Arithmetic circuits: lower bounds by partial derivatives and structural results

Hervé Fournier (Université Paris Cité)

July 10, 2023 Algebraic Complexity Workshop – ICALP

Polynomials

$$f(x_1, x_2, x_3, x_4) = 1 + x_1 + x_2 + x_3 + x_4$$

+ $x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$
+ $x_2x_3x_4 + x_1x_3x_4 + x_1x_2x_4 + x_1x_2x_3$
+ $x_1x_2x_3x_4$

Polynomials

$$f(x_1, x_2, x_3, x_4) = 1 + x_1 + x_2 + x_3 + x_4$$

+ $x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$
+ $x_2x_3x_4 + x_1x_3x_4 + x_1x_2x_4 + x_1x_2x_3$
+ $x_1x_2x_3x_4$

$$= (1+x_1)(1+x_2)(1+x_3)(1+x_4)$$

more compact representation!

Arithmetic Formulas

Tree

Leaves containing variables or constants

Arithmetic Circuits

Size = number of gates

Algebraic classes VP vs VNP

 $\mathsf{VP} \ni (P_n)$ if

- P_n computed by circuits of size $n^{O(1)}$
- P_n has degree $n^{O(1)}$

VNP : exponential sum in front of VP $(Q_n) \in \text{VNP}$ if there exists $P_n(\bar{x}, \bar{y}) \in \text{VP}$ s.t.

$$Q_n(\bar{x}) = \sum_{\bar{y} \in \{0,1\}^{|\bar{y}|}} P_n(\bar{x}, \bar{y})$$

[Valiant-79]
$$VP = VNP$$
?

What does VNP contain?

polynomials with coefficients computable in polynomial time

What does VNP contain?

polynomials with coefficients computable in polynomial time

in particular: generating functions of graph properties

- Permanent: perfect matchings of $K_{n,n}$ (cycle covers of K_n)

$$\sum_{\{(i_1,j_1),\ldots,(i_n,j_n)\} \text{ perfect matching}} X_{i_1,j_1}\ldots X_{i_n,j_n}$$

What does VNP contain?

polynomials with coefficients computable in polynomial time

in particular: generating functions of graph properties

- Permanent: perfect matchings of $K_{n,n}$ (cycle covers of K_n)

– Hamiltonian cycles of K_n

Determinant vs. Permanent

$$Det_n(x_{11}, \dots, x_{nn}) = \sum_{\sigma \in S_n} sign(\sigma) \cdot x_{1\sigma(1)} \dots x_{n\sigma(n)}$$
$$Perm_n(x_{11}, \dots, x_{nn}) = \sum_{\sigma \in S_n} x_{1\sigma(1)} \dots x_{n\sigma(n)}$$

Determinant vs. Permanent

$$Det_n(x_{11}, \dots, x_{nn}) = \sum_{\sigma \in S_n} sign(\sigma) \cdot x_{1\sigma(1)} \dots x_{n\sigma(n)}$$
$$Perm_n(x_{11}, \dots, x_{nn}) = \sum_{\sigma \in S_n} x_{1\sigma(1)} \dots x_{n\sigma(n)}$$

 $(\mathsf{Det}_n) \in \mathsf{VP}, (\mathsf{Perm}_n) \in \mathsf{VNP}$

Variant of VP vs. VNP: Is the Permanent a projection of a "not too large" Determinant? Algebraic vs. Boolean lower bounds

[Bürgisser-99] (Under GRH) If VP = VNP over \mathbb{C} , then $\#P \subseteq FNC$ (non-uniform)

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

[Baur-Strassen-83] Computing

$$x_1^n + x_2^n + \ldots + x_n^n$$

requires $\Omega(n \log n)$ arithmetic operations.

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

[Baur-Strassen-83] Computing

$$x_1^n + x_2^n + \ldots + x_n^n$$

requires $\Omega(n \log n)$ arithmetic operations.

Strong lower bounds for *restricted* models:

- branching program, formulas, bounded-depth formulas
- non-commutative, monotone, multilinear models

 \star A circuit *C* is homogeneous if every gate computes a homogeneous polynomial.

 \star A circuit *C* is multilinear if every gate computes a multilinear polynomial.

 \star A circuit *C* is homogeneous if every gate computes a homogeneous polynomial.

 \star A circuit *C* is multilinear if every gate computes a multilinear polynomial.

