
Polynomial Factorization: Recent advances, and challenges

Pranjal Dutta
School of Computing, NUS

10th July, 2023

Algebraic Complexity Theory Workshop @ ICALP 2023



Table of Contents

1. Multivariate Polynomial Factoring: Background

2. Classical Factoring results

3. Recent advances

4. Conclusion

1



Multivariate Polynomial Factoring:
Background



Factoring Univariates

❑ Polynomial factoring is encountered in high school!

❑ Polynomials can be factored in polynomial time.

❑ Factor f (x) ∈ Q[x] using LLL algorithm in deterministic polynomial time.

❑ Factor f (x) ∈ Fq [x] using Berlekamp’s algorithm.

2



Factoring Univariates

❑ Polynomial factoring is encountered in high school!

❑ Polynomials can be factored in polynomial time.

❑ Factor f (x) ∈ Q[x] using LLL algorithm in deterministic polynomial time.

❑ Factor f (x) ∈ Fq [x] using Berlekamp’s algorithm.

2



Factoring Univariates

❑ Polynomial factoring is encountered in high school!

❑ Polynomials can be factored in polynomial time.

❑ Factor f (x) ∈ Q[x] using LLL algorithm in deterministic polynomial time.

❑ Factor f (x) ∈ Fq [x] using Berlekamp’s algorithm.

2



Factoring Univariates

❑ Polynomial factoring is encountered in high school!

❑ Polynomials can be factored in polynomial time.

❑ Factor f (x) ∈ Q[x] using LLL algorithm in deterministic polynomial time.

❑ Factor f (x) ∈ Fq [x] using Berlekamp’s algorithm.

2



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Complexity of Multivariate Factoring

❑ The polynomial ring F[x1, . . . , xn] is UFD (Unique Factorization Domain).

Factorization of a polynomial
Let f be a polynomial of degree d that has ‘size’ s in some class C. Let
f (x) = ∏m

i=1 fei
i , where the polynomials fi are its irreducible factors over F. Output

each fi , in some related class D.

❑ Factor size bound: Do all its factors have poly(s, d) size in D?

❑ Efficient algorithm: Design an ‘efficient’ algorithm to compute the
irreducible factors.

❑ Factor of a polynomial can be more “complex” than the polynomial itself.

❑ For example,
∏n

i=1 (x
d
i − 1) has sparsity 2n. But its factor∏n

i=1 (1 + xi + . . . + xd−1
i ) has sparsity dn = (2n)log d .

❑ When C = D, then C is closed under factoring.

3



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Multivariate to Univariate Factoring

❑ Multivariate factoring f (x) = g(x) · h(x)can be reduced to univariate factoring
via Kronecker substitution:

➢ Let the degree of each variable in f is ≤ d. Apply Kronecker substitution
𝜙 : xi ↦→ z (d+1) i−1 .

➢ Each monomial in f uniquely maps to a monomial in 𝜙(f ).

➢ Factorize 𝜙(f ) into univariate irreducible factors.

➢ Though g is irreducible, 𝜙(g) may not be irreducible.

➢ Product of a subset of the factors of 𝜙(f ) would correspond to 𝜙(g).

➢ Try all subsets. Apply inverse Kronecker and check if the polynomial
divides f . [Check by Resultant].

➢ Time complexity: Exponential in degree in worst-case (even for bivariates).

4



Classical Factoring results



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )). Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )).

Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )). Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )). Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )). Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )). Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )). Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Efficient multivariate factorization

❑ Let us fix algebraic circuit as the model and sizeCircuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]
g | f =⇒ sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(f )). Moreover, there is a randomized
poly(sizeCircuit (f ), deg(f ))-time algorithm that outputs every irreducible factor.

❑ VP is closed under factoring.

❑ Tools: Newton iteration/ Hensel lifting, Linear System Solving.

❑ Goal: Extend Kaltofen’s result for formulas, constant depth circuits, algebraic
branching programs (ABPs), high-degree regime etc.

❑ What happens if we only care about just the query/blackbox complexity?

❑ Application: Hardness versus randomness in algebraic complexity [KI’03,
Agrawal’05]; possible separation of complexity classes.

