Polynomial Factorization: Recent advances, and challenges

Pranjal Dutta School of Computing, NUS

10th July, 2023

Algebraic Complexity Theory Workshop @ ICALP 2023

- 1. Multivariate Polynomial Factoring: Background
- 2. CLASSICAL FACTORING RESULTS
- 3. Recent advances
- 4. Conclusion

Multivariate Polynomial Factoring: Background

□ Polynomial factoring is encountered in high school!

Delynomial factoring is encountered in high school!

□ Polynomials can be factored in polynomial time.

- Delynomial factoring is encountered in high school!
- □ Polynomials can be factored in polynomial time.
- □ Factor $f(x) \in \mathbb{Q}[x]$ using LLL algorithm in deterministic polynomial time.

- Delynomial factoring is encountered in high school!
- □ Polynomials can be factored in polynomial time.
- □ Factor $f(x) \in \mathbb{Q}[x]$ using LLL algorithm in deterministic polynomial time.
- □ Factor $f(x) \in \mathbb{F}_q[x]$ using Berlekamp's algorithm.

□ The polynomial ring $\mathbb{F}[x_1, ..., x_n]$ is UFD (Unique Factorization Domain).

D The polynomial ring $\mathbb{F}[x_1, \ldots, x_n]$ is UFD (Unique Factorization Domain).

FACTORIZATION OF A POLYNOMIAL

Let *f* be a polynomial of degree *d* that has 'size' *s* in some class *C*. Let $f(\mathbf{x}) = \prod_{i=1}^{m} f_i^{e_i}$, where the polynomials f_i are its irreducible factors over \mathbb{F} . Output each f_i , in some related class \mathcal{D} .

□ The polynomial ring $\mathbb{F}[x_1, ..., x_n]$ is UFD (Unique Factorization Domain).

FACTORIZATION OF A POLYNOMIAL

Let *f* be a polynomial of degree *d* that has 'size' *s* in some class *C*. Let $f(\mathbf{x}) = \prod_{i=1}^{m} f_i^{e_i}$, where the polynomials f_i are its irreducible factors over \mathbb{F} . Output each f_i , in some related class \mathcal{D} .

FACTOR SIZE BOUND: Do all its factors have poly(s, d) size in \mathcal{D} ?

□ The polynomial ring $\mathbb{F}[x_1, ..., x_n]$ is UFD (Unique Factorization Domain).

FACTORIZATION OF A POLYNOMIAL

Let *f* be a polynomial of degree *d* that has 'size' *s* in some class *C*. Let $f(\mathbf{x}) = \prod_{i=1}^{m} f_{i}^{e_{i}}$, where the polynomials f_{i} are its irreducible factors over \mathbb{F} . Output each f_{i} , in some related class \mathcal{D} .

FACTOR SIZE BOUND: Do all its factors have poly(s, d) size in \mathcal{D} ?

EFFICIENT ALGORITHM: Design an 'efficient' algorithm to compute the irreducible factors.

□ The polynomial ring $\mathbb{F}[x_1, ..., x_n]$ is UFD (Unique Factorization Domain).

FACTORIZATION OF A POLYNOMIAL

Let *f* be a polynomial of degree *d* that has 'size' *s* in some class *C*. Let $f(\mathbf{x}) = \prod_{i=1}^{m} f_i^{e_i}$, where the polynomials f_i are its irreducible factors over \mathbb{F} . Output each f_i , in some related class \mathcal{D} .

FACTOR SIZE BOUND: Do all its factors have poly(s, d) size in \mathcal{D} ?

- □ EFFICIENT ALGORITHM: Design an 'efficient' algorithm to compute the irreducible factors.
- □ Factor of a polynomial can be more "complex" than the polynomial itself.

D The polynomial ring $\mathbb{F}[x_1, \ldots, x_n]$ is UFD (Unique Factorization Domain).

FACTORIZATION OF A POLYNOMIAL

Let *f* be a polynomial of degree *d* that has 'size' *s* in some class *C*. Let $f(\mathbf{x}) = \prod_{i=1}^{m} f_i^{e_i}$, where the polynomials f_i are its irreducible factors over \mathbb{F} . Output each f_i , in some related class \mathcal{D} .