A circuit computing a homogeneous or multilinear polynomial may not be homogeneous or multilinear

Many lower bounds hold for such restricted models of computation

Complexity of the elementary symmetric polynomials S_n^d

Elementary symmetric polynomials of degree d on X_1, \ldots, X_n :

$$S_n^d = \sum_{\mathcal{T} \in \binom{[n]}{d}} X_{\mathcal{T}}$$
 where $X_{\mathcal{T}} := \prod_{i \in \mathcal{T}} X_i$

Complexity of the elementary symmetric polynomials S_n^d

Elementary symmetric polynomials of degree d on X_1, \ldots, X_n :

$$S_n^d = \sum_{T \in {[n] \choose d}} X_T$$
 where $X_T := \prod_{i \in T} X_i$

Upper bound by **interpolation** S_n^d is the coefficient of T^{n-d} in

$$(T+X_1)(T+X_2)\ldots(T+X_n)$$

so it is equal to a linear combination of this polynomial (in T) evaluated at n distinct points

Complexity of the elementary symmetric polynomials S_n^d

Elementary symmetric polynomials of degree d on X_1, \ldots, X_n :

$$S_n^d = \sum_{T \in {[n] \choose d}} X_T$$
 where $X_T := \prod_{i \in T} X_i$

Upper bound by **interpolation** S_n^d is the coefficent of T^{n-d} in

$$(T+X_1)(T+X_2)\ldots(T+X_n)$$

so it is equal to a linear combination of this polynomial (in T) evaluated at n distinct points

$$\Rightarrow \Sigma \Pi \Sigma$$
 formula of size $O(n^2)$

Remark: the formula obtained is not multilinear and not homogeneous

Lower bounds for *restricted* models

Model	Lower bound	
General circuits	$\Omega(n \log n)$	[Baur-Strassen-83]
<i>Monotone</i> Formula	$2^{\Omega(n)}$	[Nisan-91]
<i>Homogeneous</i> Depth-3 circuits	$2^{\Omega(n)}$	[Nisan-Wigderson-97]
<i>Multilinear</i> formula	$2^{\Omega(n \log n)}$	[Raz-09]
<i>Constant-depth</i> circuits	$n^{d^{\Omega(1)}}$	[Limaye-Srinivasan-Tavenas-21]
(poly of small degree d)		

Outline

Some lower bounds based on partial derivatives

- * Partial derivatives of order 1
- * Dimension of partial derivatives of all order
- * Partial derivatives w.r.t. a subset of variables

Structural results

* homogenization

 \star depth-reduction

Lemma (Baur and Strassen)

If $P(x_1,...,x_n)$ is computed by a circuit of size s, there is a circuit of size O(s) computing

$$\left\{\frac{\partial P}{\partial x_1},\ldots,\frac{\partial P}{\partial x_n}\right\}.$$

Proof. By induction on the size on the size of the circuit, using chain rule for partial derivatives.

Lemma (Baur and Strassen)

If $P(x_1,...,x_n)$ is computed by a circuit of size s, there is a circuit of size O(s) computing

$$\left\{\frac{\partial P}{\partial x_1},\ldots,\frac{\partial P}{\partial x_n}\right\}.$$

Proof. By induction on the size on the size of the circuit, using chain rule for partial derivatives.

(Proof of lower bound.) Let

$$P = x_1^d + x_2^d + \ldots + x_n^d$$

computed by a circuit of size *s*. There is a circuit of size O(s) computing simultaneously x_1^d, \ldots, x_n^d . Using Bezout this requires $n \log d$ products: $s = \Omega(n \log d)$. (tight by doing fast exponentiation)

Multinear setting

A circuit is syntactically multilinear if for any product gate $P \times Q$, the polynomials P and Q are over disjoint sets of variables

Lemma

If a polynomial is computed by a syntactically multilinear circuit of size s, all its first order partial derivatives are computed by a syntactically multilinear circuit of size O(s).

 $\begin{array}{l} \mbox{Applications in the mutilinear setting:} \\ \star \ \mathrm{NC}_1 \neq \mathrm{NC}_2 \ (\mbox{formulas } \subsetneq \mbox{circuits}) \\ \star \ \Omega(n^2/\log^2 n) \ \mbox{lower bound} \end{array}$

Non-commutative setting [P.Chaterjee-Hrubes-23]

Partial derivative with respect to the first position: $\partial_x(xu) = u$ (where *u* non-commutative monomial) $\partial_x(yu) = 0$ (*y* variable, $y \neq x$)

Lemma

If $P \in \mathbb{C}\langle x_1, ..., x_n \rangle$ is computed by a homogeneous non-commutative circuit of size s, all $\partial_{x_i} P$ ($i \in [n]$) can be simultaneously computed by a homogeneous circuit of size O(s).

