Polynomial Factorization: Recent advances, and challenges

Pranjal Dutta
School of Computing, NUS

$10^{\text {th }}$ July, 2023
Algebraic Complexity Theory Workshop @ ICALP 2023

Table of Contents

1. Multivariate Polynomial Factoring: Background
2. Classical Factoring results
3. Recent advances
4. Conclusion

Multivariate Polynomial Factoring: Background

Factoring Univariates

Polynomial factoring is encountered in high school!

Factoring Univariates

Polynomial factoring is encountered in high school!
Polynomials can be factored in polynomial time.

Factoring Univariates

Polynomial factoring is encountered in high school!
Polynomials can be factored in polynomial time.
Factor $f(x) \in \mathbb{Q}[x]$ using LLL algorithm in deterministic polynomial time.

Factoring Univariates

Polynomial factoring is encountered in high school!
Polynomials can be factored in polynomial time.
Factor $f(x) \in \mathbb{Q}[x]$ using LLL algorithm in deterministic polynomial time.

- Factor $f(x) \in \mathbb{F}_{q}[x]$ using Berlekamp's algorithm.

Complexity of Multivariate Factoring

Complexity of Multivariate Factoring

The polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is UFD (Unique Factorization Domain).

Complexity of Multivariate Factoring

The polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is UFD (Unique Factorization Domain).

Factorization of a polynomial

Let f be a polynomial of degree d that has 'size' s in some class C. Let $f(\boldsymbol{x})=\prod_{i=1}^{m} f_{i}^{e_{i}}$, where the polynomials f_{i} are its irreducible factors over \mathbb{F}. Output each f_{i}, in some related class \mathcal{D}.

Complexity of Multivariate Factoring

The polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is UFD (Unique Factorization Domain).

Factorization of a polynomial

Let f be a polynomial of degree d that has 'size' s in some class C. Let $f(\boldsymbol{x})=\prod_{i=1}^{m} f_{i}^{e_{i}}$, where the polynomials f_{i} are its irreducible factors over \mathbb{F}. Output each f_{i}, in some related class \mathcal{D}.
\square Factor size bound: Do all its factors have poly (s, d) size in \mathcal{D} ?

Complexity of Multivariate Factoring

The polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is UFD (Unique Factorization Domain).

Factorization of a polynomial

Let f be a polynomial of degree d that has 'size' s in some class C. Let $f(\boldsymbol{x})=\prod_{i=1}^{m} f_{i}^{e_{i}}$, where the polynomials f_{i} are its irreducible factors over \mathbb{F}. Output each f_{i}, in some related class \mathcal{D}.

Factor size bound: Do all its factors have poly (s, d) size in \mathcal{D} ?
Efficient algorithm: Design an 'efficient' algorithm to compute the irreducible factors.

Complexity of Multivariate Factoring

The polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is UFD (Unique Factorization Domain).

Factorization of a polynomial

Let f be a polynomial of degree d that has 'size' s in some class C. Let $f(\boldsymbol{x})=\prod_{i=1}^{m} f_{i}^{e_{i}}$, where the polynomials f_{i} are its irreducible factors over \mathbb{F}. Output each f_{i}, in some related class \mathcal{D}.

Factor size bound: Do all its factors have poly (s, d) size in \mathcal{D} ?

Efficient algorithm: Design an 'efficient' algorithm to compute the irreducible factors.

Factor of a polynomial can be more "complex" than the polynomial itself.

The polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is UFD (Unique Factorization Domain).

Factorization of a polynomial

Let f be a polynomial of degree d that has 'size' s in some class C. Let $f(\boldsymbol{x})=\prod_{i=1}^{m} f_{i}^{e_{i}}$, where the polynomials f_{i} are its irreducible factors over \mathbb{F}. Output each f_{i}, in some related class \mathcal{D}.

Factor size bound: Do all its factors have poly (s, d) size in \mathcal{D} ?
E Efficient algorithm: Design an 'efficient' algorithm to compute the irreducible factors.

Factor of a polynomial can be more "complex" than the polynomial itself.

- For example, $\prod_{i=1}^{n}\left(x_{i}^{d}-1\right)$ has sparsity 2^{n}. But its factor $\prod_{i=1}^{n}\left(1+x_{i}+\ldots+x_{i}^{d-1}\right)$ has sparsity $d^{n}=\left(2^{n}\right)^{\log d}$.

The polynomial ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is UFD (Unique Factorization Domain).

