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Outline

• Algebraic circuits: Definitions

• Depth-3 homogeneous lower bound (partial derivatives)

• Restricted circuit classes

• Constant-depth lower bound (partial derivatives + varying set sizes)

• Follow-up works
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Algebraic circuit

Computes P (x) = P (x1, . . . , xn) ∈ F[x1, . . . , xn].
• Size = Number of gates
• Depth = Maximum length of a leaf-to-root path
• Product-depth
• ΣΠΣΠ · · · structure
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VP and VNP

• VP: Polynomials P (x) of degree d = nO(1) computable by nO(1) size circuits
Examples: DETn, IMMn,d

• VNP: Polynomials

P (x) =
∑

y∈{0,1}m
Q(x, y)

where m = nO(1) and Q ∈ VP.
Examples: PERMn, NW

• VP ⊆ VNP
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VP vs VNP

Conjecture [Valiant ‘79]: VP ⊊ VNP
Stronger conjecture: VF ⊊ VBP ⊊ VP ⊊ VNP

• VF : Polynomial size algebraic formulas

• VBP : Polynomial size algebraic branching programs (ABPs)

• DETn, IMMn,d ∈ VBP (complete)

• PERMn ∈ VNP (complete)

• Determinant vs Permanent
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VP vs VNP: Connections

• VP = VNP and GRH =⇒ P/poly = NP/poly

• Derandomizing Polynomial Identity Testing (PIT)

• Learning algebraic circuits

Is there an “explicit” polynomial that requires superpolynomial size circuits?
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Lower bounds

• xd1 + xd2 + · · ·+ xdn requires circuit size Ω(n log d). [Baur-Strassen ‘83, Strassen ‘73]

• Esymn,.1n requires formulas (or layered ABPs) of size Ω(n2). [Chatterjee-Kumar-She-Volk ‘22]

Theorem.[Limaye-Srinivasan-Tavenas ‘21]

For d = o(log n) and char(F) = 0 or > d, IMMn,d requires product-depth ∆ circuits of

size nΩ(dc∆ ) where 0 < c∆ ≤ 1.

▶ Hardness escalation

▶ Non-FPT lower bounds for set-multilinear circuits

▶ Partial derivatives + varying set sizes
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Restricted circuit models

• Constant-depth circuits: ∆ = constant. Equivalent to constant-depth formulas.

• Homogeneous circuits: Each intermediate gate computes a homogeneous
polynomial, e.g., x31 + 3x22x5 − x39.

• Multilinear circuits: Each intermediate gate computes a multilinear polynomial,
e.g., 3x1x2x5 − x2x9 + x1 + 9.

• Set-multilinear circuits: Each intermediate gate computes a set-multilinear
polynomial, e.g., x1y2z3 − 5x2y5z9 + 7x1y3z5.

More generally, P (x) is set-multilinear w.r.t. a partitioning x = x1 ∪ x2 ∪ · · · ∪ xd.

• Monotone circuits, non-commutative circuits etc.
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Homogeneous depth-3 lower bound

Theorem.[Nisan-Wigderson ‘97]

For d ≤
√
n, there exists an explicit polynomial P (x1, . . . , xn) of degree d such that any

homogeneous ΣΠΣ circuit computing P has size nΩ(d).

Proof sketch. Let P (x) =

s∑
i=1

ℓi,1(x)ℓi,2(x) . . . ℓi,d(x)︸ ︷︷ ︸
Ti(x)

.

Define µ : F[x] → Z≥0 as µ(P ) := dim
{
∂=d/2(P )

}
.

• µ(Ti) ≤ 2d, as ∂m(Ti) ∈ span

∏
j∈S

ℓi,j(x) : S ⊆ [d]

.

• µ(P ) ≳

(
n

d/2

)
, for appropriate explicit P .

• Hence, s ≥ µ(P )/µ(Ti) ≥ nΩ(d).
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Homogeneous depth-4 lower bound

• A nΩ(
√
d) lower bound for homogeneous ΣΠΣΠ circuits computing IMMn,d and NW.

[Gupta-Kamath-Kayal-Saptharishi ‘14, Kayal-Limaye-Saha-Srinivasan ‘17, Kumar-Saraf ‘17,. . . ]

• Proof technique: random restrictions + shifted partials

• Can be improved to nω(
√
d) =⇒ VP ̸= VNP:

Depth reduction. [Valiant-Skyum-Berkowitz-Rackoff ‘83, Tavenas ‘15, . . . ]

Any circuit C of size s can be converted to a homogeneous ΣΠΣΠ circuit of size sO(
√
d).

Hence, a nω(
√
d) lower bound for the latter model implies a nω(1) lower bound for

general circuits.
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Multilinear circuits

• VFmult ̸= VBPmult [Raz ‘06, Raz-Yehudayoff ‘08, Dvir-Malod-Perifel-Yehudayoff ‘12]

• A 2n
Ω(1/∆)

lower bound for multilinear circuits computing DETn, PERMn and
IMM2,n [Raz-Yehudayoff ‘09, Chillara-Limaye-Srinivasan ‘19]

• Depth hiearchy theorem [Raz-Yehudayoff ‘09, Chillara-Engels-Limaye-Srinivasan ‘18]

• Proof technique: Only use a subset of variables (called S+ ⊆ [n]) for taking
derivatives:

• How does it help? For a random partitioning [n] = S+ ∪ S− and any “multilinear”
product Q(x)R(y), either |vars(x) ∩ S+| or |vars(y) ∩ S+| is “small”.
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Set-multilinear circuits

Isn’t this model already subsumed by the above results for homogeneous and multilinear
circuits?!

