Arithmetic circuits:
lower bounds by partial derivatives
and structural results

Hervé Fournier (Université Paris Cité)

July 10, 2023 Algebraic Complexity Workshop — ICALP

Polynomials

f(x1,x2,x3,xa) = 14+x1+x2+x3+xa

+ X1X2 + X1X3 + X1X4 + X2X3 + XoX4 + X3Xa
+ XoX3Xa + X1X3X4 + X1X0Xa + X1X2X3
+ X1X2X3X4

Polynomials

f(x1,x2,x3,xa) = 14+x1+x2+x3+xa

+ X1X2 + X1X3 + X1X4 + X2X3 + XoX4 + X3Xa
+ XoX3Xa + X1X3X4 + X1X0Xa + X1X2X3
+ X1X2X3X4

(L4 x)(1 + x2)(1 4 x3)(1 + xa)

more compact representation!

Arithmetic Formulas

f(x1, X0, X3, x4)

» Tree

P> Leaves containing variables or constants

Arithmetic Circuits

f(x1, x, x3)

Size = number of gates

Depth = longest path

Algebraic classes VP vs VNP

VP > (P,) if

— P, computed by circuits of size n
o(1)

o(1)

— P, has degree n

VNP : exponential sum in front of VP
(Qn) € VNP if there exists P,(X,y) € VP s.t.

Qu(x)= Y Pa(X.7)

ye{0,1}1¥!

[Valiant-79] VP = VNP?

What does VNP contain?

» polynomials with coefficients computable in polynomial time

What does VNP contain?

» polynomials with coefficients computable in polynomial time

P in particular: generating functions of graph properties
— Permanent: perfect matchings of K, , (cycle covers of Kj,)

E Xivjy + -+ XKinsji

{(11)s---,(injn)} perfect matching

What does VNP contain?

» polynomials with coefficients computable in polynomial time

P in particular: generating functions of graph properties
— Permanent: perfect matchings of K, , (cycle covers of Kj,)

> K« ++ Xin o
{(i1,j1),---,(in,jn)} perfect matching

— Hamiltonian cycles of K,

>, IIx

C Ham. cycle eeC

Determinant vs. Permanent

Det,,(xll, RN ,X,,,,) = Z sign(a) *X1o(1) -+ + Xno(n)
CTESn
Perm,(x11,...,Xnn) = Z X1g(1) - - - Xno(n)

g€S,

Determinant vs. Permanent

Det,,(xll, RN ,X,,,,) = Z sign(a) *X1o(1) -+ + Xno(n)
UESn
Perm,(x11,...,Xnn) = Z X1g(1) - - - Xno(n)
g€S,

(Det,) € VP, (Perm,) € VNP

Variant of VP vs. VNP:
Is the Permanent a projection of a "not too large" Determinant?

Algebraic vs. Boolean lower bounds

[Biirgisser-99] (Under GRH) If VP = VNP over C, then
#P C FNC (non-uniform)

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

[Baur-Strassen-83] Computing
XP + X+ Xy

requires Q(nlog n) arithmetic operations.

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

[Baur-Strassen-83] Computing

XP + X+ Xy
requires Q(nlog n) arithmetic operations.
Strong lower bounds for restricted models:

— branching program, formulas, bounded-depth formulas

— non-commutative, monotone, multilinear models

Restricted circuits
* A circuit C is homogeneous if every gate computes a
homogeneous polynomial.

* A circuit C is multilinear if every gate computes a multilinear
polynomial.

Restricted circuits
* A circuit C is homogeneous if every gate computes a
homogeneous polynomial.

* A circuit C is multilinear if every gate computes a multilinear
polynomial.