Factorization of a polynomial

Let f be a polynomial of degree d that has 'size' s in some class C. Let $f(\boldsymbol{x})=\prod_{i=1}^{m} f_{i}^{e_{i}}$, where the polynomials f_{i} are its irreducible factors over \mathbb{F}. Output each f_{i}, in some related class \mathcal{D}.

Factor size bound: Do all its factors have poly (s, d) size in \mathcal{D} ?
E Efficient algorithm: Design an 'efficient' algorithm to compute the irreducible factors.

Factor of a polynomial can be more "complex" than the polynomial itself.

- For example, $\prod_{i=1}^{n}\left(x_{i}^{d}-1\right)$ has sparsity 2^{n}. But its factor $\prod_{i=1}^{n}\left(1+x_{i}+\ldots+x_{i}^{d-1}\right)$ has sparsity $d^{n}=\left(2^{n}\right)^{\log d}$.

Dhen $C=\mathcal{D}$, then C is closed under factoring.

Multivariate to Univariate Factoring

Multivariate to Univariate Factoring

- Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:

Multivariate to Univariate Factoring

Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:
$>$ Let the degree of each variable in f is $\leq d$. Apply Kronecker substitution $\phi: x_{i} \mapsto z^{(d+1)^{i-1}}$.

Multivariate to Univariate Factoring

Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:
$>$ Let the degree of each variable in f is $\leq d$. Apply Kronecker substitution $\phi: x_{i} \mapsto z^{(d+1)^{i-1}}$.
$>$ Each monomial in f uniquely maps to a monomial in $\phi(f)$.

Multivariate to Univariate Factoring

\square Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:
$>$ Let the degree of each variable in f is $\leq d$. Apply Kronecker substitution $\phi: x_{i} \mapsto z^{(d+1)^{i-1}}$.
$>$ Each monomial in f uniquely maps to a monomial in $\phi(f)$.
$>$ Factorize $\phi(f)$ into univariate irreducible factors.

Multivariate to Univariate Factoring

\square Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:
$>$ Let the degree of each variable in f is $\leq d$. Apply Kronecker substitution $\phi: x_{i} \mapsto z^{(d+1)^{i-1}}$.
$>$ Each monomial in f uniquely maps to a monomial in $\phi(f)$.
$>$ Factorize $\phi(f)$ into univariate irreducible factors.
$>$ Though g is irreducible, $\phi(g)$ may not be irreducible.

Multivariate to Univariate Factoring

\square Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:
$>$ Let the degree of each variable in f is $\leq d$. Apply Kronecker substitution $\phi: x_{i} \mapsto z^{(d+1)^{i-1}}$.
$>$ Each monomial in f uniquely maps to a monomial in $\phi(f)$.
$>$ Factorize $\phi(f)$ into univariate irreducible factors.
$>$ Though g is irreducible, $\phi(g)$ may not be irreducible.
$>$ Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.

Multivariate to Univariate Factoring

\square Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:
$>$ Let the degree of each variable in f is $\leq d$. Apply Kronecker substitution $\phi: x_{i} \mapsto z^{(d+1)^{i-1}}$.
$>$ Each monomial in f uniquely maps to a monomial in $\phi(f)$.
$>$ Factorize $\phi(f)$ into univariate irreducible factors.
$>$ Though g is irreducible, $\phi(g)$ may not be irreducible.
$>$ Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
$>$ Try all subsets. Apply inverse Kronecker and check if the polynomial divides f. [Check by Resultant].

Multivariate to Univariate Factoring

\square Multivariate factoring $f(\boldsymbol{x})=g(\boldsymbol{x}) \cdot h(\boldsymbol{x})$ can be reduced to univariate factoring via Kronecker substitution:
$>$ Let the degree of each variable in f is $\leq d$. Apply Kronecker substitution $\phi: x_{i} \mapsto z^{(d+1)^{i-1}}$.
$>$ Each monomial in f uniquely maps to a monomial in $\phi(f)$.
$>$ Factorize $\phi(f)$ into univariate irreducible factors.
$>$ Though g is irreducible, $\phi(g)$ may not be irreducible.
$>$ Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
> Try all subsets. Apply inverse Kronecker and check if the polynomial divides f. [Check by Resultant].
$>$ Time complexity: Exponential in degree in worst-case (even for bivariates).

Classical Factoring results

Efricient multivariate factorization

\square Let us fix algebraic circuit as the model and size Circuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]

$g \mid f \Longrightarrow \operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$.