FACTOR SIZE BOUND: Do all its factors have poly(s, d) size in \mathcal{D} ?

- **EFFICIENT ALGORITHM:** Design an 'efficient' algorithm to compute the irreducible factors.
- □ Factor of a polynomial can be more "complex" than the polynomial itself.

□ For example, $\prod_{i=1}^{n} (x_i^d - 1)$ has sparsity 2^n . But its factor $\prod_{i=1}^{n} (1 + x_i + ... + x_i^{d-1})$ has sparsity $d^n = (2^n)^{\log d}$.

□ The polynomial ring $\mathbb{F}[x_1, ..., x_n]$ is UFD (Unique Factorization Domain).

FACTORIZATION OF A POLYNOMIAL

Let *f* be a polynomial of degree *d* that has 'size' *s* in some class *C*. Let $f(\mathbf{x}) = \prod_{i=1}^{m} f_i^{e_i}$, where the polynomials f_i are its irreducible factors over \mathbb{F} . Output each f_i , in some related class \mathcal{D} .

FACTOR SIZE BOUND: Do all its factors have poly(s, d) size in \mathcal{D} ?

- **EFFICIENT ALGORITHM:** Design an 'efficient' algorithm to compute the irreducible factors.
- □ Factor of a polynomial can be more "complex" than the polynomial itself.

□ For example, $\prod_{i=1}^{n} (x_i^d - 1)$ has sparsity 2^n . But its factor $\prod_{i=1}^{n} (1 + x_i + ... + x_i^{d-1})$ has sparsity $d^n = (2^n)^{\log d}$.

 \Box When $C = \mathcal{D}$, then C is closed under factoring.

□ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:

- □ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:
 - ➤ Let the degree of each variable in *f* is $\leq d$. Apply Kronecker substitution $\phi: x_i \mapsto z^{(d+1)^{i-1}}$.

- □ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:
 - ⇒ Let the degree of each variable in *f* is ≤ *d*. Apply Kronecker substitution $\phi : x_i \mapsto z^{(d+1)^{i-1}}$.

> Each monomial in f uniquely maps to a monomial in $\phi(f)$.

- □ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:
 - ⇒ Let the degree of each variable in *f* is ≤ *d*. Apply Kronecker substitution $\phi : x_i \mapsto z^{(d+1)^{i-1}}$.
 - > Each monomial in f uniquely maps to a monomial in $\phi(f)$.
 - > Factorize $\phi(f)$ into univariate irreducible factors.

- □ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:
 - ⇒ Let the degree of each variable in *f* is ≤ *d*. Apply Kronecker substitution $\phi : x_i \mapsto z^{(d+1)^{i-1}}$.
 - > Each monomial in f uniquely maps to a monomial in $\phi(f)$.
 - > Factorize $\phi(f)$ into univariate irreducible factors.
 - > Though g is irreducible, $\phi(g)$ may not be irreducible.

- □ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:
 - ⇒ Let the degree of each variable in *f* is ≤ *d*. Apply Kronecker substitution $\phi : x_i \mapsto z^{(d+1)^{i-1}}$.
 - > Each monomial in f uniquely maps to a monomial in $\phi(f)$.
 - > Factorize $\phi(f)$ into univariate irreducible factors.
 - > Though g is irreducible, $\phi(g)$ may not be irreducible.
 - > Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.

- □ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:
 - ⇒ Let the degree of each variable in *f* is ≤ *d*. Apply Kronecker substitution $\phi : x_i \mapsto z^{(d+1)^{i-1}}$.
 - > Each monomial in f uniquely maps to a monomial in $\phi(f)$.
 - > Factorize $\phi(f)$ into univariate irreducible factors.
 - > Though g is irreducible, $\phi(g)$ may not be irreducible.
 - > Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
 - Try all subsets. Apply inverse Kronecker and check if the polynomial divides f. [Check by Resultant].

- □ Multivariate factoring $f(\mathbf{x}) = g(\mathbf{x}) \cdot h(\mathbf{x})$ can be reduced to univariate factoring via *Kronecker* substitution:
 - ⇒ Let the degree of each variable in *f* is ≤ *d*. Apply Kronecker substitution $\phi : x_i \mapsto z^{(d+1)^{i-1}}$.
 - > Each monomial in f uniquely maps to a monomial in $\phi(f)$.
 - > Factorize $\phi(f)$ into univariate irreducible factors.
 - > Though g is irreducible, $\phi(g)$ may not be irreducible.
 - > Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
 - Try all subsets. Apply inverse Kronecker and check if the polynomial divides f. [Check by Resultant].
 - > Time complexity: Exponential in degree in worst-case (even for bivariates).