5



Applications

❑ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

❑ [Possible separation]: If C is not closed under factoring, then C ≠ VP.

❑ Can we show that VP ≠ VNP,VBP,VF via factoring?!

❑ [Hardness of multiples]: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!

➢ Take C = D = VP. If VP ≠ VNP, any polynomial-degree multiple of
permn is also hard for VP.

❑ [KSS’14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.

6



Applications

❑ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

❑ [Possible separation]: If C is not closed under factoring, then C ≠ VP.

❑ Can we show that VP ≠ VNP,VBP,VF via factoring?!

❑ [Hardness of multiples]: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!

➢ Take C = D = VP. If VP ≠ VNP, any polynomial-degree multiple of
permn is also hard for VP.

❑ [KSS’14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.

6



Applications

❑ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

❑ [Possible separation]: If C is not closed under factoring, then C ≠ VP.

❑ Can we show that VP ≠ VNP,VBP,VF via factoring?!

❑ [Hardness of multiples]: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!

➢ Take C = D = VP. If VP ≠ VNP, any polynomial-degree multiple of
permn is also hard for VP.

❑ [KSS’14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.

6



Applications

❑ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

❑ [Possible separation]: If C is not closed under factoring, then C ≠ VP.

❑ Can we show that VP ≠ VNP,VBP,VF via factoring?!

❑ [Hardness of multiples]: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!

➢ Take C = D = VP. If VP ≠ VNP, any polynomial-degree multiple of
permn is also hard for VP.

❑ [KSS’14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.

6



Applications

❑ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

❑ [Possible separation]: If C is not closed under factoring, then C ≠ VP.

❑ Can we show that VP ≠ VNP,VBP,VF via factoring?!

❑ [Hardness of multiples]: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!

➢ Take C = D = VP. If VP ≠ VNP, any polynomial-degree multiple of
permn is also hard for VP.

❑ [KSS’14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.

6



Applications

❑ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

❑ [Possible separation]: If C is not closed under factoring, then C ≠ VP.

❑ Can we show that VP ≠ VNP,VBP,VF via factoring?!

❑ [Hardness of multiples]: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!

➢ Take C = D = VP. If VP ≠ VNP, any polynomial-degree multiple of
permn is also hard for VP.

❑ [KSS’14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.

6



Applications

❑ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent
(i.e. VNP exponentially far from VP) =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

❑ [Possible separation]: If C is not closed under factoring, then C ≠ VP.

❑ Can we show that VP ≠ VNP,VBP,VF via factoring?!

❑ [Hardness of multiples]: If factors of C are in class D, and f is hard for D,
all its nonzero multiples of f are hard for C!

➢ Take C = D = VP. If VP ≠ VNP, any polynomial-degree multiple of
permn is also hard for VP.

❑ [KSS’14]: Derandomizing circuit-factoring is equivalent to derandomizing
circuit-PIT.

6



Blackbox factoring

❑ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial
f , black boxes of the irreducible factors of f can be computed in randomized
polynomial time.

➢ Dimension reduction: Randomly project to bivariates.

➢ This works due to an effective version of Hilbert’s irreducibility theorem.

➢ If f (x, z1, . . . , zn) is irreducible, then f (x, 𝛽1 + 𝛼1y, . . . , 𝛽n + 𝛼ny) is
irreducible with high probability if 𝛽i , 𝛼i picked at random.

➢ Currently, derandomization of this theorem for sparse polynomials reduces
to ABP PIT.

7



Blackbox factoring

❑ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial
f , black boxes of the irreducible factors of f can be computed in randomized
polynomial time.

➢ Dimension reduction: Randomly project to bivariates.

➢ This works due to an effective version of Hilbert’s irreducibility theorem.

➢ If f (x, z1, . . . , zn) is irreducible, then f (x, 𝛽1 + 𝛼1y, . . . , 𝛽n + 𝛼ny) is
irreducible with high probability if 𝛽i , 𝛼i picked at random.

➢ Currently, derandomization of this theorem for sparse polynomials reduces
to ABP PIT.

7



Blackbox factoring

❑ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial
f , black boxes of the irreducible factors of f can be computed in randomized
polynomial time.