EFFICIENT MULTIVARIATE FACTORIZATION

\square Let us fix algebraic circuit as the model and size $_{\text {Circuit }}$ denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]

$g \mid f \Longrightarrow \operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$. Moreover, there is a randomized poly $\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$-time algorithm that outputs every irreducible factor.

EFFICIENT MULTIVARIATE FACTORIZATION

\square Let us fix algebraic circuit as the model and size Circuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]

$g \mid f \Longrightarrow \operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$. Moreover, there is a randomized poly $\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$-time algorithm that outputs every irreducible factor.

VP is closed under factoring.

EFFICIENT MULTIVARIATE FACTORIZATION

\square Let us fix algebraic circuit as the model and size Circuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]

$g \mid f \Longrightarrow \operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$. Moreover, there is a randomized poly $\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$-time algorithm that outputs every irreducible factor.

VP is closed under factoring.
Tools: Newton iteration/ Hensel lifting, Linear System Solving.

Efricient multivariate factorization

\square Let us fix algebraic circuit as the model and size Circuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]

$g \mid f \Longrightarrow \operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$. Moreover, there is a randomized poly $\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$-time algorithm that outputs every irreducible factor.

- VP is closed under factoring.
- Tools: Newton iteration/ Hensel lifting, Linear System Solving.

Goal: Extend Kaltofen's result for formulas, constant depth circuits, algebraic branching programs (ABPs), high-degree regime etc.

Efricient multivariate factorization

Let us fix algebraic circuit as the model and size Circuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]

$g \mid f \Longrightarrow \operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$. Moreover, there is a randomized $\operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$-time algorithm that outputs every irreducible factor.

- VP is closed under factoring.
- Tools: Newton iteration/ Hensel lifting, Linear System Solving.

Goal: Extend Kaltofen's result for formulas, constant depth circuits, algebraic branching programs (ABPs), high-degree regime etc.

What happens if we only care about just the query/blackbox complexity?

Efricient multivariate factorization

\square Let us fix algebraic circuit as the model and size Circuit denotes the circuit size.

Efficient Circuit Factoring [Kaltofen 1986]

$g \mid f \Longrightarrow \operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$. Moreover, there is a randomized poly $\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(f)\right)$-time algorithm that outputs every irreducible factor.

- VP is closed under factoring.

Tools: Newton iteration/ Hensel lifting, Linear System Solving.
Goal: Extend Kaltofen's result for formulas, constant depth circuits, algebraic branching programs (ABPs), high-degree regime etc.

What happens if we only care about just the query/blackbox complexity?

Application: Hardness versus randomness in algebraic complexity [KI'03, Agrawal'05]; possible separation of complexity classes.

Applications

[[Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.

Applications

[[Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.
[Possible separation]: If C is not closed under factoring, then $C \neq \mathrm{VP}$.

Applications

[[Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.
[Possible separation]: If C is not closed under factoring, then $C \neq \mathrm{VP}$.
\square Can we show that VP $\neq \mathrm{VNP}$, VBP, VF via factoring?!

Applications

[[Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.

- [Possible separation]: If C is not closed under factoring, then $C \neq \mathrm{VP}$.
\square Can we show that VP $\neq \mathrm{VNP}, \mathrm{VBP}, \mathrm{VF}$ via factoring?!
[[Hardness of multiples]: If factors of \mathcal{C} are in class \mathcal{D}, and f is hard for \mathcal{D}, all its nonzero multiples of f are hard for C !

Applications

[[Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.

- [Possible separation]: If C is not closed under factoring, then $C \neq \mathrm{VP}$.
\square Can we show that VP $\neq \mathrm{VNP}, \mathrm{VBP}, \mathrm{VF}$ via factoring?!
[[Hardness of multiples]: If factors of \mathcal{C} are in class \mathcal{D}, and f is hard for \mathcal{D}, all its nonzero multiples of f are hard for C !
$>$ Take $C=\mathcal{D}=\mathrm{VP}$. If VP $\neq \mathrm{VNP}$, any polynomial-degree multiple of perm $_{n}$ is also hard for VP.