Yes.. but the above previous lower bounds were FPT in the degree i.e., f(d) · nΩ(1).
In contrast, suppose we are able to get a non-FPT set-multilinear lower bound — nωd(1).
Then, we can “escalate” such a lower bound to general circuits (of around the same
depth) [Limaye-Srinivasan-Tavenas ‘21]:
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Non-FPT set-multilinear lower bound

Let F[x1,x2, . . . ,xd] denote the space of all sml polynomials over variables
x = x1 ∪ x2 ∪ · · · ∪ xd with |xi| ≤ n.

Theorem. [Limaye-Srinivasan-Tavenas ‘21]

For d = o(log n), there exists an explicit sml P (x) ∈ F[x1,x2, . . . ,xd] that requires

depth-5 (i.e., ∆ = 2) sml circuits of size nΩ(
√
d).

The complexity measure: parital derivative measure (with appropriate set sizes)

• Define µ(P ) := dim {∂S+(P )}
• If Q is sml w.r.t. S ⊆ [d], µ(Q) := dim {∂S+∩S(Q)}
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Non-FPT sml lower bound: Proof sketch

An upper bound: µ(Q) = dim {∂S+∩S(Q)} ≤ min
{
n|S+∩S|, n

|S−∩S|
0

}
The hard polynomial P : µ(P ) = nk = nd−k

0 , i.e., n0 = nk/(d−k)

To upper bound µ(C) for a depth-5 sml C of size s:

Step 1: Decomposition

C =

s∑
i=1

Ti

s.t. each T = Q1Q2 . . . Qt where Qj is sml w.r.t. Sj ⊆ [d], and
√
d/2 ≤ |Sj | ≤

√
d or

|Sj | = 1, for at least Ω(
√
d) many j’s.
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Non-FPT sml lower bound: Proof sketch

Step 2: Bounding each term

µ(T ) =
∏
j

µ(Qj) ≤
∏
j

min
{
n|S+∩Sj |, n

|S−∩Sj |
0

}

=
∏
j

√
n|S+∩Sj | · n|S−∩Sj |

0√
n|a+j −ka−j /(d−k)|

(where a+j + a−j = |Sj |)

=

√
nk · nk = µ(P )

nΩ(
∑

j |a
+
j −ka−j /(d−k)|)

Suffices to show for each “good” j that

∣∣∣∣a+j − k

d− k
a−j

∣∣∣∣ ≥ Ω(1). Set k =
d−

√
d

2
.

Lower bound: s ≥ µ(P )/µ(T ) ≥ nΩ(#good j) = nΩ(
√
d).
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Further improvements

..to the “lopsided” partial derivative framework:

• A (log n)Ω(log d) lower bound for sml formulas of unbounded depth for IMMn,d

[Tavenas-Limaye-Srinivasan ‘22]

• A depth hierarchy theorem for algebraic circuits [Limaye-Srnivasan-Tavenas ‘21]

• A nΩ(d1/ϕ
∆
) lower bound [Bhargav-Dutta-Saxena ‘22]

• A more general framework for sml formulas lower bounds and barriers
[Limaye-Srinivasan-Tavenas ‘22]
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Revisiting homogeneous lower bounds

An alternative proof of the low-depth lower bound using shifted partials [A.-Garg-Kayal-Saha-Thankey

‘23]

• Skips set-multilinearization step, and analyzes homogeneous circuits directly

• Gives similar lower bounds for NW and non-sml polynomials, besides IMM

• Lower bounds against homogeneous unique-parse-tree formulas

• Uses known measures like shifted partials and affine projections of partials measures
(with different parameter settings)

Technical ingredient{
x=ℓ · ∂=k (Q1Q2 . . . Qt)

}
⊆ some low-dimensional space, depending on deg(Qi)’s
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Revisiting set-multilinear lower bounds

Set-multilinear formula lower bounds for large degree [Kush-Saraf ‘22, Kush-Saraf ‘23]

• A nΩ(n1/∆/∆) lower bound for sml formulas computing a set-multilinear ABP

• An unbounded depth lower bound of nΩ(logn)

• Self-reducibility of IMM: Can compute IMMn,n using IMMn,d for d < n.

• Implies VF ̸= VBP if the above ABP can be made “ordered” sml
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Conclusion

Common lower bound themes:

• Hardness escalation (via homogenization/set-multilinearization)

• Decomposition/ depth-reduction to ΣΠΣΠ and lower bound the top fain-in

Open problems:

• Improved (non-FPT) set-multilinear lower bounds?

• Large-degree homogeneous depth-5 lower bound? Or an exponential depth-3 lower
bound?

• Depth-4 constant-size field lower bounds?
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Thank you! Questions?
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