A Survey of Algebraic Circuit Lower Bounds

Prashanth Amireddy (Harvard University)

July 12, 2023

Outline

- Algebraic circuits: Definitions
- Depth-3 homogeneous lower bound (partial derivatives)
- Restricted circuit classes
- Constant-depth lower bound (partial derivatives + varying set sizes)
- Follow-up works

Algebraic circuit

Computes $P(x)=P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.

- Size $=$ Number of gates
- Depth = Maximum length of a leaf-to-root path
- Product-depth
- $\Sigma \Pi \Sigma \Pi \cdots$ structure

VP and VNP

- VP: Polynomials $P(x)$ of degree $d=n^{O(1)}$ computable by $n^{O(1)}$ size circuits Examples: $D E T_{n}, I M M_{n, d}$
- VNP: Polynomials

$$
P(x)=\sum_{y \in\{0,1\}^{m}} Q(x, y)
$$

where $m=n^{O(1)}$ and $Q \in \mathrm{VP}$.
Examples: $P E R M_{n}, N W$

- $\mathrm{VP} \subseteq \mathrm{VNP}$

VP vs VNP

Conjecture [Valiant '79]: VP \subsetneq VNP Stronger conjecture: $\mathrm{VF} \subsetneq \mathrm{VBP} \subsetneq \mathrm{VP} \subsetneq \mathrm{VNP}$

- VF : Polynomial size algebraic formulas
- VBP : Polynomial size algebraic branching programs (ABPs)
- $D E T_{n}, I M M_{n, d} \in \mathrm{VBP}$ (complete)
- $P E R M_{n} \in$ VNP (complete)
- Determinant vs Permanent

VP vs VNP: Connections

- VP $=$ VNP and GRH $\Longrightarrow P /$ poly $=N P /$ poly
- Derandomizing Polynomial Identity Testing (PIT)
- Learning algebraic circuits

Is there an "explicit" polynomial that requires superpolynomial size circuits?

Lower bounds

- $x_{1}^{d}+x_{2}^{d}+\cdots+x_{n}^{d}$ requires circuit size $\Omega(n \log d)$. [Baur-Strassen '83, Strassen '73]
- $E s s y m_{n, .1 n}$ requires formulas (or layered ABPs) of size $\Omega\left(n^{2}\right)$. [Chatterjee-Kumar-She-Volk '22]

Theorem. [Limaye-Srinivasan-Tavenas '21]

For $d=o(\log n)$ and $\operatorname{char}(\mathbb{F})=0$ or $>d, I M M_{n, d}$ requires product-depth Δ circuits of size $n^{\Omega\left(d^{c} \Delta\right)}$ where $0<c_{\Delta} \leq 1$.

- Hardness escalation
- Non-FPT lower bounds for set-multilinear circuits
- Partial derivatives + varying set sizes

Restricted circuit models

- Constant-depth circuits: $\Delta=$ constant. Equivalent to constant-depth formulas.
- Homogeneous circuits: Each intermediate gate computes a homogeneous polynomial, e.g., $x_{1}^{3}+3 x_{2}^{2} x_{5}-x_{9}^{3}$.
- Multilinear circuits: Each intermediate gate computes a multilinear polynomial, e.g., $3 x_{1} x_{2} x_{5}-x_{2} x_{9}+x_{1}+9$.
- Set-multilinear circuits: Each intermediate gate computes a set-multilinear polynomial, e.g., $x_{1} y_{2} z_{3}-5 x_{2} y_{5} z_{9}+7 x_{1} y_{3} z_{5}$.
More generally, $P(\mathbf{x})$ is set-multilinear w.r.t. a partitioning $\mathbf{x}=\mathbf{x}_{1} \cup \mathbf{x}_{2} \cup \cdots \cup \mathbf{x}_{d}$.
- Monotone circuits, non-commutative circuits etc.

Homogeneous depth-3 lower bound

Theorem. [Nisan-Wigderson '97]

For $d \leq \sqrt{n}$, there exists an explicit polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ of degree d such that any homogeneous $\Sigma \Pi \Sigma$ circuit computing P has size $n^{\Omega(d)}$.
Proof sketch. Let $P(x)=\sum_{i=1}^{s} \underbrace{\ell_{i, 1}(x) \ell_{i, 2}(x) \ldots \ell_{i, d}(x)}_{T_{i}(x)}$.
Define $\mu: \mathbb{F}[x] \rightarrow \mathbb{Z}_{\geq 0} \quad$ as $\mu(P):=\operatorname{dim}\left\{\partial^{=d / 2}(P)\right\}$.