Applications

[[Kabanets-Impagliazzo 2003]: Exponential lower bound for Permanent (i.e. VNP exponentially far from VP) \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.
[Possible separation]: If C is not closed under factoring, then $C \neq \mathrm{VP}$.
\square Can we show that VP $\neq \mathrm{VNP}, \mathrm{VBP}, \mathrm{VF}$ via factoring?!
[Hardness of multiples]: If factors of \mathcal{C} are in class \mathcal{D}, and f is hard for \mathcal{D}, all its nonzero multiples of f are hard for C !
$>$ Take $C=\mathcal{D}=\mathrm{VP}$. If VP $\neq \mathrm{VNP}$, any polynomial-degree multiple of perm $_{n}$ is also hard for VP.
[KSS' 14$]$: Derandomizing circuit-factoring is equivalent to derandomizing circuit-PIT.

Blackbox factoring

Blackbox factoring

[Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time.

Blackbox factoring

[Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time.
$>$ Dimension reduction: Randomly project to bivariates.

Blackbox factoring

[Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time.
$>$ Dimension reduction: Randomly project to bivariates.
$>$ This works due to an effective version of Hilbert's irreducibility theorem.

BLACKBOX FACTORING

[Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time.
$>$ Dimension reduction: Randomly project to bivariates.
$>$ This works due to an effective version of Hilbert's irreducibility theorem.
$>$ If $f\left(x, z_{1}, \ldots, z_{n}\right)$ is irreducible, then $f\left(x, \beta_{1}+\alpha_{1} y, \ldots, \beta_{n}+\alpha_{n} y\right)$ is irreducible with high probability if β_{i}, α_{i} picked at random.

BLACKBOX FACTORING

[Kaltofen-Trager 1991]: Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time.
$>$ Dimension reduction: Randomly project to bivariates.
$>$ This works due to an effective version of Hilbert's irreducibility theorem.
$>$ If $f\left(x, z_{1}, \ldots, z_{n}\right)$ is irreducible, then $f\left(x, \beta_{1}+\alpha_{1} y, \ldots, \beta_{n}+\alpha_{n} y\right)$ is irreducible with high probability if β_{i}, α_{i} picked at random.
$>$ Currently, derandomization of this theorem for sparse polynomials reduces to ABP PIT.

Recent advances

Some more closure results

SOME MORE CLOSURE RESULTS

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.

SOME MORE CLOSURE RESULTS

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.
$>\operatorname{deg}_{x_{i}} f(\boldsymbol{x}) \leq r$, for each $i \in[n], \operatorname{size}_{\text {Circuit }}(f) \leq s$, and depth Δ, and if $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(r^{r}, s\right)$, and depth $\Delta+5$.

SOME MORE CLOSURE RESULTS

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.
$>\operatorname{deg}_{x_{i}} f(\boldsymbol{x}) \leq r$, for each $i \in[n], \operatorname{size}_{\text {Circuit }}(f) \leq s$, and depth Δ, and if $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(r^{r}, s\right)$, and depth $\Delta+5$.

- [Dutta' 18]: $f \in \mathrm{VP}_{\text {constant }} \Longrightarrow \operatorname{size}_{\text {Circuit }}(f) \leq \operatorname{poly}(n)$, and $\operatorname{deg}_{x_{i}}(f) \leq r$, for some constant r. Then, $\mathrm{VP}_{\text {constant }}$ is closed under factoring.

SOME MORE CLOSURE RESULTS

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.
$>\operatorname{deg}_{x_{i}} f(\boldsymbol{x}) \leq r$, for each $i \in[n], \operatorname{size}_{\text {Circuit }}(f) \leq s$, and depth Δ, and if $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(r^{r}, s\right)$, and depth $\Delta+5$.
\square [Dutta' 18]: $f \in \mathrm{VP}_{\text {constant }} \Longrightarrow \operatorname{size}_{\text {Circuit }}(f) \leq \operatorname{poly}(n)$, and $\operatorname{deg}_{x_{i}}(f) \leq r$, for some constant r. Then, $\mathrm{VP}_{\text {constant }}$ is closed under factoring. Same for $\mathrm{VBP}_{\text {constant }}, \mathrm{VNP}_{\text {constant }}$.