A circuit computing a homogeneous or multilinear polynomial may
not be homogeneous or multilinear

Many lower bounds hold for such restricted models of computation

Complexity of the elementary symmetric polynomials S¢

Elementary symmetric polynomials of degree d on Xi,..., X:

Si= > Xr where X7 :=[[X

Complexity of the elementary symmetric polynomials S¢

Elementary symmetric polynomials of degree d on Xi,..., X:
S= > Xr where Xy =[] X

Upper bound by interpolation

S is the coefficent of T"9 in
(T+X)(T+X2)...(T+ Xp)

so it is equal to a linear combination of this polynomial (in T)
evaluated at n distinct points

Complexity of the elementary symmetric polynomials S¢

Elementary symmetric polynomials of degree d on Xi,..., X:
S= > Xr where Xy =[] X

Upper bound by interpolation

S is the coefficent of T"9 in
(T+X)(T+X2)...(T+ Xp)

so it is equal to a linear combination of this polynomial (in T)
evaluated at n distinct points

= YNY formula of size O(n?)

Remark: the formula obtained is not multilinear and not
homogeneous

Model

Lower bound

Lower bounds for restricted models

General circuits

Monotone
Formula

Homogeneous
Depth-3 circuits

Multilinear
formula

Constant-depth
circuits

(poly of small degree d)

Q(nlog n)

29(n)

29(n)

2Q(n log n)

d92(1)

[Baur-Strassen-83]

[Nisan-91]

[Nisan-Wigderson-97]

[Raz-09]

[Limaye-Srinivasan-Tavenas-21]

Outline

» Some lower bounds based on partial derivatives

* Partial derivatives of order 1
* Dimension of partial derivatives of all order
* Partial derivatives w.r.t. a subset of variables

» Structural results

* homogenization
* depth-reduction

Computing all partial derivatives of degree 1

Lemma (Baur and Strassen)
If P(x1,...,xn) is computed by a circuit of size s, there is a circuit

of size O(S) COIHpUtiFIg
{] n}
ox1’ 7 Ox '

Proof. By induction on the size on the size of the circuit, using
chain rule for partial derivatives.

Computing all partial derivatives of degree 1

Lemma (Baur and Strassen)
If P(x1,...,xn) is computed by a circuit of size s, there is a circuit

of size O(S) computing
{] n}
ox1’ 7 Ox '

Proof. By induction on the size on the size of the circuit, using
chain rule for partial derivatives.

(Proof of lower bound.) Let

P:xf—l—xzd—&—...—i—x,‘,j

computed by a circuit of size s. There is a circuit of size O(s)
computing simultaneously xf, oo xd.
Using Bezout this requires nlog d products: s = Q(nlog d).

(tight by doing fast exponentiation)

Computing all partial derivatives of degree 1

Multinear setting

A circuit is syntactically multilinear if for any product gate P x Q,
the polynomials P and @ are over disjoint sets of variables

Lemma

If a polynomial is computed by a syntactically multilinear circuit of
size s, all its first order partial derivatives are computed by a
syntactically multilinear circuit of size O(s).

Applications in the mutilinear setting:
* NCp # NCy (formulas C circuits)
* Q(n?/log? n) lower bound

Computing all partial derivatives of degree 1

Non-commutative setting [P.Chaterjee-Hrubes-23]

Partial derivative with respect to the first position:
Ox(xu) = u (where u non-commutative monomial)

Ox(yu) = 0 (y variable, y # x)

Lemma

If P € C(xi,...,xn) is computed by a homogeneous
non-commutative circuit of size s, all 0x,P (i € [n]) can be
simultaneously computed by a homogeneous circuit of size O(s).

Application:
Q(nd) lower bound for the size of homogeneous non-commutative
circuits (for some polynomial of degree d over n variables)

Computing all partial derivatives of degree 1

Non-commutative setting [P.Chaterjee-Hrubes-23]

Partial derivative with respect to the first position:
Ox(xu) = u (where u non-commutative monomial)

Ox(yu) = 0 (y variable, y # x)

Lemma

If P € C(xi,...,xn) is computed by a homogeneous
non-commutative circuit of size s, all 0x,P (i € [n]) can be
simultaneously computed by a homogeneous circuit of size O(s).