CLASSICAL FACTORING RESULTS

□ Let us fix algebraic circuit as the model and size_{Circuit} denotes the circuit size.

EFFICIENT CIRCUIT FACTORING [Kaltofen 1986] $g \mid f \implies \text{size}_{\text{Circuit}}(g) \le \text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f)).$ □ Let us fix algebraic circuit as the model and size_{Circuit} denotes the circuit size.

EFFICIENT CIRCUIT FACTORING [Kaltofen 1986]

 $g \mid f \implies \text{size}_{\text{Circuit}}(g) \le \text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$. Moreover, there is a randomized $\text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$ -time algorithm that outputs every irreducible factor.

 \Box Let us fix algebraic circuit as the model and size_{Circuit} denotes the circuit size.

EFFICIENT CIRCUIT FACTORING [Kaltofen 1986]

 $g \mid f \implies \text{size}_{\text{Circuit}}(g) \le \text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$. Moreover, there is a randomized $\text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$ -time algorithm that outputs every irreducible factor.

□ VP is closed under factoring.

□ Let us fix algebraic circuit as the model and size_{Circuit} denotes the circuit size.

EFFICIENT CIRCUIT FACTORING [Kaltofen 1986]

 $g \mid f \implies \text{size}_{\text{Circuit}}(g) \le \text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$. Moreover, there is a randomized $\text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$ -time algorithm that outputs every irreducible factor.

□ VP is closed under factoring.

TOOLS: Newton iteration/ Hensel lifting, Linear System Solving.

□ Let us fix algebraic circuit as the model and size_{Circuit} denotes the circuit size.

EFFICIENT CIRCUIT FACTORING [Kaltofen 1986]

 $g \mid f \implies \text{size}_{\text{Circuit}}(g) \le \text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$. Moreover, there is a randomized $\text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$ -time algorithm that outputs every irreducible factor.

□ VP is closed under factoring.

TOOLS: Newton iteration/ Hensel lifting, Linear System Solving.

□ GOAL: Extend Kaltofen's result for formulas, constant depth circuits, algebraic branching programs (ABPs), high-degree regime etc.

Let us fix algebraic circuit as the model and size_{Circuit} denotes the circuit size.

EFFICIENT CIRCUIT FACTORING [Kaltofen 1986]

 $g \mid f \implies \text{size}_{\text{Circuit}}(g) \le \text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$. Moreover, there is a randomized $\text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$ -time algorithm that outputs every irreducible factor.

□ VP is closed under factoring.

TOOLS: Newton iteration/ Hensel lifting, Linear System Solving.

- □ GOAL: Extend Kaltofen's result for formulas, constant depth circuits, algebraic branching programs (ABPs), high-degree regime etc.
- □ What happens if we only care about just the query/blackbox complexity?

□ Let us fix algebraic circuit as the model and size_{Circuit} denotes the circuit size.

EFFICIENT CIRCUIT FACTORING [Kaltofen 1986]

 $g \mid f \implies \text{size}_{\text{Circuit}}(g) \le \text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$. Moreover, there is a randomized $\text{poly}(\text{size}_{\text{Circuit}}(f), \text{deg}(f))$ -time algorithm that outputs every irreducible factor.

□ VP is closed under factoring.

TOOLS: Newton iteration/ Hensel lifting, Linear System Solving.

- □ GOAL: Extend Kaltofen's result for formulas, constant depth circuits, algebraic branching programs (ABPs), high-degree regime etc.
- □ What happens if we only care about just the query/blackbox complexity?
- □ APPLICATION: *Hardness versus randomness* in algebraic complexity [KI'03, Agrawal'05]; *possible separation* of complexity classes.

Applications

□ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \implies Quasi-poly blackbox *deterministic PIT* for circuits.