➢ Dimension reduction: Randomly project to bivariates.

➢ This works due to an effective version of Hilbert’s irreducibility theorem.

➢ If f (x, z1, . . . , zn) is irreducible, then f (x, 𝛽1 + 𝛼1y, . . . , 𝛽n + 𝛼ny) is
irreducible with high probability if 𝛽i , 𝛼i picked at random.

➢ Currently, derandomization of this theorem for sparse polynomials reduces
to ABP PIT.

7



Blackbox factoring

❑ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial
f , black boxes of the irreducible factors of f can be computed in randomized
polynomial time.

➢ Dimension reduction: Randomly project to bivariates.

➢ This works due to an effective version of Hilbert’s irreducibility theorem.

➢ If f (x, z1, . . . , zn) is irreducible, then f (x, 𝛽1 + 𝛼1y, . . . , 𝛽n + 𝛼ny) is
irreducible with high probability if 𝛽i , 𝛼i picked at random.

➢ Currently, derandomization of this theorem for sparse polynomials reduces
to ABP PIT.

7



Blackbox factoring

❑ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial
f , black boxes of the irreducible factors of f can be computed in randomized
polynomial time.

➢ Dimension reduction: Randomly project to bivariates.

➢ This works due to an effective version of Hilbert’s irreducibility theorem.

➢ If f (x, z1, . . . , zn) is irreducible, then f (x, 𝛽1 + 𝛼1y, . . . , 𝛽n + 𝛼ny) is
irreducible with high probability if 𝛽i , 𝛼i picked at random.

➢ Currently, derandomization of this theorem for sparse polynomials reduces
to ABP PIT.

7



Blackbox factoring

❑ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial
f , black boxes of the irreducible factors of f can be computed in randomized
polynomial time.

➢ Dimension reduction: Randomly project to bivariates.

➢ This works due to an effective version of Hilbert’s irreducibility theorem.

➢ If f (x, z1, . . . , zn) is irreducible, then f (x, 𝛽1 + 𝛼1y, . . . , 𝛽n + 𝛼ny) is
irreducible with high probability if 𝛽i , 𝛼i picked at random.

➢ Currently, derandomization of this theorem for sparse polynomials reduces
to ABP PIT.

7



Recent advances



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring.

Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Some more closure results

❑ [Oliveira’15]: The class C = is closed under factoring, where C = constant
depth circuits with constant individual degree.

➢ degxi f (x) ≤ r , for each i ∈ [n], sizeCircuit (f ) ≤ s, and depth Δ, and if g | f ,
then sizeCircuit (g) ≤ poly(rr , s), and depth Δ + 5.

❑ [Dutta’18]: f ∈ VPconstant =⇒ sizeCircuit (f ) ≤ poly(n), and degxi (f ) ≤ r , for
some constant r . Then, VPconstant is closed under factoring. Same for
VBPconstant,VNPconstant.

❑ [Dutta-Saxena-Sinhababu’18]: g | f , and deg(f ) = d, then
sizeABP (g) ≤ poly(sizeABP (f ), dO (log d ) ).

➢ Same for VF,VNP.

➢ So, quasipolynomial-VBP (similarly for formula and VNP) are closed
under factoring.

❑ [Chou-Kumar-Solomon’18]: VNP is closed under factoring.

❑ [Sinhababu-Thierauf’21]: VBP is closed under factoring.

8



Factor complexity for border classes

❑ One can ask what happens when C = VP. In particular, if g | f , and f ∈ VP, then
g ∈ VP?

❑ [Bürgisser 03]: VP is closed under factoring.

❑ [Dutta-Saxena-Sinhababu’18]: Quasipoly-VBP, Quasipoly-VNP, Quasipoly-VF
are closed under factoring.

❑ VNP is closed under factoring (implicit in [Chou-Kumar-Solomon’18]).

❑ VBP is closed under factoring (implicit in [Sinhababu-Thierauf’21]).

9



Factor complexity for border classes

❑ One can ask what happens when C = VP.

In particular, if g | f , and f ∈ VP, then
g ∈ VP?