Application:
Q(nd) lower bound for the size of homogeneous non-commutative
circuits (for some polynomial of degree d over n variables)

Question: can homogeneity assumption be removed?

Complexity measure [

Construct a map I : F[xq, ..., x,] — N, that assigns a number to
every polynomial such that:

1. If f is computable by “small” circuits, then I'(f) is “small”.

2. For the polynomial f for which we wish to show a lower
bound, I'(f) is “large”.

Measure based on Partial Derivative

[Nisan-Wigderson-97]

o(f) %' Set of partial derivatives (of all orders) of
r(f)y = dim{o(f)}

Measure based on Partial Derivative

[Nisan-Wigderson-97]

o(f) %' Set of partial derivatives (of all orders) of
r(f)y = dim{o(f)}

Properties:
> I(f+g)<T(f)+T(g) (sub-additivity)
> T(fg) <T(F)(g)

Measure based on Partial Derivative

[Nisan-Wigderson-97]

o(f) %' Set of partial derivatives (of all orders) of
r(f)y = dim{o(f)}

Properties:
> I(f+g)<T(f)+T(g) (sub-additivity)
> T(fg) <T(F)(g)

Application: Lower bounds on the elementary symmetric
polynomials

Lower bounds on elementary symmetric polynomials (1/3)

Elementary symmetric polynomials of degree d on Xi,..., X:

5,7 = Z X1 where X := H X;
TE([Z]) ieT

Lower bounds on elementary symmetric polynomials (1/3)

Elementary symmetric polynomials of degree d on Xi,..., X;:
5,7 = Z Xt where X7 = H X;
TE([Z]) ieT
Step 1: T'(f) is small for f computed by ZIEINIY circuits

g of the form MUY : g = ¢14, ... 04 with ¢; affine

d(g) Cspan{]] 4 | 1 C[d]}

iel

Hence I'(g) < 2¢

Lower bounds on elementary symmetric polynomials (1/3)

Elementary symmetric polynomials of degree d on Xi,..., X;:
5,‘,1 = Z X1 where X := H X;
TE([Z]) ieT

Step 1: T'(f) is small for f computed by ZIEINIY circuits

g of the form MUY : g = ¢14, ... 04 with ¢; affine
d(g) Cspan{]] 4 | 1 C[d]}
iel
Hence I'(g) < 2¢

f sum of s polynomials computed by MN9E circuits
F(f) < s-29 by sub-additivity

Lower bounds on elementary symmetric polynomials (2/3)

Step 2: T(S9) is large

Lower bounds on elementary symmetric polynomials (2/3)

Step 2: I(SY) is large

Consider the matrix M:
— Rows indexed by subsets A € ((5'/’]2)

— Columns indexed by subsets B € ((57]2)

. ., 9sd
— Column B is the polynomial X

. - . d
Element in row A and column B is the coefficient of X4 in gi’;

Lower bounds on elementary symmetric polynomials (2/3)

Step 2: I(SY) is large

Consider the matrix M:
— Rows indexed by subsets A € ([7)

d/2
— Columns indexed by subsets B € ((57]2)
- . 959
— Column B is the polynomial X d
Element in row A and column B is the coefficient of X4 in gf(;

Mag =1if AN B =0 and 0 otherwise
M is a disjointness matrix, known to be full-rank

Hence, (S9) > (d72)

Lower bounds on elementary symmetric polynomials (3/3)

Step 1: T(f) <'s-29 is small for f computed by XN circuit
Step 2: (47,) <T(SF)

Conclusion: if a MY circuit computes S¢:

(d'}2> < 1(s9) < s2¢

Hence s = Q((%)?)