Application:

 $\Omega(nd)$ lower bound for the size of homogeneous non-commutative circuits (for some polynomial of degree *d* over *n* variables)

Non-commutative setting [P.Chaterjee-Hrubes-23]

Partial derivative with respect to the first position: $\partial_x(xu) = u$ (where *u* non-commutative monomial) $\partial_x(yu) = 0$ (*y* variable, $y \neq x$)

Lemma

If $P \in \mathbb{C}\langle x_1, ..., x_n \rangle$ is computed by a homogeneous non-commutative circuit of size s, all $\partial_{x_i} P$ ($i \in [n]$) can be simultaneously computed by a homogeneous circuit of size O(s).

Application:

 $\Omega(nd)$ lower bound for the size of homogeneous non-commutative circuits (for some polynomial of degree *d* over *n* variables)

Question: can homogeneity assumption be removed?

Complexity measure Γ

Construct a map $\Gamma : \mathbb{F}[x_1, \ldots, x_n] \to \mathbb{N}$, that assigns a number to every polynomial such that:

- 1. If f is computable by "small" circuits, then $\Gamma(f)$ is "small".
- For the polynomial f for which we wish to show a lower bound, Γ(f) is "large".

Measure based on Partial Derivative

[Nisan-Wigderson-97]

$$\partial(f) \stackrel{\text{def}}{=} \text{Set of partial derivatives (of all orders) of } f$$

 $\Gamma(f) \stackrel{\text{def}}{=} \dim \{\partial(f)\}$

Measure based on Partial Derivative

[Nisan-Wigderson-97]

$$\partial(f) \stackrel{\text{def}}{=} \text{Set of partial derivatives (of all orders) of } f$$

 $\Gamma(f) \stackrel{\text{def}}{=} \dim \{\partial(f)\}$

Properties:

$$\Gamma(f+g) \leq \Gamma(f) + \Gamma(g)$$
 (sub-additivity)
$$\Gamma(fg) \leq \Gamma(f)\Gamma(g)$$

Measure based on Partial Derivative

[Nisan-Wigderson-97]

$$\partial(f) \stackrel{\text{def}}{=} \text{Set of partial derivatives (of all orders) of } f$$

 $\Gamma(f) \stackrel{\text{def}}{=} \dim \{\partial(f)\}$

Properties:

$$\Gamma(f+g) \leqslant \Gamma(f) + \Gamma(g)$$
 (sub-additivity)
$$\Gamma(fg) \leqslant \Gamma(f)\Gamma(g)$$

Application: Lower bounds on the elementary symmetric polynomials

Lower bounds on elementary symmetric polynomials (1/3)

Elementary symmetric polynomials of degree d on X_1, \ldots, X_n :

$$S_n^d = \sum_{T \in {[n] \choose d}} X_T$$
 where $X_T := \prod_{i \in T} X_i$

Lower bounds on elementary symmetric polynomials (1/3)

Elementary symmetric polynomials of degree d on X_1, \ldots, X_n :

$$S_n^d = \sum_{T \in {[n] \choose d}} X_T$$
 where $X_T := \prod_{i \in T} X_i$

<u>Step 1</u>: $\Gamma(f)$ is small for f computed by $\Sigma^{[s]}\Pi^{[d]}\Sigma$ circuits g of the form $\Pi^{[d]}\Sigma$: $g = \ell_1\ell_2 \dots \ell_d$ with ℓ_i affine $\partial(g) \subseteq \text{span}\{\prod_{i \in I} \ell_i \mid I \subset [d]\}$

Hence $\Gamma(g) \leq 2^d$

Lower bounds on elementary symmetric polynomials (1/3)

Elementary symmetric polynomials of degree d on X_1, \ldots, X_n :

$$S_n^d = \sum_{\mathcal{T} \in {[n] \choose d}} X_{\mathcal{T}}$$
 where $X_{\mathcal{T}} := \prod_{i \in \mathcal{T}} X_i$

<u>Step 1</u>: $\Gamma(f)$ is small for f computed by $\Sigma^{[s]}\Pi^{[d]}\Sigma$ circuits g of the form $\Pi^{[d]}\Sigma$: $g = \ell_1 \ell_2 \dots \ell_d$ with ℓ_i affine

$$\partial(g) \subseteq \operatorname{span}\{\prod_{i \in I} \ell_i \mid I \subset [d]\}$$

Hence $\Gamma(g) \leq 2^d$

f sum of s polynomials computed by $\Pi^{[d]}\Sigma$ circuits $\Gamma(f)\leqslant s\cdot 2^d$ by sub-additivity

Lower bounds on elementary symmetric polynomials (2/3)

Step 2: $\Gamma(S_n^d)$ is large

Lower bounds on elementary symmetric polynomials (2/3)

<u>Step 2</u>: $\Gamma(S_n^d)$ is large

Consider the matrix M:

- Rows indexed by subsets $A \in \binom{[n]}{d/2}$
- Columns indexed by subsets $B \in \binom{[n]}{d/2}$
- Column *B* is the polynomial $\frac{\partial S_n^d}{\partial X_B}$

Element in row A and column B is the coefficient of X_A in $\frac{\partial S_n^{n}}{\partial X_R}$
Lower bounds on elementary symmetric polynomials (2/3)

<u>Step 2</u>: $\Gamma(S_n^d)$ is large

Consider the matrix M:

- Rows indexed by subsets $A \in \binom{[n]}{d/2}$
- Columns indexed by subsets $B \in \binom{[n]}{d/2}$
- Column *B* is the polynomial $\frac{\partial S_n^d}{\partial X_B}$

Element in row A and column B is the coefficient of X_A in $\frac{\partial S_n^A}{\partial X_B}$

 $M_{A,B} = 1$ if $A \cap B = \emptyset$ and 0 otherwise M is a disjointness matrix, known to be full-rank

Hence, $\Gamma(S_n^d) \ge \binom{n}{d/2}$

Lower bounds on elementary symmetric polynomials (3/3)

Step 1: $\Gamma(f) \leq s \cdot 2^d$ is small for f computed by $\Sigma^{[s]} \Pi^{[d]} \Sigma$ circuit

<u>Step 2</u>: $\binom{n}{d/2} \leq \Gamma(S_n^d)$

Conclusion: if a $\Sigma^{[s]}\Pi^{[d]}\Sigma$ circuit computes S_n^d :

$$\binom{n}{d/2} \leqslant \Gamma(S_n^d) \leqslant s2^d$$

Hence $s = \Omega((\frac{n}{4d})^d)$

Rank of the coefficient matrix

[Raz-09] <u>Multilinear</u> polynomial f over variables XPartition of the variables $X = Y \cup Z$ Matrix M of coefficients:

 $\Gamma_{Y,Z}(f) = \operatorname{rank} \operatorname{of} M$

Rank of the coefficient matrix

[Raz-09] <u>Multilinear</u> polynomial f over variables XPartition of the variables $X = Y \cup Z$ Matrix M of coefficients:

 $\Gamma_{Y,Z}(f) = \operatorname{rank} \operatorname{of} M$

Remark. $\Gamma_{Y,Z}(f)$ is the rank of partial derivatives of all orders w.r.t. *Y* variables

Rank of the coefficient matrix: properties

* Subadditivity:

$$\Gamma(f+g)\leqslant \Gamma(f)+\Gamma(g)$$
 (because $M_{f+g}=M_f+M_g)$

 \star If f and g are polynomials over disjoint variables:

$$\Gamma(fg) = \Gamma(f)\Gamma(g)$$

(because $M_{fg} = M_f \otimes M_g$)

Proof sketch of separation in the multilinear setting

 \star The formula

$$(y_1 + z_1)(y_2 + z_2) \dots (y_n + z_n)$$

has rank 2^n with respect to the partition $Y \cup Z$ (maximum possible rank for 2n variables)

Proof sketch of separation in the multilinear setting

 \star The formula

$$(y_1 + z_1)(y_2 + z_2) \dots (y_n + z_n)$$

has rank 2^n with respect to the partition $Y \cup Z$ (maximum possible rank for 2n variables)

* But formulas have the following weakness [Raz-05]
 no small formula can be full rank for any balanced partition

Consider $f_1 f_2$ over 2n variables $(f_1, f_2 \text{ over disjoint sets of var.})$ f_i is over variables X_i , $n_i := |X_i|$, $n_1 + n_2 = 2n$ Consider a balanced partition of the variables $X = Y \cup Z$ $\rightarrow X_i = Y_i \cup Z_i$. Let $\delta := \frac{1}{2} ||Y_i| - |Z_i||$ Then

$$\Gamma_{f_1 f_2} \leqslant 2^{(n_1 - \delta)/2} 2^{(n_2 - \delta)/2} = \frac{1}{2^{\delta}} \cdot 2^{n_2}$$

Proof sketch of separation of multilinear formulas and circuits

* The is a polynomial size circuit computing a polynomial P which is full rank w.r.t. any balanced partition $X = Y \cup Z$ (dynamic programming)

* Consider a formula of $n^{O(1)}$ -size computing fOne can write

$$f = \sum_{i=1}^{s} f_{i,1} f_{i_2} \dots f_{i,\log n}$$

Proof sketch of separation of multilinear formulas and circuits

* The is a polynomial size circuit computing a polynomial P which is full rank w.r.t. any balanced partition $X = Y \cup Z$ (dynamic programming)