❑ [Bürgisser 03]: VP is closed under factoring.

❑ [Dutta-Saxena-Sinhababu’18]: Quasipoly-VBP, Quasipoly-VNP, Quasipoly-VF
are closed under factoring.

❑ VNP is closed under factoring (implicit in [Chou-Kumar-Solomon’18]).

❑ VBP is closed under factoring (implicit in [Sinhababu-Thierauf’21]).

9



Factor complexity for border classes

❑ One can ask what happens when C = VP. In particular, if g | f , and f ∈ VP, then
g ∈ VP?

❑ [Bürgisser 03]: VP is closed under factoring.

❑ [Dutta-Saxena-Sinhababu’18]: Quasipoly-VBP, Quasipoly-VNP, Quasipoly-VF
are closed under factoring.

❑ VNP is closed under factoring (implicit in [Chou-Kumar-Solomon’18]).

❑ VBP is closed under factoring (implicit in [Sinhababu-Thierauf’21]).

9



Factor complexity for border classes

❑ One can ask what happens when C = VP. In particular, if g | f , and f ∈ VP, then
g ∈ VP?

❑ [Bürgisser 03]: VP is closed under factoring.

❑ [Dutta-Saxena-Sinhababu’18]: Quasipoly-VBP, Quasipoly-VNP, Quasipoly-VF
are closed under factoring.

❑ VNP is closed under factoring (implicit in [Chou-Kumar-Solomon’18]).

❑ VBP is closed under factoring (implicit in [Sinhababu-Thierauf’21]).

9



Factor complexity for border classes

❑ One can ask what happens when C = VP. In particular, if g | f , and f ∈ VP, then
g ∈ VP?

❑ [Bürgisser 03]: VP is closed under factoring.

❑ [Dutta-Saxena-Sinhababu’18]: Quasipoly-VBP, Quasipoly-VNP, Quasipoly-VF
are closed under factoring.

❑ VNP is closed under factoring (implicit in [Chou-Kumar-Solomon’18]).

❑ VBP is closed under factoring (implicit in [Sinhababu-Thierauf’21]).

9



Factor complexity for border classes

❑ One can ask what happens when C = VP. In particular, if g | f , and f ∈ VP, then
g ∈ VP?

❑ [Bürgisser 03]: VP is closed under factoring.

❑ [Dutta-Saxena-Sinhababu’18]: Quasipoly-VBP, Quasipoly-VNP, Quasipoly-VF
are closed under factoring.

❑ VNP is closed under factoring (implicit in [Chou-Kumar-Solomon’18]).

❑ VBP is closed under factoring (implicit in [Sinhababu-Thierauf’21]).

9



Factor complexity for border classes

❑ One can ask what happens when C = VP. In particular, if g | f , and f ∈ VP, then
g ∈ VP?

❑ [Bürgisser 03]: VP is closed under factoring.

❑ [Dutta-Saxena-Sinhababu’18]: Quasipoly-VBP, Quasipoly-VNP, Quasipoly-VF
are closed under factoring.

❑ VNP is closed under factoring (implicit in [Chou-Kumar-Solomon’18]).

❑ VBP is closed under factoring (implicit in [Sinhababu-Thierauf’21]).

9



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).
➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).
➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).
➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).
➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).
➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).
➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



High degree regime

❑ [Kaltofen’87] If f = ge, then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).
➢ e can be as large as 2s, where s = sizeCircuit (f )!

➢ First result which depends on deg(g) instead of deg(f )!

❑ [Factor Conjecture, Bürgisser 03]: If g | f , then
sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(g)).

❑ [Bürgisser 03:] Factor conjecture is true, when one replaces sizeCircuit by
sizeCircuit!

❑ Can we extend [Kaltofen’87] to f = ge1
1 ge2

2 , where both deg(gi ) are
polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu’18]:

Let rad(f ) denotes the square-free part of f , i.e. f =
∏

gei
i , then rad(f ) = ∏

i gi . If
g | f , then sizeCircuit (g) ≤ poly(sizeCircuit (f ), deg(rad(f ))).