Rank of the coefficient matrix

[Raz-09] Multilinear polynomial f over variables X

Partition of the variables X = YUZ
Matrix M of coefficients:

Y monomials

Z monomials
(coef)

ry7z(f) = rank of M

Rank of the coefficient matrix

[Raz-09] Multilinear polynomial f over variables X

Partition of the variables X = YUZ
Matrix M of coefficients:

Y monomials

Z monomials
(coef)

ry7z(f) = rank of M

Remark. Ty z(f) is the rank of partial derivatives of all orders
w.r.t. Y variables

Rank of the coefficient matrix: properties

* Subadditivity:
M(f+g) <T(f)+T(g)

(because Mry, = Mr + Mjg)

* If f and g are polynomials over disjoint variables:

M(fg) =T(f)(g)

(because Mg, = Mf @ M)

Proof sketch of separation in the multilinear setting
* The formula

+z1)(y2+22) ... (Yo + 2n)

has rank 2" with respect to the partition Y U Z
(maximum possible rank for 2n variables)

Proof sketch of separation in the multilinear setting
* The formula

+z1)(y2+22) ... (Yo + 2n)

has rank 2" with respect to the partition Y U Z
(maximum possible rank for 2n variables)

* But formulas have the following weakness [Raz-05]
no small formula can be full rank for any balanced partition

Consider f1f, over 2n variables (f1, f» over disjoint sets of var.)
fi is over variables X;, n; := |Xi|, n1 + np =2n

Consider a balanced partition of the variables X = YU Z

— Xi=Y;UZ. Let 6 := 3||Yi| — | Z|

Then

_ _ 1
rflfz < 2(/71 5)/22(!12 4)/2 — ? X 2n

Proof sketch of separation of multilinear formulas and
circuits

* The is a polynomial size circuit computing a polynomial P which
is full rank w.r.t. any balanced partition X = Y U Z (dynamic
programming)

* Consider a formula of n®®)-size computing f
One can write

f= Z f;'71ﬁ'2 cee f;’,logn
i=1

Proof sketch of separation of multilinear formulas and
circuits

* The is a polynomial size circuit computing a polynomial P which
is full rank w.r.t. any balanced partition X = Y U Z (dynamic
programming)

* Consider a formula of n®®)-size computing f
One can write

f= Z f;'71fi2 cee fi,logn
i=1

For a random balanced partition X = Y U Z, with positive
probability, the rank defect in each term is enough so that f not
full rank for the partition Y U Z

Proof sketch of separation of multilinear formulas and
circuits

* The is a polynomial size circuit computing a polynomial P which
is full rank w.r.t. any balanced partition X = Y U Z (dynamic
programming)

* Consider a formula of n®®)-size computing f
One can write

S
f= Z f;'71fi2 cee fi,logn
i=1
For a random balanced partition X = Y U Z, with positive
probability, the rank defect in each term is enough so that f not

full rank for the partition Y U Z

[Raz-06] Any multilinear formula computing P has size n®(log")

Formulas with small individual degree

[Raz-05] Any multilinear formula computing det, or per,, has size
n(log n)

Question: Lower bound for the size of multiquadratic formula
computing det, or per,,.

Formulas with small individual degree

[Raz-05] Any multilinear formula computing det, or per,, has size
n(log n)

Question: Lower bound for the size of multiquadratic formula
computing det, or per,,.

Related work: Lower bounds for homogeneous multi-r-ic formulas
[Kayal-Saha-Tavenas-18|

Homogenization of circuits

Consider a circuit C computing a homogeneous polynomial of
degree d: we will construct C' homogeneous circuit computing P

Each node v of the circuit C is replaced with ug, ..., uq in C’
computing the homogeneous components of the polynomial
computed at u in P.

— Addition gate: if u=v+win C, ux = v, + wi in C’

— Product gate: if u=v x win C, in C":

Uy = Z Vi X Wj

i+j=k

in C'.

Homogenization of circuits

Consider a circuit C computing a homogeneous polynomial of
degree d: we will construct C' homogeneous circuit computing P

Each node v of the circuit C is replaced with ug, ..., uq in C’
computing the homogeneous components of the polynomial
computed at u in P.

— Addition gate: if u=v+win C, ux = v, + wi in C’

— Product gate: if u=v x win C, in C":

Uy = Z Vi X Wj

i+j=k

in C'.