* Consider a formula of $n^{O(1)}$ -size computing fOne can write

$$f = \sum_{i=1}^{s} f_{i,1} f_{i_2} \dots f_{i,\log n}$$

For a random balanced partition $X = Y \cup Z$, with positive probability, the rank defect in each term is enough so that f not full rank for the partition $Y \cup Z$

Proof sketch of separation of multilinear formulas and circuits

* The is a polynomial size circuit computing a polynomial P which is full rank w.r.t. any balanced partition $X = Y \cup Z$ (dynamic programming)

* Consider a formula of $n^{O(1)}$ -size computing fOne can write

$$f = \sum_{i=1}^{s} f_{i,1} f_{i_2} \dots f_{i,\log n}$$

For a random balanced partition $X = Y \cup Z$, with positive probability, the rank defect in each term is enough so that f not full rank for the partition $Y \cup Z$

[Raz-06] Any multilinear formula computing P has size $n^{\Omega(\log n)}$

Formulas with small individual degree

[Raz-05] Any multilinear formula computing \det_n or per_n has size $n^{\Omega(\log n)}$

Question: Lower bound for the size of **multiquadratic** formula computing \det_n or per_n .

Formulas with small individual degree

[Raz-05] Any multilinear formula computing \det_n or per_n has size $n^{\Omega(\log n)}$

Question: Lower bound for the size of **multiquadratic** formula computing \det_n or per_n .

Related work: Lower bounds for homogeneous multi-r-ic formulas [Kayal-Saha-Tavenas-18]

Homogenization of circuits

Consider a circuit C computing a homogeneous polynomial of degree d: we will construct C' homogeneous circuit computing P

Each node u of the circuit C is replaced with u_0, \ldots, u_d in C' computing the homogeneous components of the polynomial computed at u in P.

- Addition gate: if u = v + w in C, $u_k = v_k + w_k$ in C'

- Product gate: if $u = v \times w$ in C, in C':

$$u_k = \sum_{i+j=k} v_i \times w_j$$

in C'.

Homogenization of circuits

Consider a circuit C computing a homogeneous polynomial of degree d: we will construct C' homogeneous circuit computing P

Each node u of the circuit C is replaced with u_0, \ldots, u_d in C' computing the homogeneous components of the polynomial computed at u in P.

- Addition gate: if u = v + w in C, $u_k = v_k + w_k$ in C'

- Product gate: if $u = v \times w$ in C, in C':

$$u_k = \sum_{i+j=k} v_i \times w_j$$

in C'.

If C has size s, C' has size $O(sd^2)$.

Homogenization of formulas

Given F formula of size s computing a polynomial of degree d:

- Do the circuit homogenization on ${\cal F}$ to get ${\cal C}'$ homogeneous circuit
- Duplicate gates in C' to get a homogeneous formula F'

F' has size $s^{\log d}$

Homogenization of formulas

Given F formula of size s computing a polynomial of degree d:

- Do the circuit homogenization on ${\cal F}$ to get ${\cal C}'$ homogeneous circuit
- Duplicate gates in C' to get a homogeneous formula F'

F' has size $s^{\log d}$

[Raz-10] A formula of size d and degree $d = O(\log s)$ can be homogenized in size $s^{O(1)}$.

Depth-reduction (parallelization)

With polynomial blow-up of size

- ★ Formulas: reduction to depth O(log s) (Brent, Kuck and Maruyama)
- Circuits: reduction de depth O(log d)
 (Valiant, Skyum, Berkowitz and Rackoff)

Depth-reduction (parallelization)

With polynomial blow-up of size

- Formulas: reduction to depth O(log s) (Brent, Kuck and Maruyama)
- Circuits: reduction de depth O(log d)
 (Valiant, Skyum, Berkowitz and Rackoff)
- With subexponential blow-up
 - \star Reduction to depth 4
 - (Agrawal and Vinay ; Koiran ; Tavenas)
 - \star Reduction to depth 3

(Gupta, Kamath, Kayal and Saptharishi)

Reduction to depth $O(\log s)$ for formulas

For a formula F of size s:

- Find a subformula G of size $\approx s/2$
- The polynomial computed by F can be written as

$$F = G \times H_1 + H_2$$

where H_1 and H_2 are also computed by formulas of size $\approx s/2$ Apply induction to these three subformulas G, H_1, H_2

Depth-reduction for formulas

[Fournier-Limaye-Malod-Srinivasan-Tavenas-23] Let F be a homogeneous algebraic formula of size s and syntactic degree d computing a polynomial P. Then P is also computed by a formula F' of size $s^{O(1)}$ and depth $O(\log d)$.