Some more closure results

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.
$>\operatorname{deg}_{x_{i}} f(\boldsymbol{x}) \leq r$, for each $i \in[n], \operatorname{size}_{\text {Circuit }}(f) \leq s$, and depth Δ, and if $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(r^{r}, s\right)$, and depth $\Delta+5$.
[[Dutta' 18]: $f \in \mathrm{VP}_{\text {constant }} \Longrightarrow \operatorname{size}_{\text {Circuit }}(f) \leq \operatorname{poly}(n)$, and $\operatorname{deg}_{x_{i}}(f) \leq r$, for some constant r. Then, $\mathrm{VP}_{\text {constant }}$ is closed under factoring. Same for $\mathrm{VBP}_{\text {constant }}, \mathrm{VNP}_{\text {constant }}$.
[Dutta-Saxena-Sinhababu' 18]: $g \mid f$, and $\operatorname{deg}(f)=d$, then $\operatorname{size}_{\mathrm{ABP}}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\mathrm{ABP}}(f), d^{O(\log d)}\right)$.
$>$ Same for VF, VNP.

Some more closure results

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.
$>\operatorname{deg}_{x_{i}} f(\boldsymbol{x}) \leq r$, for each $i \in[n], \operatorname{size}_{\text {Circuit }}(f) \leq s$, and depth Δ, and if $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(r^{r}, s\right)$, and depth $\Delta+5$.
\square [Dutta' 18]: $f \in \mathrm{VP}_{\text {constant }} \Longrightarrow \operatorname{size}_{\text {Circuit }}(f) \leq \operatorname{poly}(n)$, and $\operatorname{deg}_{x_{i}}(f) \leq r$, for some constant r. Then, $\mathrm{VP}_{\text {constant }}$ is closed under factoring. Same for $\mathrm{VBP}_{\text {constant }}, \mathrm{VNP}_{\text {constant }}$.
[Dutta-Saxena-Sinhababu' 18]: $g \mid f$, and $\operatorname{deg}(f)=d$, then $\operatorname{size}_{\mathrm{ABP}}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\mathrm{ABP}}(f), d^{O(\log d)}\right)$.
$>$ Same for VF, VNP.
$>$ So, quasipolynomial-VBP (similarly for formula and VNP) are closed under factoring.

Some more closure results

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.
$>\operatorname{deg}_{x_{i}} f(\boldsymbol{x}) \leq r$, for each $i \in[n], \operatorname{size}_{\text {Circuit }}(f) \leq s$, and depth Δ, and if $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(r^{r}, s\right)$, and depth $\Delta+5$.

- [Dutta' 18]: $f \in \mathrm{VP}_{\text {constant }} \Longrightarrow \operatorname{size}_{\text {Circuit }}(f) \leq \operatorname{poly}(n)$, and $\operatorname{deg}_{x_{i}}(f) \leq r$, for some constant r. Then, $\mathrm{VP}_{\text {constant }}$ is closed under factoring. Same for $\mathrm{VBP}_{\text {constant }}, \mathrm{VNP}_{\text {constant }}$.
[Dutta-Saxena-Sinhababu' 18]: $g \mid f$, and $\operatorname{deg}(f)=d$, then $\operatorname{size}_{\mathrm{ABP}}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\mathrm{ABP}}(f), d^{O(\log d)}\right)$.
$>$ Same for VF, VNP.
$>$ So, quasipolynomial-VBP (similarly for formula and VNP) are closed under factoring.
[Chou-Kumar-Solomon' 18]: VNP is closed under factoring.

SOME MORE CLOSURE RESULTS

[Oliveira' 15]: The class $C=$ is closed under factoring, where $C=$ constant depth circuits with constant individual degree.
$>\operatorname{deg}_{x_{i}} f(\boldsymbol{x}) \leq r$, for each $i \in[n], \operatorname{size}_{\text {Circuit }}(f) \leq s$, and depth Δ, and if $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(r^{r}, s\right)$, and depth $\Delta+5$.

- [Dutta' 18]: $f \in \mathrm{VP}_{\text {constant }} \Longrightarrow \operatorname{size}_{\text {Circuit }}(f) \leq \operatorname{poly}(n)$, and $\operatorname{deg}_{x_{i}}(f) \leq r$, for some constant r. Then, $\mathrm{VP}_{\text {constant }}$ is closed under factoring. Same for $\mathrm{VBP}_{\text {constant }}, \mathrm{VNP}_{\text {constant }}$.
[Dutta-Saxena-Sinhababu' 18]: $g \mid f$, and $\operatorname{deg}(f)=d$, then $\operatorname{size}_{\mathrm{ABP}}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\mathrm{ABP}}(f), d^{O(\log d)}\right)$.
$>$ Same for VF, VNP.
$>$ So, quasipolynomial-VBP (similarly for formula and VNP) are closed under factoring.
[Chou-Kumar-Solomon' 18]: VNP is closed under factoring.
[Sinhababu-Thierauf'21]: VBP is closed under factoring.