If C has size s, C’ has size O(sd?).

Homogenization of formulas

Given F formula of size s computing a polynomial of degree d:

— Do the circuit homogenization on F to get C’ homogeneous
circuit
— Duplicate gates in C’ to get a homogeneous formula F’

F’ has size s'°&d

Homogenization of formulas

Given F formula of size s computing a polynomial of degree d:

— Do the circuit homogenization on F to get C’ homogeneous
circuit
— Duplicate gates in C’ to get a homogeneous formula F’

F’ has size s'°8d

[Raz-10] A formula of size d and degree d = O(logs) can be

homogenized in size sO().

Depth-reduction (parallelization)

> With polynomial blow-up of size
* Formulas: reduction to depth O(logs)
(Brent, Kuck and Maruyama)
* Circuits: reduction de depth O(log d)
(Valiant, Skyum, Berkowitz and Rackoff)

Depth-reduction (parallelization)

> With polynomial blow-up of size
* Formulas: reduction to depth O(logs)
(Brent, Kuck and Maruyama)
* Circuits: reduction de depth O(log d)
(Valiant, Skyum, Berkowitz and Rackoff)

> With subexponential blow-up
* Reduction to depth 4
(Agrawal and Vinay ; Koiran ; Tavenas)
* Reduction to depth 3
(Gupta, Kamath, Kayal and Saptharishi)

Reduction to depth O(logs) for formulas

For a formula F of size s:
» Find a subformula G of size ~ s/2

» The polynomial computed by F can be written as
F=GxHi+ H>

where H; and Hy are also computed by formulas of size ~ s/2

» Apply induction to these three subformulas G, Hy, H»

Depth-reduction for formulas

[Fournier-Limaye-Malod-Srinivasan-Tavenas-23] Let F be a
homogeneous algebraic formula of size s and syntactic degree d
computing a polynomial P. Then P is also computed by a formula
F' of size s9(Y) and depth O(log d).

Depth-reduction for formulas

[Fournier-Limaye-Malod-Srinivasan-Tavenas-23] Let F be a
homogeneous algebraic formula of size s and syntactic degree d
computing a polynomial P. Then P is also computed by a formula
F' of size s9(Y) and depth O(log d).

Moreover, the construction preserves
> monotonicity
P> non-commutativity

> (set-)multilinearity

Reducing the size blow-up

Depth-reduction with near-linear size [Bshouty-Cleve-Eberly-95],
[Bonnet-Buss-94]

€ > 0, F be a algebraic formula of size s computing P.
Then there is an algebraic formula F’ of

— size at most s11¢

— depth A =20(/9) . |og s

computing P.

Reducing the size blow-up

Depth-reduction with near-linear size [Bshouty-Cleve-Eberly-95],
[Bonnet-Buss-94]

€ > 0, F be a algebraic formula of size s computing P.
Then there is an algebraic formula F’ of

— size at most s11¢

— depth A =20(/9) . |og s

computing P.

The construction preserves
» homogeneity

> monotonicity

Depth-reduction with small size blow-up

Using the above result, we can prove the following improved
version of our depth-reduction:

Assume that P is computed by a formula of size s and syntactic
degree d > 1. Then P is also computed by a formula of size at
most s17¢ and depth A = 29(1/¢) . jog d.

Works also in the non-commutative case.
Preserves homogeneous and/or monotonicity.

Depth-reduction: optimality in the monotone setting

Let n and d = d(n) be growing parameters such that d(n) < /n.

Then there is a monotone algebraic formula F of size at most n
and depth O(log d) computing a polynomial P € F[xy, ..., x,] of
degree at most d such that:

any monotone formula of depth o(log d) computing P must have

size n¥(1),

Optimality of O(log d) depth-reduction: the hard
polynomial

Parameters k > 1 and r > 2. The polynomial H = H(k.r) is:
k-nested inner products, each one of size r

H is computed by a monotone formula M of size (2r)* and depth
2k, with a +-gate at the top, alternating layers of +-gates and
x-gates, with +-gates of fan-in r and x-gates of fan-in 2, and
leaves labelled with distinct variables.