10



Newton Iteration

❑ [Oliveira 2016, Dutta-Saxena-Sinhababu’18]: Factoring ≤ root approximation
in power series.

❑ p(x , y) has factor y − q(x) ⇐⇒ p(x , q(x)) = 0.

❑ Approximate root via Newton iteration

yt+1 = yt −
p(x , yt )
p′ (x , yt )

❑ log d iterations, since precision doubles everytime!

❑ A random shift 𝜙 : xi ↦→ 𝛼iy + xi + 𝛽i , makes

𝜙(f (x)) =
∏

i
(y − qi (x)) ,

where qi are power series.

❑ F[[x1, . . . , xn]] is UFD!

11



Newton Iteration

❑ [Oliveira 2016, Dutta-Saxena-Sinhababu’18]: Factoring ≤ root approximation
in power series.

❑ p(x , y) has factor y − q(x) ⇐⇒ p(x , q(x)) = 0.

❑ Approximate root via Newton iteration

yt+1 = yt −
p(x , yt )
p′ (x , yt )

❑ log d iterations, since precision doubles everytime!

❑ A random shift 𝜙 : xi ↦→ 𝛼iy + xi + 𝛽i , makes

𝜙(f (x)) =
∏

i
(y − qi (x)) ,

where qi are power series.

❑ F[[x1, . . . , xn]] is UFD!

11



Newton Iteration

❑ [Oliveira 2016, Dutta-Saxena-Sinhababu’18]: Factoring ≤ root approximation
in power series.

❑ p(x , y) has factor y − q(x) ⇐⇒ p(x , q(x)) = 0.

❑ Approximate root via Newton iteration

yt+1 = yt −
p(x , yt )
p′ (x , yt )

❑ log d iterations, since precision doubles everytime!

❑ A random shift 𝜙 : xi ↦→ 𝛼iy + xi + 𝛽i , makes

𝜙(f (x)) =
∏

i
(y − qi (x)) ,

where qi are power series.

❑ F[[x1, . . . , xn]] is UFD!

11



Newton Iteration

❑ [Oliveira 2016, Dutta-Saxena-Sinhababu’18]: Factoring ≤ root approximation
in power series.

❑ p(x , y) has factor y − q(x) ⇐⇒ p(x , q(x)) = 0.

❑ Approximate root via Newton iteration

yt+1 = yt −
p(x , yt )
p′ (x , yt )

❑ log d iterations, since precision doubles everytime!

❑ A random shift 𝜙 : xi ↦→ 𝛼iy + xi + 𝛽i , makes

𝜙(f (x)) =
∏

i
(y − qi (x)) ,

where qi are power series.

❑ F[[x1, . . . , xn]] is UFD!

11



Newton Iteration

❑ [Oliveira 2016, Dutta-Saxena-Sinhababu’18]: Factoring ≤ root approximation
in power series.

❑ p(x , y) has factor y − q(x) ⇐⇒ p(x , q(x)) = 0.

❑ Approximate root via Newton iteration

yt+1 = yt −
p(x , yt )
p′ (x , yt )

❑ log d iterations, since precision doubles everytime!

❑ A random shift 𝜙 : xi ↦→ 𝛼iy + xi + 𝛽i , makes

𝜙(f (x)) =
∏

i
(y − qi (x)) ,

where qi are power series.

❑ F[[x1, . . . , xn]] is UFD!

11



Newton Iteration

❑ [Oliveira 2016, Dutta-Saxena-Sinhababu’18]: Factoring ≤ root approximation
in power series.

❑ p(x , y) has factor y − q(x) ⇐⇒ p(x , q(x)) = 0.

❑ Approximate root via Newton iteration

yt+1 = yt −
p(x , yt )
p′ (x , yt )

❑ log d iterations, since precision doubles everytime!

❑ A random shift 𝜙 : xi ↦→ 𝛼iy + xi + 𝛽i , makes

𝜙(f (x)) =
∏

i
(y − qi (x)) ,

where qi are power series.

❑ F[[x1, . . . , xn]] is UFD!

11



Newton Iteration

❑ [Oliveira 2016, Dutta-Saxena-Sinhababu’18]: Factoring ≤ root approximation
in power series.