Factor complexity for border classes

FActor Complexity for border classes

One can ask what happens when $C=\overline{\mathrm{VP}}$.

FACTOR COMPLEXITY FOR BORDER CLASSES

- One can ask what happens when $C=\overline{\mathrm{VP}}$. In particular, if $g \mid f$, and $f \in \overline{\mathrm{VP}}$, then $g \in \overline{\mathrm{VP}}$?

Factor complexity for border classes

One can ask what happens when $C=\overline{\mathrm{VP}}$. In particular, if $g \mid f$, and $f \in \overline{\mathrm{VP}}$, then $g \in \overline{\mathrm{VP}}$?
[Bürgisser 03]: $\overline{\mathrm{VP}}$ is closed under factoring.

Factor complexity for border CLasses

One can ask what happens when $C=\overline{\mathrm{VP}}$. In particular, if $g \mid f$, and $f \in \overline{\mathrm{VP}}$, then $g \in \overline{\mathrm{VP}}$?

- [Bürgisser 03]: $\overline{\mathrm{VP}}$ is closed under factoring.
[Dutta-Saxena-Sinhababu'18]: Quasipoly- $\overline{\mathrm{VBP}}$, Quasipoly- $\overline{\mathrm{VNP}}$, Quasipoly- $\overline{\mathrm{VF}}$ are closed under factoring.

Factor complexity for border CLasses

One can ask what happens when $C=\overline{\mathrm{VP}}$. In particular, if $g \mid f$, and $f \in \overline{\mathrm{VP}}$, then $g \in \overline{\mathrm{VP}}$?

- [Bürgisser 03]: $\overline{\mathrm{VP}}$ is closed under factoring.
- [Dutta-Saxena-Sinhababu'18]: Quasipoly- $\overline{\mathrm{VBP}}$, Quasipoly- $\overline{\mathrm{VNP}}$, Quasipoly- $\overline{\mathrm{VF}}$ are closed under factoring.
- $\overline{\mathrm{VNP}}$ is closed under factoring (implicit in [Chou-Kumar-Solomon' 18]).

Factor complexity for border CLasses

- One can ask what happens when $C=\overline{\mathrm{VP}}$. In particular, if $g \mid f$, and $f \in \overline{\mathrm{VP}}$, then $g \in \overline{\mathrm{VP}}$?
- [Bürgisser 03]: $\overline{\mathrm{VP}}$ is closed under factoring.
- [Dutta-Saxena-Sinhababu' 18]: Quasipoly- $\overline{\mathrm{VBP}}$, Quasipoly- $\overline{\mathrm{VNP}}$, Quasipoly- $\overline{\mathrm{VF}}$ are closed under factoring.
- $\overline{\mathrm{VNP}}$ is closed under factoring (implicit in [Chou-Kumar-Solomon' 18]).
- $\overline{\mathrm{VBP}}$ is closed under factoring (implicit in [Sinhababu-Thierauf'21]).

High degree regime

High degree regime

- [Kaltofen' 87$]$ If $f=g^{e}$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\mathbf{g})\right)$.

High degree regime

- [Kaltofen'87] If $f=g^{e}$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\mathbf{g})\right.$).
$>e$ can be as large as 2^{s}, where $s=\operatorname{size}_{\text {Circuit }}(f)$!

High degree regime

[Kaltofen'87] If $f=g^{e}$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\mathbf{g})\right)$.
$>e$ can be as large as 2^{s}, where $s=\operatorname{size}_{\text {Circuit }}(f)$!
$>$ First result which depends on $\operatorname{deg}(g)$ instead of $\operatorname{deg}(f)$!

High degree regime

[[Kaltofen'87] If $f=g^{e}$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\mathbf{g})\right)$.
$>e$ can be as large as 2^{s}, where $s=\operatorname{size}_{\text {Circuit }}(f)$!
$>$ First result which depends on $\operatorname{deg}(g)$ instead of $\operatorname{deg}(f)$!

- [Factor Conjecture, Bürgisser 03]: If $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(g)\right)$.

High degree regime

[Kaltofen' 87$]$ If $f=g^{e}$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\mathbf{g})\right)$.
$>e$ can be as large as 2^{s}, where $s=\operatorname{size}_{\text {Circuit }}(f)$!
$>$ First result which depends on $\operatorname{deg}(g)$ instead of $\operatorname{deg}(f)$!