Depth-reduction for formulas

[Fournier-Limaye-Malod-Srinivasan-Tavenas-23] Let F be a homogeneous algebraic formula of size s and syntactic degree d computing a polynomial P. Then P is also computed by a formula F' of size $s^{O(1)}$ and depth $O(\log d)$.

Moreover, the construction preserves

- monotonicity
- non-commutativity
- (set-)multilinearity

Reducing the size blow-up

Depth-reduction with near-linear size [Bshouty-Cleve-Eberly-95], [Bonnet-Buss-94]

 $\varepsilon > 0$, F be a algebraic formula of size s computing P. Then there is an algebraic formula F' of – size at most $s^{1+\varepsilon}$ – depth $\Delta = 2^{O(1/\varepsilon)} \cdot \log s$ computing P.

Reducing the size blow-up

Depth-reduction with near-linear size [Bshouty-Cleve-Eberly-95], [Bonnet-Buss-94]

 $\varepsilon > 0$, F be a algebraic formula of size s computing P. Then there is an algebraic formula F' of – size at most $s^{1+\varepsilon}$ – depth $\Delta = 2^{O(1/\varepsilon)} \cdot \log s$ computing P.

The construction preserves

homogeneity

monotonicity

Depth-reduction with small size blow-up

Using the above result, we can prove the following improved version of our depth-reduction:

Assume that P is computed by a formula of size s and syntactic degree $d \ge 1$. Then P is also computed by a formula of size at most $s^{1+\varepsilon}$ and depth $\Delta = 2^{O(1/\varepsilon)} \cdot \log d$.

Works also in the non-commutative case. Preserves homogeneous and/or monotonicity. Depth-reduction: optimality in the monotone setting

Let *n* and d = d(n) be growing parameters such that $d(n) \le \sqrt{n}$.

Then there is a monotone algebraic formula F of size at most n and depth $O(\log d)$ computing a polynomial $P \in \mathbb{F}[x_1, \ldots, x_n]$ of degree at most d such that:

any monotone formula of depth $o(\log d)$ computing P must have size $n^{\omega(1)}$.

Optimality of $O(\log d)$ depth-reduction: the hard polynomial

Parameters $k \ge 1$ and $r \ge 2$. The polynomial $H = H^{(k,r)}$ is:

k-nested inner products, each one of size r

H is computed by a monotone formula *M* of size $(2r)^k$ and depth 2k, with a +-gate at the top, alternating layers of +-gates and \times -gates, with +-gates of fan-in *r* and \times -gates of fan-in 2, and leaves labelled with distinct variables.

H is a polynomial of degree $d = 2^k$ and has r^{d-1} monomials.

Optimality of $O(\log d)$ depth-reduction: the hard polynomial

Parameters $k \ge 1$ and $r \ge 2$. The polynomial $H = H^{(k,r)}$ is:

k-nested inner products, each one of size r

H is computed by a monotone formula *M* of size $(2r)^k$ and depth 2k, with a +-gate at the top, alternating layers of +-gates and \times -gates, with +-gates of fan-in *r* and \times -gates of fan-in 2, and leaves labelled with distinct variables.

H is a polynomial of degree $d = 2^k$ and has r^{d-1} monomials.

Lower bound: A monotone formula of product-depth $\Delta \leq \log d$ which computes H has size at least $r^{\Omega(\Delta d^{1/\Delta})}$.

Depth-reduction: proof (1/5)

Formula G of syntactic degree $d_G \ge 1$ and sum-depth $\Delta(G)$ Potential function $\phi_{\delta}(G)$:

$$egin{cases} \phi_{\delta,1}({\sf G}) = \lceil \log(d_{\sf G})
ceil \ \phi_{\delta,2}({\sf G}) = \lceil \Delta({\sf G})/\delta \rceil \end{cases}$$

and let

$$\phi_{\delta}(G) = \phi_{\delta,1}(G) + \phi_{\delta,2}(G).$$

 $(\delta$: positive integer to be chosen)

Depth-reduction: proof (2/5)

Formula F of

- size s
- syntactic degree d (not necessarily homogeneous)
- depth $O(\log s)$, fanin 2

(after classical depth-reduction).

Depth-reduction: proof (2/5)

Formula F of

– size s

- syntactic degree d (not necessarily homogeneous)
- depth $O(\log s)$, fanin 2

(after classical depth-reduction).