- □ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \implies Quasi-poly blackbox *deterministic PIT* for circuits.
- □ [Possible separation]: If *C* is not closed under factoring, then $C \neq VP$.
- □ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \implies Quasi-poly blackbox *deterministic PIT* for circuits.
- **D** [Possible separation]: If *C* is not closed under factoring, then $C \neq VP$.
- □ Can we show that $VP \neq VNP$, VBP, VF via factoring?!

- □ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \implies Quasi-poly blackbox *deterministic PIT* for circuits.
- **D** [Possible separation]: If *C* is not closed under factoring, then $C \neq VP$.
- □ Can we show that $VP \neq VNP$, VBP, VF via factoring?!
- □ [HARDNESS OF MULTIPLES]: If factors of *C* are in class \mathcal{D} , and *f* is hard for \mathcal{D} , all its nonzero multiples of *f* are *hard* for *C*!

- □ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \implies Quasi-poly blackbox *deterministic PIT* for circuits.
- □ [Possible separation]: If *C* is not closed under factoring, then $C \neq VP$.
- □ Can we show that $VP \neq VNP$, VBP, VF via factoring?!
- □ [HARDNESS OF MULTIPLES]: If factors of *C* are in class \mathcal{D} , and *f* is hard for \mathcal{D} , all its nonzero multiples of *f* are *hard* for *C*!
 - > Take $C = \mathcal{D} = VP$. If $VP \neq VNP$, any polynomial-degree multiple of perm_n is also hard for VP.

- □ [Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \implies Quasi-poly blackbox *deterministic PIT* for circuits.
- □ [Possible separation]: If *C* is not closed under factoring, then $C \neq VP$.
- □ Can we show that $VP \neq VNP$, VBP, VF via factoring?!
- □ [HARDNESS OF MULTIPLES]: If factors of *C* are in class \mathcal{D} , and *f* is hard for \mathcal{D} , all its nonzero multiples of *f* are *hard* for *C*!
 - > Take $C = \mathcal{D} = VP$. If $VP \neq VNP$, any polynomial-degree multiple of perm_n is also hard for VP.
- □ [KSS'14]: Derandomizing circuit-factoring *is equivalent to* derandomizing circuit-PIT.

□ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial *f*, black boxes of the irreducible factors of *f* can be computed in randomized polynomial time.

- □ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial *f*, black boxes of the irreducible factors of *f* can be computed in randomized polynomial time.
 - > DIMENSION REDUCTION: Randomly project to bivariates.

- □ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial *f*, black boxes of the irreducible factors of *f* can be computed in randomized polynomial time.
 - > DIMENSION REDUCTION: Randomly project to bivariates.
 - > This works due to an effective version of **Hilbert's irreducibility theorem**.

- □ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial *f*, black boxes of the irreducible factors of *f* can be computed in randomized polynomial time.
 - > DIMENSION REDUCTION: Randomly project to bivariates.
 - > This works due to an effective version of **Hilbert's irreducibility theorem**.
 - > If $f(x, z_1, ..., z_n)$ is irreducible, then $f(x, \beta_1 + \alpha_1 y, ..., \beta_n + \alpha_n y)$ is irreducible with high probability if β_i, α_i picked at random.

- □ [Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial *f*, black boxes of the irreducible factors of *f* can be computed in randomized polynomial time.
 - > DIMENSION REDUCTION: Randomly project to bivariates.
 - > This works due to an effective version of **Hilbert's irreducibility theorem**.
 - > If $f(x, z_1, ..., z_n)$ is irreducible, then $f(x, \beta_1 + \alpha_1 y, ..., \beta_n + \alpha_n y)$ is irreducible with high probability if β_i, α_i picked at random.
 - Currently, derandomization of this theorem for sparse polynomials reduces to ABP PIT.

RECENT ADVANCES

□ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.

- □ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.
 - → deg_{*x_i*} $f(\mathbf{x}) \le r$, for each $i \in [n]$, size_{Circuit} $(f) \le s$, and depth Δ, and if $g \mid f$, then size_{Circuit} $(g) \le poly(r^r, s)$, and depth Δ + 5.