❑ p(x , y) has factor y − q(x) ⇐⇒ p(x , q(x)) = 0.

❑ Approximate root via Newton iteration

yt+1 = yt −
p(x , yt )
p′ (x , yt )

❑ log d iterations, since precision doubles everytime!

❑ A random shift 𝜙 : xi ↦→ 𝛼iy + xi + 𝛽i , makes

𝜙(f (x)) =
∏

i
(y − qi (x)) ,

where qi are power series.

❑ F[[x1, . . . , xn]] is UFD!

11



Related results

❑ [Bhargava-Saraf-Volkovich 20]: If sp(f ) ≤ s, with individual degrees bounded
by r , and g | f , then sp(g) ≤ sO (r2 log n) . This lead to an spoly(r ) log n-time
algorithm for factoring sparse polynomials.

❑ [Koiran-Ressyare’18]: Randomized polynomial-time algorithm to test if
f (x1, . . . , xn) is of the form f (x) = ℓ1 (x)𝛼1 · · · ℓn (x)𝛼n , and if yes, outputs the
linear factors.

❑ [Dutta-Sinhababu-Thierauf, 202X]: If f =
∏

gei
i , where deg(gi ) ≤ r , and

sizeCircuit (f ) = s. Then there is a determinstic poly(sr )-time algorithm that
outputs gi .

12



Related results

❑ [Bhargava-Saraf-Volkovich 20]: If sp(f ) ≤ s, with individual degrees bounded
by r , and g | f , then sp(g) ≤ sO (r2 log n) .

This lead to an spoly(r ) log n-time
algorithm for factoring sparse polynomials.

❑ [Koiran-Ressyare’18]: Randomized polynomial-time algorithm to test if
f (x1, . . . , xn) is of the form f (x) = ℓ1 (x)𝛼1 · · · ℓn (x)𝛼n , and if yes, outputs the
linear factors.

❑ [Dutta-Sinhababu-Thierauf, 202X]: If f =
∏

gei
i , where deg(gi ) ≤ r , and

sizeCircuit (f ) = s. Then there is a determinstic poly(sr )-time algorithm that
outputs gi .

12



Related results

❑ [Bhargava-Saraf-Volkovich 20]: If sp(f ) ≤ s, with individual degrees bounded
by r , and g | f , then sp(g) ≤ sO (r2 log n) . This lead to an spoly(r ) log n-time
algorithm for factoring sparse polynomials.

❑ [Koiran-Ressyare’18]: Randomized polynomial-time algorithm to test if
f (x1, . . . , xn) is of the form f (x) = ℓ1 (x)𝛼1 · · · ℓn (x)𝛼n , and if yes, outputs the
linear factors.

❑ [Dutta-Sinhababu-Thierauf, 202X]: If f =
∏

gei
i , where deg(gi ) ≤ r , and

sizeCircuit (f ) = s. Then there is a determinstic poly(sr )-time algorithm that
outputs gi .

12



Related results

❑ [Bhargava-Saraf-Volkovich 20]: If sp(f ) ≤ s, with individual degrees bounded
by r , and g | f , then sp(g) ≤ sO (r2 log n) . This lead to an spoly(r ) log n-time
algorithm for factoring sparse polynomials.

❑ [Koiran-Ressyare’18]: Randomized polynomial-time algorithm to test if
f (x1, . . . , xn) is of the form f (x) = ℓ1 (x)𝛼1 · · · ℓn (x)𝛼n , and if yes, outputs the
linear factors.

❑ [Dutta-Sinhababu-Thierauf, 202X]: If f =
∏

gei
i , where deg(gi ) ≤ r , and

sizeCircuit (f ) = s. Then there is a determinstic poly(sr )-time algorithm that
outputs gi .

12



Related results

❑ [Bhargava-Saraf-Volkovich 20]: If sp(f ) ≤ s, with individual degrees bounded
by r , and g | f , then sp(g) ≤ sO (r2 log n) . This lead to an spoly(r ) log n-time
algorithm for factoring sparse polynomials.