We prove that ${\it F}$ can be parallelized into a formula of arbitrary fan-in with

- product-depth at most $\phi_{\delta}(F)$
- size at most $s \cdot 2^{\delta \log(d)}$

Taking $\delta = \frac{\log s}{\log d}$ gives the result Potential function: $\phi_{\delta}(H) = \lceil \log(d_H) \rceil + \lceil \Delta(H)/\delta \rceil$

Depth-reduction: proof (3/5)

Potential function: $\phi_{\delta}(H) = \lceil \log(d_H) \rceil + \lceil \Delta(H) / \delta \rceil$

Consider the following set of gates of F:

$$\mathcal{A} = \left\{ \alpha \mid \phi_{\delta}(\mathcal{F}_{\alpha}) < \phi_{\delta}(\mathcal{F}) = \phi_{\delta}(\mathcal{F}_{\mathsf{parent}}(\alpha)) \right\}.$$

G: formula obtained from F by replacing gates from A by variables

Depth-reduction: proof (3/5)

Potential function: $\phi_{\delta}(H) = \lceil \log(d_H) \rceil + \lceil \Delta(H) / \delta \rceil$

Consider the following set of gates of F:

$$\mathcal{A} = \left\{ \alpha \mid \phi_{\delta}(\mathcal{F}_{\alpha}) < \phi_{\delta}(\mathcal{F}) = \phi_{\delta}(\mathcal{F}_{\mathsf{parent}}(\alpha)) \right\}.$$

G: formula obtained from F by replacing gates from A by variables

► G is skew

• G has sum-depth at most
$$\delta$$

Depth-reduction: proof (4/5)

Lemma] The polynomial computed by G is a multilinear polynomial with at most 2^{δ} monomials. Moreover any variable labelling in G

▶ son a +-leaf,

or son a ×-leaf, and whose sibling is a leaf

appears in exactly one monomial (non-duplicable leaves).

Depth-reduction: proof (4/5)

Lemma] The polynomial computed by G is a multilinear polynomial with at most 2^{δ} monomials. Moreover any variable labelling in G

▶ son a +-leaf,

or son a ×-leaf, and whose sibling is a leaf

appears in exactly one monomial (non-duplicable leaves).

Proof: parse trees

Depth-reduction: proof (5/5)

Start with *F* of fanin 2 and depth reduced to $O(\log s)$ Potential function $\phi_{\delta}(H) = \lceil \log(d_H) \rceil + \lceil \Delta(H)/\delta \rceil$ with $\delta = \frac{\log s}{\log d}$ $F = G(F_1, \ldots, F_\ell)$ where F_i are highest gates where ϕ decreases

- Write G as a $\sum \prod$ -formula
- Recurse on each F_i , where $F = G(F_1, \ldots, F_\ell)$

Depth-reduction: proof (5/5)

Start with *F* of fanin 2 and depth reduced to $O(\log s)$ Potential function $\phi_{\delta}(H) = \lceil \log(d_H) \rceil + \lceil \Delta(H)/\delta \rceil$ with $\delta = \frac{\log s}{\log d}$ $F = G(F_1, \ldots, F_\ell)$ where F_i are highest gates where ϕ decreases

• Write G as a $\sum \prod$ -formula

6

• Recurse on each F_i , where $F = G(F_1, \ldots, F_\ell)$

Depth of the formula obtained is $\phi_{\delta}(F) = O(\log d)$ Size of the resulting formula is bounded by

$$\sum_{\alpha \text{ non-duplicable }} \left(\mathbf{s}_{\alpha} \cdot 2^{\delta \log(d_{\alpha})} \right) + \left(2^{\delta} \cdot \sum_{\alpha \text{ duplicable }} \left(\mathbf{s}_{\alpha} \cdot 2^{\delta \log(d_{\alpha})} \right) \right).$$
Depth-reduction: proof (5/5)

Start with *F* of fanin 2 and depth reduced to $O(\log s)$ Potential function $\phi_{\delta}(H) = \lceil \log(d_H) \rceil + \lceil \Delta(H)/\delta \rceil$ with $\delta = \frac{\log s}{\log d}$ $F = G(F_1, \ldots, F_\ell)$ where F_i are highest gates where ϕ decreases

• Write G as a
$$\sum \prod$$
-formula

• Recurse on each F_i , where $F = G(F_1, \ldots, F_\ell)$

Depth of the formula obtained is $\phi_{\delta}(F) = O(\log d)$ Size of the resulting formula is bounded by

$$\sum_{\substack{\alpha \text{ non-duplicable}}} \left(s_{\alpha} \cdot 2^{\delta \log(d_{\alpha})} \right) + \left(2^{\delta} \cdot \sum_{\substack{\alpha \text{ duplicable}}} \left(s_{\alpha} \cdot 2^{\delta \log(d_{\alpha})} \right) \right).$$
$$\leq s \cdot 2^{\delta \log d} + \sum_{\substack{\alpha \text{ duplicable}}} 2^{\delta} \left(s_{\alpha} \cdot 2^{\delta(\log(d)-1)} \right)$$

Depth-reduction: proof (5/5)