- □ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.
 - → deg_{Xi} $f(\mathbf{x}) \le r$, for each $i \in [n]$, size_{Circuit} $(f) \le s$, and depth Δ, and if $g \mid f$, then size_{Circuit} $(g) \le poly(r^r, s)$, and depth Δ + 5.
- □ [Dutta'18]: $f \in \mathsf{VP}_{constant} \implies \operatorname{size}_{\operatorname{Circuit}}(f) \le \operatorname{poly}(n)$, and $\deg_{x_i}(f) \le r$, for some constant *r*. Then, $\mathsf{VP}_{constant}$ is *closed under factoring*.

- □ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.
 - → deg_{*X_i*} $f(\mathbf{x}) \le r$, for each $i \in [n]$, size_{Circuit} $(f) \le s$, and depth Δ, and if $g \mid f$, then size_{Circuit} $(g) \le poly(r^r, s)$, and depth Δ + 5.
- □ [Dutta'18]: $f \in VP_{constant} \implies size_{Circuit}(f) \le poly(n)$, and deg_{*xi*}(*f*) ≤ *r*, for some constant *r*. Then, VP_{constant} is *closed under factoring*. Same for VBP_{constant}, VNP_{constant}.

- □ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.
 - → deg_{Xi} $f(\mathbf{x}) \le r$, for each $i \in [n]$, size_{Circuit} $(f) \le s$, and depth Δ, and if $g \mid f$, then size_{Circuit} $(g) \le poly(r^r, s)$, and depth Δ + 5.
- □ [Dutta'18]: $f \in VP_{constant} \implies size_{Circuit}(f) \le poly(n)$, and deg_{*xi*}(*f*) ≤ *r*, for some constant *r*. Then, VP_{constant} is *closed under factoring*. Same for VBP_{constant}, VNP_{constant}.
- □ [Dutta-Saxena-Sinhababu'18]: g | f, and deg(f) = d, then size_{ABP} $(g) \le poly(size_{ABP}(f), d^{O(\log d)})$.
 - ➤ Same for VF, VNP.

- □ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.
 - → deg_{*X_i*} $f(\mathbf{x}) \le r$, for each $i \in [n]$, size_{Circuit} $(f) \le s$, and depth Δ, and if $g \mid f$, then size_{Circuit} $(g) \le poly(r^r, s)$, and depth Δ + 5.
- □ [Dutta'18]: $f \in VP_{constant} \implies size_{Circuit}(f) \le poly(n)$, and deg_{*xi*}(*f*) ≤ *r*, for some constant *r*. Then, VP_{constant} is *closed under factoring*. Same for VBP_{constant}, VNP_{constant}.
- □ [Dutta-Saxena-Sinhababu'18]: g | f, and deg(f) = d, then size_{ABP} $(g) \le poly(size_{ABP}(f), d^{O(\log d)})$.
 - ➤ Same for VF, VNP.
 - So, quasipolynomial-VBP (similarly for formula and VNP) are closed under factoring.

- □ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.
 - → deg_{Xi} $f(\mathbf{x}) \le r$, for each $i \in [n]$, size_{Circuit} $(f) \le s$, and depth Δ, and if $g \mid f$, then size_{Circuit} $(g) \le poly(r^r, s)$, and depth Δ + 5.
- □ [Dutta'18]: $f \in VP_{constant} \implies size_{Circuit}(f) \le poly(n)$, and deg_{*xi*}(*f*) ≤ *r*, for some constant *r*. Then, VP_{constant} is *closed under factoring*. Same for VBP_{constant}, VNP_{constant}.
- □ [Dutta-Saxena-Sinhababu'18]: g | f, and deg(f) = d, then size_{ABP} $(g) \le poly(size_{ABP}(f), d^{O(\log d)})$.
 - ➤ Same for VF, VNP.
 - So, quasipolynomial-VBP (similarly for formula and VNP) are closed under factoring.
- □ [Chou-Kumar-Solomon'18]: VNP is closed under factoring.