- $\mu\left(T_{i}\right) \leq 2^{d}$, as $\partial_{m}\left(T_{i}\right) \in \operatorname{span}\left\{\prod_{j \in S} \ell_{i, j}(x): S \subseteq[d]\right\}$.
- $\mu(P) \gtrsim\binom{n}{d / 2}$, for appropriate explicit P.
- Hence, $s \geq \mu(P) / \mu\left(T_{i}\right) \geq n^{\Omega(d)}$.

Homogeneous depth-4 lower bound

- A $n^{\Omega(\sqrt{d})}$ lower bound for homogeneous $\Sigma \Pi \Sigma \Pi$ circuits computing $I M M_{n, d}$ and NW. [Gupta-Kamath-Kayal-Saptharishi '14, Kayal-Limaye-Saha-Srinivasan '17, Kumar-Saraf '17,...]
- Proof technique: random restrictions + shifted partials
- Can be improved to $n^{\omega(\sqrt{d})} \Longrightarrow$ VP \neq VNP:

Depth reduction. [Valiant-Skyum-Berkowitz-Rackoff ' 83 , Tavenas ' $15, \ldots]$

Any circuit C of size s can be converted to a homogeneous $\Sigma \Pi \Sigma \Pi$ circuit of size $s^{O(\sqrt{d})}$. Hence, a $n^{\omega(\sqrt{d})}$ lower bound for the latter model implies a $n^{\omega(1)}$ lower bound for general circuits.

Multilinear circuits

- $\mathrm{VF}_{\text {mult }} \neq \mathrm{VBP}_{\text {mult }}$ [Raz ${ }^{006, \text { Raz-Yehudayoff ' } 08 \text {, Dvir-Malod-Perifel-Yehudayoff ' 12] }}$
- A $2^{n^{\Omega(1 / \Delta)}}$ lower bound for multilinear circuits computing $D E T_{n}, P E R M_{n}$ and $I M M_{2, n}$ [Raz-Yehudayoff 'o9, Chillara-Limaye-Srinivasan '19]
- Depth hiearchy theorem [Raz-Yehudayoff '09, Chillara-Engels-Limaye-Srinivasan '18]
- Proof technique: Only use a subset of variables (called $S^{+} \subseteq[n]$) for taking derivatives:

- How does it help? For a random partitioning $[n]=S^{+} \cup S^{-}$and any "multilinear" product $Q(x) R(y)$, either $\left|\operatorname{vars}(x) \cap S^{+}\right|$or $\left|\operatorname{vars}(y) \cap S^{+}\right|$is "small".

Set-multilinear circuits

Isn't this model already subsumed by the above results for homogeneous and multilinear circuits?!
Yes.. but the above previous lower bounds were FPT in the degree i.e., $f(d) \cdot n^{\Omega(1)}$. In contrast, suppose we are able to get a non-FPT set-multilinear lower bound - $n^{\omega_{d}(1)}$. Then, we can "escalate" such a lower bound to general circuits (of around the same depth) [Limaye-Srinivasan-Tavenas '21]:

Non-FPT set-multilinear lower bound

Let $\mathbb{F}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{d}\right]$ denote the space of all sml polynomials over variables $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \cup \cdots \cup \mathrm{x}_{d}$ with $\left|\mathrm{x}_{i}\right| \leq n$.

Theorem. [Limaye-Srinivasan-Tavenas '21]

For $d=o(\log n)$, there exists an explicit sml $P(\mathbf{x}) \in \mathbb{F}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{d}\right]$ that requires depth-5 (i.e., $\Delta=2$) sml circuits of size $n^{\Omega(\sqrt{d})}$.

The complexity measure: parital derivative measure (with appropriate set sizes)

- Define $\mu(P):=\operatorname{dim}\left\{\partial_{S^{+}}(P)\right\}$
- If Q is sml w.r.t. $S \subseteq[d], \mu(Q):=\operatorname{dim}\left\{\partial_{S^{+} \cap S}(Q)\right\}$

Non-FPT sml lower bound: Proof sketch

An upper bound: $\mu(Q)=\operatorname{dim}\left\{\partial_{S^{+} \cap S}(Q)\right\} \leq \min \left\{n^{\left|S^{+} \cap S\right|}, n_{0}^{\left|S^{-} \cap S\right|}\right\}$
The hard polynomial $P: \mu(P)=n^{k}=n_{0}^{d-k}$, i.e., $n_{0}=n^{k /(d-k)}$
To upper bound $\mu(C)$ for a depth- $5 \mathbf{~ s m l} C$ of size s :

Step 1: Decomposition

$$
C=\sum_{i=1}^{s} T_{i}
$$

s.t. each $T=Q_{1} Q_{2} \ldots Q_{t}$ where Q_{j} is sml w.r.t. $S_{j} \subseteq[d]$, and $\quad \sqrt{d} / 2 \leq\left|S_{j}\right| \leq \sqrt{d}$ or $\left|S_{j}\right|=1$, for at least $\Omega(\sqrt{d})$ many j 's.