Start with *F* of fanin 2 and depth reduced to $O(\log s)$ Potential function $\phi_{\delta}(H) = \lceil \log(d_H) \rceil + \lceil \Delta(H)/\delta \rceil$ with $\delta = \frac{\log s}{\log d}$ $F = G(F_1, \ldots, F_\ell)$ where F_i are highest gates where ϕ decreases

• Write G as a
$$\sum \prod$$
-formula

• Recurse on each F_i , where $F = G(F_1, \ldots, F_\ell)$

Depth of the formula obtained is $\phi_{\delta}(F) = O(\log d)$ Size of the resulting formula is bounded by

$$\sum_{\substack{\alpha \text{ non-duplicable}}} \left(s_{\alpha} \cdot 2^{\delta \log(d_{\alpha})} \right) + \left(2^{\delta} \cdot \sum_{\substack{\alpha \text{ duplicable}}} \left(s_{\alpha} \cdot 2^{\delta \log(d_{\alpha})} \right) \right).$$
$$\leq s \cdot 2^{\delta \log d} + \sum_{\substack{\alpha \text{ duplicable}}} 2^{\delta} \left(s_{\alpha} \cdot 2^{\delta(\log(d)-1)} \right)$$
$$\leq s \cdot 2^{\delta \log d} = s \cdot 2^{\log s} = s^{O(1)}$$

Structure inside VF

Consider these three classes

- homF[s(n)]: (f_n) computed by a homogeneous formula of size poly(s(n)),
- IowSynDegF[s(n)]: (f_n) computed by a formula of size poly(s(n)) and of syntactic degree poly(deg(f_n))
- IowDepthF[s(n)]: computed by a formula of size poly(s(n)) and of depth O(log deg(f_n)).

Structure inside VF

Consider these three classes

- homF[s(n)]: (f_n) computed by a homogeneous formula of size poly(s(n)),
- IowSynDegF[s(n)]: (f_n) computed by a formula of size poly(s(n)) and of syntactic degree poly(deg(f_n))
- IowDepthF[s(n)]: computed by a formula of size poly(s(n)) and of depth O(log deg(f_n)).

 $\mathsf{homF}[\operatorname{poly}(n)] \subseteq \mathsf{lowSynDegF}[\operatorname{poly}(n)] \subseteq \mathsf{lowDepthF}[\operatorname{poly}(n)] \subseteq \mathsf{VF},$

Question: which inclusions are strict?

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials $S_n^d(x_1, ..., x_n)$ * Computed by *inhomogeneous* formula of depth-3 and size $O(n^2)$ [Ben-Or]

 S_n^d is in lowDepthF[poly(n)].

 \star S_n^d has depth-6 formulas of syntactic degree at most $\mathrm{poly}(d)$ [Shpilka-Wigderson]

 S_n^d in lowSynDegF[poly(n)].

* S_n^d is not known to have poly(n)-sized homogeneous formulas

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials $S_n^d(x_1, ..., x_n)$ * Computed by *inhomogeneous* formula of depth-3 and size $O(n^2)$ [Ben-Or]

 S_n^d is in lowDepthF[poly(n)].

 \star S_n^d has depth-6 formulas of syntactic degree at most $\mathrm{poly}(d)$ [Shpilka-Wigderson]

 S_n^d in lowSynDegF[poly(n)].

 $\star~S^d_n$ is not known to have $\mathrm{poly}(n)\text{-sized}$ homogeneous formulas

If S_n^d does not have poly(n)-sized homogeneous formulas

 $\mathsf{homF}[\operatorname{poly}(n)] \subsetneq \mathsf{lowSynDegF}[\operatorname{poly}(n)]$

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials $S_n^d(x_1, ..., x_n)$ * Computed by *inhomogeneous* formula of depth-3 and size $O(n^2)$ [Ben-Or]

 S_n^d is in lowDepthF[poly(n)].

 $\star~S_n^d$ has depth-6 formulas of syntactic degree at most $\mathrm{poly}(d)$ [Shpilka-Wigderson]

$$S_n^d$$
 in lowSynDegF[poly(n)].

 $\star~S^d_n$ is not known to have $\mathrm{poly}(n)\text{-sized}$ homogeneous formulas

If S_n^d does not have poly(n)-sized homogeneous formulas

 $\mathsf{homF}[\operatorname{poly}(n)] \subsetneq \mathsf{lowSynDegF}[\operatorname{poly}(n)]$

If S_n^d is computed by poly(n)-sized homogeneous formulas, any depth-3 formula of polynomial size and low syntactic degree can be homogenized : $\sum [c \cdot \prod_i (1 + \ell_i)]$

Thank you!