- □ [Oliveira'15]: The class C = is *closed under factoring*, where C = constant depth circuits with constant individual degree.
 - → deg_{Xi} $f(\mathbf{x}) \le r$, for each $i \in [n]$, size_{Circuit} $(f) \le s$, and depth Δ, and if $g \mid f$, then size_{Circuit} $(g) \le poly(r^r, s)$, and depth Δ + 5.
- □ [Dutta'18]: $f \in VP_{constant} \implies size_{Circuit}(f) \le poly(n)$, and deg_{*xi*}(*f*) ≤ *r*, for some constant *r*. Then, VP_{constant} is *closed under factoring*. Same for VBP_{constant}, VNP_{constant}.
- □ [Dutta-Saxena-Sinhababu'18]: g | f, and deg(f) = d, then size_{ABP} $(g) \le poly(size_{ABP}(f), d^{O(\log d)})$.
 - ➤ Same for VF, VNP.
 - So, quasipolynomial-VBP (similarly for formula and VNP) are closed under factoring.
- □ [Chou-Kumar-Solomon'18]: VNP is closed under factoring.
- □ [Sinhababu-Thierauf'21]: VBP is closed under factoring.

 \Box One can ask what happens when $C = \overline{VP}$.

□ One can ask what happens when $C = \overline{VP}$. In particular, if $g \mid f$, and $f \in \overline{VP}$, then $g \in \overline{VP}$?

□ One can ask what happens when $C = \overline{VP}$. In particular, if $g \mid f$, and $f \in \overline{VP}$, then $g \in \overline{VP}$?

\Box [Bürgisser 03]: \overline{VP} is closed under factoring.

- □ One can ask what happens when $C = \overline{VP}$. In particular, if $g \mid f$, and $f \in \overline{VP}$, then $g \in \overline{VP}$?
- **\Box** [Bürgisser 03]: \overline{VP} is closed under factoring.
- □ [Dutta-Saxena-Sinhababu'18]: Quasipoly-VBP, Quasipoly-VP, Quasipoly-VF are *closed under factoring*.

- □ One can ask what happens when $C = \overline{VP}$. In particular, if $g \mid f$, and $f \in \overline{VP}$, then $g \in \overline{VP}$?
- **\Box** [Bürgisser 03]: \overline{VP} is closed under factoring.
- □ [Dutta-Saxena-Sinhababu'18]: Quasipoly-VBP, Quasipoly-VP, Quasipoly-VF are *closed under factoring*.
- □ VNP is *closed under factoring* (implicit in [Chou-Kumar-Solomon'18]).

- □ One can ask what happens when $C = \overline{VP}$. In particular, if $g \mid f$, and $f \in \overline{VP}$, then $g \in \overline{VP}$?
- **\Box** [Bürgisser 03]: \overline{VP} is closed under factoring.
- □ [Dutta-Saxena-Sinhababu'18]: Quasipoly-VBP, Quasipoly-VP, Quasipoly-VF are *closed under factoring*.
- □ VNP is *closed under factoring* (implicit in [Chou-Kumar-Solomon'18]).
- **VBP** is *closed under factoring* (implicit in [Sinhababu-Thierauf'21]).

□ [Kaltofen'87] If $f = g^e$, then size_{Circuit} $(g) \le poly(size_{Circuit}(f), deg(g))$.

□ [Kaltofen'87] If $f = g^e$, then size_{Circuit} $(g) \le poly(size_{Circuit}(f), deg(g))$.

→ *e* can be as large as 2^s , where $s = size_{Circuit}(f)!$

□ [Kaltofen'87] If $f = g^e$, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).

> e can be as large as 2^s , where $s = \text{size}_{\text{Circuit}}(f)$!

> First result which depends on deg(g) instead of deg(f)!

- □ [Kaltofen'87] If $f = g^e$, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).
 - ▶ *e* can be as large as 2^s , where $s = size_{Circuit}(f)!$
 - > First result which depends on deg(g) instead of deg(f)!
- □ [FACTOR CONJECTURE, Bürgisser 03]: If g | f, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).

- □ [Kaltofen'87] If $f = g^e$, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).
 - ▶ *e* can be as large as 2^s , where $s = size_{Circuit}(f)!$
 - > First result which depends on deg(g) instead of deg(f)!
- □ [FACTOR CONJECTURE, Bürgisser 03]: If g | f, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).
- $\Box \quad [Bürgisser 03:] \text{ Factor conjecture is } true, \text{ when one replaces } size_{Circuit} \text{ by } size_{Circuit}!$

- □ [Kaltofen'87] If $f = g^e$, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).
 - > e can be as large as 2^s , where $s = size_{Circuit}(f)!$
 - > First result which depends on deg(g) instead of deg(f)!
- □ [FACTOR CONJECTURE, Bürgisser 03]: If g | f, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).
- $\Box \quad [Bürgisser 03:] \text{ Factor conjecture is } true, \text{ when one replaces } size_{Circuit} \text{ by } size_{Circuit}!$
- □ Can we extend [Kaltofen'87] to $f = g_1^{e_1} g_2^{e_2}$, where both deg(g_i) are polynomially bounded?