- [Factor Conjecture, Bürgisser 03]: If $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(g)\right)$.
[Bürgisser 03:] Factor conjecture is true, when one replaces size $_{\text {Circuit }}$ by $\overline{\text { size }}_{\text {Circuit }}$!

High degree regime

[Kaltofen' 87$]$ If $f=g^{e}$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\mathbf{g})\right)$.
$>e$ can be as large as 2^{s}, where $s=\operatorname{size}_{\text {Circuit }}(f)$!
$>$ First result which depends on $\operatorname{deg}(g)$ instead of $\operatorname{deg}(f)$!

- [Factor Conjecture, Bürgisser 03]: If $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(g)\right)$.
[Bürgisser 03:] Factor conjecture is true, when one replaces size $_{\text {Circuit }}$ by $\overline{\text { size }}_{\text {Circuit }}$!

Can we extend [Kaltofen' 87] to $f=g_{1}^{e_{1}} g_{2}^{e_{2}}$, where both $\operatorname{deg}\left(g_{i}\right)$ are polynomially bounded?

High degree regime

[[Kaltofen'87] If $f=g^{e}$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\mathbf{g})\right)$.
$>e$ can be as large as 2^{s}, where $s=\operatorname{size}_{\text {Circuit }}(f)!$
$>$ First result which depends on $\operatorname{deg}(g)$ instead of $\operatorname{deg}(f)$!

- [Factor Conjecture, Bürgisser 03]: If $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(g)\right)$.
[Bürgisser 03:] Factor conjecture is true, when one replaces size $_{\text {Circuit }}$ by $\overline{\text { size }}_{\text {Circuit }}$!

Can we extend [Kaltofen'87] to $f=g_{1}^{e_{1}} g_{2}^{e_{2}}$, where both $\operatorname{deg}\left(g_{i}\right)$ are polynomially bounded?

Improved Kaltofen [Dutta-Saxena-Sinhababu'18]:

Let $\operatorname{rad}(f)$ denotes the square-free part of f, i.e. $f=\prod g_{i}^{e_{i}}$, then $\operatorname{rad}(f)=\prod_{i} g_{i}$. If $g \mid f$, then $\operatorname{size}_{\text {Circuit }}(g) \leq \operatorname{poly}\left(\operatorname{size}_{\text {Circuit }}(f), \operatorname{deg}(\operatorname{rad}(f))\right)$.

Newton Iteration

[Oliveira 2016, Dutta-Saxena-Sinhababu' 18]: Factoring \leq root approximation in power series.

Newton Iteration

[Oliveira 2016, Dutta-Saxena-Sinhababu' 18]: Factoring \leq root approximation in power series.
$p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$.

Newton Iteration

[Oliveira 2016, Dutta-Saxena-Sinhababu' 18]: Factoring \leq root approximation in power series.
$\square(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$.
\square Approximate root via Newton iteration

$$
y_{t+1}=y_{t}-\frac{p\left(\boldsymbol{x}, y_{t}\right)}{p^{\prime}\left(\boldsymbol{x}, y_{t}\right)}
$$

Newton Iteration

[Oliveira 2016, Dutta-Saxena-Sinhababu' 18]: Factoring \leq root approximation in power series.
$\square p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$.
\square Approximate root via Newton iteration

$$
y_{t+1}=y_{t}-\frac{p\left(\boldsymbol{x}, y_{t}\right)}{p^{\prime}\left(\boldsymbol{x}, y_{t}\right)}
$$

- $\log d$ iterations, since precision doubles everytime!

Newton Iteration

[Oliveira 2016, Dutta-Saxena-Sinhababu' 18]: Factoring \leq root approximation in power series.
$\square p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$.
\square Approximate root via Newton iteration

$$
y_{t+1}=y_{t}-\frac{p\left(\boldsymbol{x}, y_{t}\right)}{p^{\prime}\left(\boldsymbol{x}, y_{t}\right)}
$$

- $\log d$ iterations, since precision doubles everytime!
\square A random shift $\phi: x_{i} \mapsto \alpha_{i} y+x_{i}+\beta_{i}$, makes

$$
\phi(f(\boldsymbol{x}))=\prod_{i}\left(y-q_{i}(\boldsymbol{x})\right),
$$

where q_{i} are power series.