H is a polynomial of degree d = 2% and has r?—! monomials.

Optimality of O(log d) depth-reduction: the hard
polynomial

Parameters k > 1 and r > 2. The polynomial H = H(k.r) is:
k-nested inner products, each one of size r

H is computed by a monotone formula M of size (2r)* and depth
2k, with a +-gate at the top, alternating layers of +-gates and
x-gates, with +-gates of fan-in r and x-gates of fan-in 2, and
leaves labelled with distinct variables.

1

H is a polynomial of degree d = 2% and has r?—! monomials.

Lower bound: A monotone formula of product-depth A < log d
which computes H has size at least FUATYE),

Depth-reduction: proof (1/5)

Formula G of syntactic degree dg > 1 and sum-depth A(G)
Potential function ¢5(G):

{¢5,1(G) = [log(dc)]
$52(G) = [A(G)/6]

and let
$5(G) = ¢5,1(G) + d52(G).

(6 : positive integer to be chosen)

Depth-reduction: proof (2/5)

Formula F of
— size s
— syntactic degree d (not necessarily homogeneous)
— depth O(logs), fanin 2

(after classical depth-reduction).

Depth-reduction: proof (2/5)

Formula F of
— size s
— syntactic degree d (not necessarily homogeneous)
— depth O(logs), fanin 2

(after classical depth-reduction).

We prove that F can be parallelized into a formula of arbitrary
fan-in with
— product-depth at most ¢s(F)

— size at most s - 2908(d)

Taking 6 = I'gg; gives the result
Potential function: ¢s(H) = [log(dn)] + [A(H)/d]

Depth-reduction: proof (3/5)

Potential function: ¢s(H) = [log(dn)] + [A(H)/d]
Consider the following set of gates of F:

A= {CY ’ ¢5(Fa) < ¢6(F) = d)é(Fparent(a))} :

G: formula obtained from F by replacing gates from A by variables

Depth-reduction: proof (3/5)

Potential function: ¢s(H) = [log(dn)] + [A(H)/d]
Consider the following set of gates of F:

A= {CY ’ ¢5(Fa) < ¢6(F) = d)é(Fparent(a))} :

G: formula obtained from F by replacing gates from A by variables

> G is skew
» G has sum-depth at most ¢

Depth-reduction: proof (4/5)

Lemma] The polynomial computed by G is a multilinear
polynomial with at most 2° monomials. Moreover any variable
labelling in G

> son a +-leaf,
P> or son a x-leaf, and whose sibling is a leaf

appears in exactly one monomial (non-duplicable leaves).

Depth-reduction: proof (4/5)

Lemma] The polynomial computed by G is a multilinear
polynomial with at most 2° monomials. Moreover any variable
labelling in G

> son a +-leaf,
P> or son a x-leaf, and whose sibling is a leaf

appears in exactly one monomial (non-duplicable leaves).

Proof: parse trees

Depth-reduction: proof (5/5)

Start with F of fanin 2 and depth reduced to O(log s)

Potential function ¢;(H) = [log(du)] + [A(H)/6] with § = {25

F = G(F1,..., Fs) where F; are highest gates where ¢ decreases

» Write G as a >_ [[-formula
» Recurse on each F;, where F = G(Fy,..., F)

Depth-reduction: proof (5/5)

Start with F of fanin 2 and depth reduced to O(log s)
Potential function ¢s(H) = [log(dn)] + [A(H)/8] with § = %=

log d
F = G(F1,..., Fs) where F; are highest gates where ¢ decreases

» Write G as a >_ [[-formula
» Recurse on each F;, where F = G(Fy,..., F)

Depth of the formula obtained is ¢s(F) = O(log d)
Size of the resulting formula is bounded by

Z (Sa .90 |0g(da)) + (25) Z (Sa i 25|0g(da)>) .