- □ [Kaltofen'87] If $f = g^e$, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).
 - ▶ *e* can be as large as 2^s , where $s = size_{Circuit}(f)!$
 - > First result which depends on deg(g) instead of deg(f)!
- □ [FACTOR CONJECTURE, Bürgisser 03]: If g | f, then size_{Circuit}(g) ≤ poly(size_{Circuit}(f), deg(g)).
- $\Box \quad [Bürgisser 03:] \text{ Factor conjecture is } true, \text{ when one replaces } size_{Circuit} \text{ by } size_{Circuit}!$

□ Can we extend [Kaltofen'87] to $f = g_1^{e_1} g_2^{e_2}$, where both deg(g_i) are polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu'18]:

Let rad(*f*) denotes the *square-free part* of *f*, i.e. $f = \prod g_i^{e_i}$, then rad(*f*) = $\prod_i g_i$. If $g \mid f$, then size_{Circuit}(g) \leq poly(size_{Circuit}(f), deg(rad(f))).
□ [Oliveira 2016, Dutta-Saxena-Sinhababu'18]: Factoring ≤ root approximation in power series.

- □ [Oliveira 2016, Dutta-Saxena-Sinhababu'18]: Factoring ≤ root approximation in power series.
- $\square p(\mathbf{x}, y)$ has factor $y q(\mathbf{x}) \iff p(\mathbf{x}, q(\mathbf{x})) = 0.$

- □ [Oliveira 2016, Dutta-Saxena-Sinhababu'18]: Factoring ≤ root approximation in power series.
- $\square p(\mathbf{x}, \mathbf{y})$ has factor $\mathbf{y} q(\mathbf{x}) \iff p(\mathbf{x}, q(\mathbf{x})) = 0.$

$$y_{t+1} = y_t - \frac{p(x, y_t)}{p'(x, y_t)}$$

- □ [Oliveira 2016, Dutta-Saxena-Sinhababu'18]: Factoring ≤ root approximation in power series.
- $\square p(\mathbf{x}, \mathbf{y})$ has factor $\mathbf{y} q(\mathbf{x}) \iff p(\mathbf{x}, q(\mathbf{x})) = 0.$

$$y_{t+1} = y_t - \frac{p(x, y_t)}{p'(x, y_t)}$$

 \Box log *d* iterations, since precision doubles everytime!

- □ [Oliveira 2016, Dutta-Saxena-Sinhababu'18]: Factoring ≤ root approximation in power series.
- $\square p(\mathbf{x}, \mathbf{y})$ has factor $\mathbf{y} q(\mathbf{x}) \iff p(\mathbf{x}, q(\mathbf{x})) = 0.$

$$y_{t+1} = y_t - \frac{p(\mathbf{x}, y_t)}{p'(\mathbf{x}, y_t)}$$

 \Box log *d* iterations, since precision doubles everytime!

 \Box A random shift $\phi : x_i \mapsto \alpha_i y + x_i + \beta_i$, makes

$$\phi(f(\boldsymbol{x})) = \prod_{i} (y - q_i(\boldsymbol{x})) ,$$

where q_i are power series.

- □ [Oliveira 2016, Dutta-Saxena-Sinhababu'18]: Factoring ≤ root approximation in power series.
- $\square p(\mathbf{x}, \mathbf{y})$ has factor $\mathbf{y} q(\mathbf{x}) \iff p(\mathbf{x}, q(\mathbf{x})) = 0.$

$$y_{t+1} = y_t - \frac{p(\mathbf{x}, y_t)}{p'(\mathbf{x}, y_t)}$$

 \Box log *d* iterations, since precision doubles everytime!

 \Box A random shift $\phi : x_i \mapsto \alpha_i y + x_i + \beta_i$, makes

$$\phi(f(\boldsymbol{x})) = \prod_{i} (y - q_i(\boldsymbol{x})) ,$$

where q_i are power series.

