$

We have thus shown, via the probabilistic method, the existence of a multi-set R_z of size $3n \ln |\Sigma|/\sigma$ such that

$$
\Pr[N^x(z) \neq b_j] \leq 2\sigma,
$$

where N samples its random strings uniformly from R_z (rather than from $\{0,1\}^r$), using the corresponding decision trees of M. The size of S_z is thus $|\hat{\mu}_N| = 3n \ln |\Sigma|/\sigma$, and this sampling can be performed with $\log(n/\sigma) + \log \log |\Sigma| + 2$ random coins.

Since the decision trees of N are simply a subcollection of those of M, the query complexity of N is q and the claim follows.