❑ [Koiran-Ressyare’18]: Randomized polynomial-time algorithm to test if
f (x1, . . . , xn) is of the form f (x) = ℓ1 (x)𝛼1 · · · ℓn (x)𝛼n , and if yes, outputs the
linear factors.

❑ [Dutta-Sinhababu-Thierauf, 202X]: If f =
∏

gei
i , where deg(gi ) ≤ r , and

sizeCircuit (f ) = s. Then there is a determinstic poly(sr )-time algorithm that
outputs gi .

12



Conclusion



Open questions

❑ Given an n-variate degree d polynomial of sparsity ≤ s, test if it is irreducible in
deterministic poly(n, s, d) time.

➢ Challenge: Currently, it requires PIT for symbolic Determinants.

❑ Given two n-variate degree d polynomial of sparsity ≤ s, test if they are
coprime in deterministic poly(n, s, d) time.

➢ Challenge: The resultant of two sparse polynomials may not be sparse.

❑ Show VF is closed under factoring, or come up with candidate counter example!
➢ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

13



Open questions

❑ Given an n-variate degree d polynomial of sparsity ≤ s, test if it is irreducible in
deterministic poly(n, s, d) time.

➢ Challenge: Currently, it requires PIT for symbolic Determinants.

❑ Given two n-variate degree d polynomial of sparsity ≤ s, test if they are
coprime in deterministic poly(n, s, d) time.

➢ Challenge: The resultant of two sparse polynomials may not be sparse.

❑ Show VF is closed under factoring, or come up with candidate counter example!
➢ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

13



Open questions

❑ Given an n-variate degree d polynomial of sparsity ≤ s, test if it is irreducible in
deterministic poly(n, s, d) time.

➢ Challenge: Currently, it requires PIT for symbolic Determinants.

❑ Given two n-variate degree d polynomial of sparsity ≤ s, test if they are
coprime in deterministic poly(n, s, d) time.

➢ Challenge: The resultant of two sparse polynomials may not be sparse.

❑ Show VF is closed under factoring, or come up with candidate counter example!
➢ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

13



Open questions

❑ Given an n-variate degree d polynomial of sparsity ≤ s, test if it is irreducible in
deterministic poly(n, s, d) time.

➢ Challenge: Currently, it requires PIT for symbolic Determinants.

❑ Given two n-variate degree d polynomial of sparsity ≤ s, test if they are
coprime in deterministic poly(n, s, d) time.

➢ Challenge: The resultant of two sparse polynomials may not be sparse.

❑ Show VF is closed under factoring, or come up with candidate counter example!
➢ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

13



Open questions

❑ Given an n-variate degree d polynomial of sparsity ≤ s, test if it is irreducible in
deterministic poly(n, s, d) time.

➢ Challenge: Currently, it requires PIT for symbolic Determinants.

❑ Given two n-variate degree d polynomial of sparsity ≤ s, test if they are
coprime in deterministic poly(n, s, d) time.

➢ Challenge: The resultant of two sparse polynomials may not be sparse.

❑ Show VF is closed under factoring, or come up with candidate counter example!
➢ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

13



Open questions

❑ Given an n-variate degree d polynomial of sparsity ≤ s, test if it is irreducible in
deterministic poly(n, s, d) time.

➢ Challenge: Currently, it requires PIT for symbolic Determinants.

❑ Given two n-variate degree d polynomial of sparsity ≤ s, test if they are
coprime in deterministic poly(n, s, d) time.

➢ Challenge: The resultant of two sparse polynomials may not be sparse.

❑ Show VF is closed under factoring, or come up with candidate counter example!

➢ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

13



Open questions

❑ Given an n-variate degree d polynomial of sparsity ≤ s, test if it is irreducible in
deterministic poly(n, s, d) time.

➢ Challenge: Currently, it requires PIT for symbolic Determinants.

❑ Given two n-variate degree d polynomial of sparsity ≤ s, test if they are
coprime in deterministic poly(n, s, d) time.

➢ Challenge: The resultant of two sparse polynomials may not be sparse.

❑ Show VF is closed under factoring, or come up with candidate counter example!
➢ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

13


	Multivariate Polynomial Factoring: Background
	Classical Factoring results
	Recent advances
	Conclusion