 $\square \mathbb{F}[[x_1,\ldots,x_n]]$ is UFD!

□ [Bhargava-Saraf-Volkovich 20]: If $sp(f) \le s$, with individual degrees bounded by *r*, and *g* | *f*, then $sp(g) \le s^{O(r^2 \log n)}$.

□ [Bhargava-Saraf-Volkovich 20]: If $sp(f) \le s$, with individual degrees bounded by *r*, and *g* | *f*, then $sp(g) \le s^{O(r^2 \log n)}$. This lead to an $s^{poly(r) \log n}$ -time algorithm for factoring sparse polynomials.

- □ [Bhargava-Saraf-Volkovich 20]: If $sp(f) \le s$, with individual degrees bounded by *r*, and *g* | *f*, then $sp(g) \le s^{O(r^2 \log n)}$. This lead to an $s^{poly(r) \log n}$ -time algorithm for factoring sparse polynomials.
- □ [Koiran-Ressyare'18]: Randomized polynomial-time algorithm to test if $f(x_1, ..., x_n)$ is of the form $f(x) = \ell_1(x)^{\alpha_1} \cdots \ell_n(x)^{\alpha_n}$, and if yes, outputs the linear factors.

- □ [Bhargava-Saraf-Volkovich 20]: If $sp(f) \le s$, with individual degrees bounded by *r*, and *g* | *f*, then $sp(g) \le s^{O(r^2 \log n)}$. This lead to an $s^{poly(r) \log n}$ -time algorithm for factoring sparse polynomials.
- □ [Koiran-Ressyare'18]: Randomized polynomial-time algorithm to test if $f(x_1, ..., x_n)$ is of the form $f(x) = \ell_1(x)^{\alpha_1} \cdots \ell_n(x)^{\alpha_n}$, and if yes, outputs the linear factors.
- □ [Dutta-Sinhababu-Thierauf, 202X]: If $f = \prod g_i^{e_i}$, where deg $(g_i) \le r$, and size_{Circuit}(f) = s. Then there is a *deterministic* poly (s^r) -time algorithm that outputs g_i .

CONCLUSION

□ Given an *n*-variate degree *d* polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly(*n*, *s*, *d*) time.

□ Given an *n*-variate degree *d* polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly(*n*, *s*, *d*) time.

> CHALLENGE: Currently, it requires PIT for symbolic Determinants.

- □ Given an *n*-variate degree *d* polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly(*n*, *s*, *d*) time.
 - > CHALLENGE: Currently, it requires PIT for symbolic Determinants.
- □ Given two *n*-variate degree *d* polynomial of sparsity $\leq s$, test if they are coprime in deterministic poly(*n*, *s*, *d*) time.

- □ Given an *n*-variate degree *d* polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly(*n*, *s*, *d*) time.
 - > CHALLENGE: Currently, it requires PIT for symbolic Determinants.
- □ Given two *n*-variate degree *d* polynomial of sparsity ≤ *s*, test if they are coprime in deterministic poly(*n*, *s*, *d*) time.
 - > CHALLENGE: The resultant of two sparse polynomials may not be sparse.

- □ Given an *n*-variate degree *d* polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly(*n*, *s*, *d*) time.
 - > CHALLENGE: Currently, it requires PIT for symbolic Determinants.
- □ Given two *n*-variate degree *d* polynomial of sparsity ≤ *s*, test if they are coprime in deterministic poly(*n*, *s*, *d*) time.

> CHALLENGE: The resultant of two sparse polynomials may not be sparse.

□ Show VF is closed under factoring, or come up with candidate counter example!

- □ Given an *n*-variate degree *d* polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly(*n*, *s*, *d*) time.
 - > CHALLENGE: Currently, it requires PIT for symbolic Determinants.
- □ Given two *n*-variate degree *d* polynomial of sparsity ≤ *s*, test if they are coprime in deterministic poly(*n*, *s*, *d*) time.
 - > CHALLENGE: The resultant of two sparse polynomials may not be sparse.
- Show VF is closed under factoring, or come up with candidate counter example!
 CHALLENGE: Determinant *does not* have small arithmetic formulas!

Thank you! Questions?