Non-FPT sml lower bound: Proof sketch

Step 2: Bounding each term

$$
\begin{aligned}
\mu(T)=\prod_{j} \mu\left(Q_{j}\right) & \leq \prod_{j} \min \left\{n^{\left|S^{+} \cap S_{j}\right|}, n_{0}^{\left|S^{-} \cap S_{j}\right|}\right\} \\
& =\prod_{j} \frac{\sqrt{n^{\left|S^{+} \cap S_{j}\right|} \cdot n_{0}^{\left|S^{-} \cap S_{j}\right|}}}{\sqrt{n^{\left|a_{j}^{+}-k a_{j}^{-} /(d-k)\right|}}} \\
& =\frac{\sqrt{n^{k} \cdot n^{k}}=\mu(P)}{n^{\Omega\left(\sum_{j}\left|a_{j}^{+}-k a_{j}^{-} /(d-k)\right|\right)}}
\end{aligned}
$$

$$
\text { (where } \left.a_{j}^{+}+a_{j}^{-}=\left|S_{j}\right|\right)
$$

Suffices to show for each "good" j that $\left|a_{j}^{+}-\frac{k}{d-k} a_{j}^{-}\right| \geq \Omega(1)$. Set $k=\frac{d-\sqrt{d}}{2}$.
Lower bound: $s \geq \mu(P) / \mu(T) \geq n^{\Omega(\# \operatorname{good} j)}=n^{\Omega(\sqrt{d})}$.

Further improvements

..to the "lopsided" partial derivative framework:

- A $(\log n)^{\Omega(\log d)}$ lower bound for sml formulas of unbounded depth for $I M M_{n, d}$ [Tavenas-Limaye-Srinivasan '22]
- A depth hierarchy theorem for algebraic circuits [Limaye-Srivasan-Tavenas '21]
- A $n^{\Omega\left(d^{1 / \phi^{\Delta}}\right)}$ lower bound [Bhargav-Dutta-Saxena '22]
- A more general framework for sml formulas lower bounds and barriers [Limaye-Srinivasan-Tavenas '22]

Revisiting homogeneous lower bounds

An alternative proof of the low-depth lower bound using shifted partials [A.-Garg-Kayal-Saha-Thankey '23]

- Skips set-multilinearization step, and analyzes homogeneous circuits directly
- Gives similar lower bounds for NW and non-sml polynomials, besides IMM
- Lower bounds against homogeneous unique-parse-tree formulas
- Uses known measures like shifted partials and affine projections of partials measures (with different parameter settings)

Technical ingredient

$\left\{x^{=\ell} \cdot \partial^{=k}\left(Q_{1} Q_{2} \ldots Q_{t}\right)\right\} \subseteq$ some low-dimensional space, depending on $\operatorname{deg}\left(Q_{i}\right)$'s

Revisiting set-multilinear lower bounds

Set-multilinear formula lower bounds for large degree [Kush-Saraf ' ${ }^{22}$, Kush-Saraf ' 23]

- A $n^{\Omega\left(n^{1 / \Delta} / \Delta\right)}$ lower bound for sml formulas computing a set-multilinear ABP
- An unbounded depth lower bound of $n^{\Omega(\log n)}$
- Self-reducibility of $I M M$: Can compute $I M M_{n, n}$ using $I M M_{n, d}$ for $d<n$.
- Implies $\mathrm{VF} \neq \mathrm{VBP}$ if the above ABP can be made "ordered" sml

Conclusion

Common lower bound themes:

- Hardness escalation (via homogenization/set-multilinearization)
- Decomposition/ depth-reduction to $\Sigma \Pi \Sigma \Pi$ and lower bound the top fain-in

Open problems:

- Improved (non-FPT) set-multilinear lower bounds?
- Large-degree homogeneous depth-5 lower bound? Or an exponential depth-3 lower bound?
- Depth-4 constant-size field lower bounds?

Thank you! Questions?