Newton Iteration

[Oliveira 2016, Dutta-Saxena-Sinhababu' 18]: Factoring \leq root approximation in power series.
$\square p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$.
\square Approximate root via Newton iteration

$$
y_{t+1}=y_{t}-\frac{p\left(\boldsymbol{x}, y_{t}\right)}{p^{\prime}\left(\boldsymbol{x}, y_{t}\right)}
$$

- $\log d$ iterations, since precision doubles everytime!
\square A random shift $\phi: x_{i} \mapsto \alpha_{i} y+x_{i}+\beta_{i}$, makes

$$
\phi(f(\boldsymbol{x}))=\prod_{i}\left(y-q_{i}(\boldsymbol{x})\right),
$$

where q_{i} are power series.
$\square \mathbb{F}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is UFD!

Related results

Related results

[Bhargava-Saraf-Volkovich 20]: If $\mathrm{sp}(f) \leq s$, with individual degrees bounded by r, and $g \mid f$, then $\operatorname{sp}(g) \leq s^{O\left(r^{2} \log n\right)}$.

Related results

[Bhargava-Saraf-Volkovich 20]: If $\mathrm{sp}(f) \leq s$, with individual degrees bounded by r, and $g \mid f$, then $\operatorname{sp}(g) \leq s^{O\left(r^{2} \log n\right)}$. This lead to an $s^{\text {poly }(r) \log n}$-time algorithm for factoring sparse polynomials.

Related Results

[Bhargava-Saraf-Volkovich 20]: If $\mathrm{sp}(f) \leq s$, with individual degrees bounded by r, and $g \mid f$, then $\operatorname{sp}(g) \leq s^{O\left(r^{2} \log n\right)}$. This lead to an $s^{\operatorname{poly}(r) \log n}$-time algorithm for factoring sparse polynomials.
[Koiran-Ressyare' 18]: Randomized polynomial-time algorithm to test if $f\left(x_{1}, \ldots, x_{n}\right)$ is of the form $f(x)=\ell_{1}(x)^{\alpha_{1}} \cdots \ell_{n}(x)^{\alpha_{n}}$, and if yes, outputs the linear factors.

Related Results

[Bhargava-Saraf-Volkovich 20]: If $\mathrm{sp}(f) \leq s$, with individual degrees bounded by r, and $g \mid f$, then $\operatorname{sp}(g) \leq s^{O\left(r^{2} \log n\right)}$. This lead to an $s^{\text {poly }(r) \log n}$-time algorithm for factoring sparse polynomials.
[Koiran-Ressyare' 18]: Randomized polynomial-time algorithm to test if $f\left(x_{1}, \ldots, x_{n}\right)$ is of the form $f(x)=\ell_{1}(x)^{\alpha_{1}} \cdots \ell_{n}(x)^{\alpha_{n}}$, and if yes, outputs the linear factors.
[D [Dutta-Sinhababu-Thierauf, 202X]: If $f=\prod g_{i}^{e_{i}}$, where $\operatorname{deg}\left(g_{i}\right) \leq r$, and $\operatorname{size}_{\text {Circuit }}(f)=s$. Then there is a determinstic poly $\left(s^{r}\right)$-time algorithm that outputs g_{i}.

Conclusion

Open questions

Open questions

\square Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic $\operatorname{poly}(n, s, d)$ time.

Open questions

\square Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly (n, s, d) time.
$>$ Challenge: Currently, it requires PIT for symbolic Determinants.

Open questions

\square Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly (n, s, d) time.
$>$ Challenge: Currently, it requires PIT for symbolic Determinants.
Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic poly (n, s, d) time.

Open questions

\square Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly (n, s, d) time.
$>$ Challenge: Currently, it requires PIT for symbolic Determinants.
Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic poly (n, s, d) time.
$>$ Challenge: The resultant of two sparse polynomials may not be sparse.

Open questions

\square Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly (n, s, d) time.
$>$ Challenge: Currently, it requires PIT for symbolic Determinants.
Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic poly (n, s, d) time.
$>$ Challenge: The resultant of two sparse polynomials may not be sparse.
. Show VF is closed under factoring, or come up with candidate counter example!

Open questions

\square Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic poly (n, s, d) time.
$>$ Challenge: Currently, it requires PIT for symbolic Determinants.
Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic poly (n, s, d) time.
$>$ Challenge: The resultant of two sparse polynomials may not be sparse.

- Show VF is closed under factoring, or come up with candidate counter example!
$>$ Challenge: Determinant does not have small arithmetic formulas!

Thank you! Questions?