« non-duplicable « duplicable

Depth-reduction: proof (5/5)

Start with F of fanin 2 and depth reduced to O(log s)

Potential function ¢;(H) = [log(du)] + [A(H)/6] with § = {25

F = G(F1,..., Fs) where F; are highest gates where ¢ decreases

» Write G as a >_ [[-formula
» Recurse on each F;, where F = G(Fy,..., F)

Depth of the formula obtained is ¢s(F) = O(log d)
Size of the resulting formula is bounded by

Z (Sa .90 |0g(da)) + (25) Z (Sa i 25|0g(da)>) .

« non-duplicable « duplicable

<s- 25 log d + Z 26 <5a . 25(|og(d)—1))

« duplicable

Depth-reduction: proof (5/5)

Start with F of fanin 2 and depth reduced to O(log s)

Potential function ¢;(H) = [log(du)] + [A(H)/6] with § = {25

F = G(F1,..., Fs) where F; are highest gates where ¢ decreases

» Write G as a >_ [[-formula
» Recurse on each F;, where F = G(Fy,..., F)

Depth of the formula obtained is ¢s(F) = O(log d)
Size of the resulting formula is bounded by

Z (Sa .90 |0g(da)) + (25) Z (Sa i 25|0g(da)>) .

« non-duplicable « duplicable

<s- 25 log d + Z 26 <5a . 25(|og(d)—1))

« duplicable

<s- 26|ogd: g .logs _ 5O(l)

Structure inside VF

Consider these three classes
» homF[s(n)]: (f,) computed by a homogeneous formula of size
poly(s(n)).
» lowSynDegF[s(n)]: (f;) computed by a formula of size
poly(s(n)) and of syntactic degree poly(deg(f,))

» lowDepthF[s(n)]: computed by a formula of size poly(s(n))
and of depth O(logdeg(fy)).

Structure inside VF

Consider these three classes

» homF[s(n)]: (f,) computed by a homogeneous formula of size
poly(s(n)).

» lowSynDegF[s(n)]: (f;) computed by a formula of size
poly(s(n)) and of syntactic degree poly(deg(f,))

» lowDepthF[s(n)]: computed by a formula of size poly(s(n))
and of depth O(logdeg(fy)).

homF[poly(n)] C lowSynDegF[poly(n)] C lowDepthF[poly(n)] C VF,

Question: which inclusions are strict?

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials S9(xq, .. ., X,)
x Computed by inhomogeneous formula of depth-3 and size O(n?)
[Ben-Or]

Sd is in lowDepthF[poly(n)].

* S9 has depth-6 formulas of syntactic degree at most poly(d)
[Shpilka-Wigderson]

S9 in lowSynDegF[poly(n)].

x §9 is not known to have poly(n)-sized homogeneous formulas

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials S9(xq, .. ., X,)
x Computed by inhomogeneous formula of depth-3 and size O(n?)
[Ben-Or]

Sd is in lowDepthF[poly(n)].

* S9 has depth-6 formulas of syntactic degree at most poly(d)
[Shpilka-Wigderson]

S9 in lowSynDegF[poly(n)].

x §9 is not known to have poly(n)-sized homogeneous formulas

If S does not have poly(n)-sized homogeneous formulas

homF[poly(n)] € lowSynDegF[poly(n)]

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials S9(xq, .. ., X,)
x Computed by inhomogeneous formula of depth-3 and size O(n?)
[Ben-Or]

Sd is in lowDepthF[poly(n)].

* S9 has depth-6 formulas of syntactic degree at most poly(d)
[Shpilka-Wigderson]

S9 in lowSynDegF[poly(n)].

x §9 is not known to have poly(n)-sized homogeneous formulas

If S does not have poly(n)-sized homogeneous formulas
homF[poly(n)] € lowSynDegF[poly(n)]

If S¢ is computed by poly(n)-sized homogeneous formulas, any
depth-3 formula of polynomial size and low syntactic degree can be
homogenized : Y [c - [[;(1 + ;)]

Thank you!

