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O Polynomial factoring is encountered in high school!
O Polynomials can be factored in polynomial time.
Q Factor f(x) € Q[x] using L algorithm in deterministic polynomial time.

Q Factor f(x) € Fg[x] using Berlekamp’s algorithm.
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QO The polynomial ring F[Xq, ..., Xp] is UFD (Unique Factorization Domain).

FACTORIZATION OF A POLYNOMIAL
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f(x) = ]‘[I(z ’ fl.e’ , where the polynomials f; are its irreducible factors over F. Output

each f;, in some related class D.

Q Facror size sBounp: Do all its factors have poly(s, d) size in D?

Q Erricient aLcoritam: Design an ‘efficient” algorithm to compute the
irreducible factors.

U Factor of a polynomial can be more “complex” than the polynomial itself.

Q For example, H7:1 (Xid — 1) has sparsity 2. But its factor

T+x+. .. +x;j_1) has sparsity d" = (27)'o8¢,

O When C = D, then C is closed under factoring.
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U Multivariate factoring f(x) = g(x) - h(x)can be reduced to univariate factoring
via Kronecker substitution:

> Let the degree of each variable in f is < d. Apply Kronecker substitution
(d+1)~

PiXxi—> 2z
Each monomial in f uniquely maps to a monomial in ¢(f).
Factorize ¢(f) into univariate irreducible factors.

Though g is irreducible, ¢(g) may not be irreducible.

Product of a subset of the factors of ¢(f) would correspond to ¢(g).

Y VY YV Y Y

Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f. [Check by Resultant].

Y

Time complexity: Exponential in degree in worst-case (even for bivariates).
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EFFICIENT MULTIVARIATE FACTORIZATION

O Let us fix algebraic circuit as the model and sizec;...;; denotes the circuit size.

ErrFicient Circurt FacTtoring [Kaltofen 1986]

g | f = sizecie(9) < poly(sizecieu(f), deg(f)). Moreover, there is a randomized
poly (sizeciui (), deg(f))-time algorithm that outputs every irreducible factor.

U VP is closed under factoring.
Q Toors: Newton iteration/ Hensel lifting, Linear System Solving.

O Goar: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

O What happens if we only care about just the query/blackbox complexity?

O ArprLicaTion: Hardness versus randomness in algebraic complexity [KI°03,
Agrawal’05]; possible separation of complexity classes.
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APPLICATIONS

Q [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) = Quasi-poly blackbox deterministic
PIT for circuits.

Q [PossieLE separATION]: If C is not closed under factoring, then C # VP.
O Can we show that VP # VNP, VBP, VF via factoring?!

Q [HarbNESs oF muLTIPLES]|: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!
> Take C = D = VP. If VP # VNP, any polynomial-degree multiple of
perm, is also hard for VP.

Q [KSS'14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.
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BLACKBOX FACTORING

Q [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial
f, black boxes of the irreducible factors of f can be computed in randomized
polynomial time.

> DiMENsION REDUCTION: Randomly project to bivariates.

> This works due to an effective version of Hilbert’s irreducibility theorem.

> Iff(x,zy,...,2p) is irreducible, then f(x, 81 + @1y, ..., Bn + any) is
irreducible with high probability if 3;, a; picked at random.

> Currently, derandomization of this theorem for sparse polynomials reduces
to ABP PIT.
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Q [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.
> deg,, f(x) <r, foreachi € [n], sizeciwur(f) < s, and depth A, and if g | f,
then sizecii (9) < poly(r”, s), and depth A + 5.

Q [Dutta’18]: f € VPconstant = sizecireust (f) < poOly(n), and degy, (f) < r, for
some constant r. Then, VP¢onstant 1 closed under factoring. Same for
VBPCOHS[HH[’ VN PCOHSI{IHI-

Q [Dutta-Saxena-Sinhababu’18]: g | f, and deg(f) = d, then
sizeap(g) < poly(sizeags(f), dCogd))y.
> Same for VF, VNP.

> So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

Q [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

Q [Sinhababu-Thierauf’21]: VBP is closed under factoring.
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Q [Kaltofen’87] If f = g®, then sizecieui(g) < POl (sizecirui (f), deg(g)).

> e can be as large as 25, where S = Siz€cjreuii (f)!
> First result which depends on deg(g) instead of deg(f)!

QO [Facrtor CONJECTURE, Biirgisser 03]: If g | f, then
SizeCircui[(g) < pOIy(SizeCircuil(f)y deg(g))

Q [Biirgisser 03:] Factor conjecture is true, when one replaces sizecicui by
SiZ€Circuit!

Q Can we extend [Kaltofen’87] to f = gf‘ ggz, where both deg(g;) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f) denotes the square-free part of f, i.e. f = [] gl.e", then rad(f) = []; g;. If
g | f’ then SiZeCircuil(g) < pOIY(SizeCircuil(f)’ deg(rad(f)))
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Q [Oliveira 2016, Dutta-Saxena-Sinhababu’ 18]: Factoring < root approximation

in power series.
Q p(x,y) hasfactory —q(x) < p(x,q(x))=0.
O Approximate root via Newton iteration

p(X,yt)

Yt =N 5y

Q logd iterations, since precision doubles everytime!

O A random shift ¢ : x; — «a;y + X; + 5;, makes

#(f(x)) = ]‘_[(y—q,«x)),

where g; are power series.

Q F[[xq,...,%n]] is UFD!
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RELATED RESULTS

Q [Bhargava-Saraf-Volkovich 20]: If sp(f) < s, with individual degrees bounded
by r,and g | f, then sp(g) < sO(r?10gn) This lead to an sPOY(") 1087 _time
algorithm for factoring sparse polynomials.

Q [Koiran-Ressyare’18]: Randomized polynomial-time algorithm to test if
f(Xq,...,Xn) is of the form f(x) = {1 (x)* - - - £n(x) ", and if yes, outputs the
linear factors.

Q [Dutta-Sinhababu-Thierauf, 202X]: If f = Hgf", where deg(g;) < r, and
sizecieui (f) = S. Then there is a determinstic poly(s")-time algorithm that
outputs gj.
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OPEN QUESTIONS

Q Given an n-variate degree d polynomial of sparsity < s, test if it is irreducible in
deterministic poly(n, s, d) time.

> CuavrLence: Currently, it requires PIT for symbolic Determinants.

O Given two n-variate degree d polynomial of sparsity < s, test if they are
coprime in deterministic poly(n, s, d) time.

> CuaLLence: The resultant of two sparse polynomials may not be sparse.

Q Show VF is closed under factoring, or come up with candidate counter example!

> CuarLence: Determinant does not have small arithmetic formulas!

Thank you! Questions?
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