Arithmetic circuits:
 lower bounds by partial derivatives and structural results

Hervé Fournier (Université Paris Cité)

July 10, 2023 Algebraic Complexity Workshop - ICALP

Polynomials

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1+x_{1}+x_{2}+x_{3}+x_{4} \\
& +x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& +x_{2} x_{3} x_{4}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3} \\
& +x_{1} x_{2} x_{3} x_{4}
\end{aligned}
$$

Polynomials

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & 1+x_{1}+x_{2}+x_{3}+x_{4} \\
& +x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& +x_{2} x_{3} x_{4}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3} \\
& +x_{1} x_{2} x_{3} x_{4} \\
= & \left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)\left(1+x_{4}\right)
\end{aligned}
$$

Arithmetic Formulas

- Tree
- Leaves containing variables or constants

Arithmetic Circuits

Algebraic classes VP vs VNP

VP $\ni\left(P_{n}\right)$ if

- P_{n} computed by circuits of size $n^{O(1)}$
- P_{n} has degree $n^{O(1)}$

VNP : exponential sum in front of VP $\left(Q_{n}\right) \in \mathrm{VNP}$ if there exists $P_{n}(\bar{x}, \bar{y}) \in \mathrm{VP}$ s.t.

$$
Q_{n}(\bar{x})=\sum_{\bar{y} \in\{0,1\}|\bar{y}|} P_{n}(\bar{x}, \bar{y})
$$

[Valiant-79] VP $=$ VNP?

What does VNP contain?

- polynomials with coefficients computable in polynomial time

What does VNP contain?

- polynomials with coefficients computable in polynomial time
- in particular: generating functions of graph properties - Permanent: perfect matchings of $K_{n, n}$ (cycle covers of K_{n})

$$
\sum_{\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{n}, j_{n}\right)\right\} \text { perfect matching }} X_{i_{1}, j_{1}} \ldots X_{i_{n}, j_{n}}
$$

What does VNP contain?

- polynomials with coefficients computable in polynomial time
- in particular: generating functions of graph properties - Permanent: perfect matchings of $K_{n, n}$ (cycle covers of K_{n})

$$
\sum_{\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{n}, j_{n}\right)\right\} \text { perfect matching }} X_{i_{1}, j_{1}} \ldots X_{i_{n}, j_{n}}
$$

- Hamiltonian cycles of K_{n}

$$
\sum_{C \text { Ham. cycle }} \prod_{e \in C} X_{e}
$$

Determinant vs. Permanent

$$
\begin{aligned}
\operatorname{Det}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot x_{1 \sigma(1)} \ldots x_{n \sigma(n)} \\
\operatorname{Perm}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \quad x_{1 \sigma(1)} \ldots x_{n \sigma(n)}
\end{aligned}
$$

Determinant vs. Permanent

$$
\begin{aligned}
\operatorname{Det}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot x_{1 \sigma(1)} \ldots x_{n \sigma(n)} \\
\operatorname{Perm}_{n}\left(x_{11}, \ldots, x_{n n}\right) & =\sum_{\sigma \in S_{n}} \quad x_{1 \sigma(1)} \ldots x_{n \sigma(n)}
\end{aligned}
$$

$\left(\operatorname{Det}_{n}\right) \in \mathrm{VP},\left(\mathrm{Perm}_{n}\right) \in \mathrm{VNP}$

Variant of VP vs. VNP:
Is the Permanent a projection of a "not too large" Determinant?

Algebraic vs. Boolean lower bounds

[Bürgisser-99] (Under GRH) If VP $=$ VNP over \mathbb{C}, then $\# \mathrm{P} \subseteq$ FNC (non-uniform)

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials
[Baur-Strassen-83] Computing

$$
x_{1}^{n}+x_{2}^{n}+\ldots+x_{n}^{n}
$$

requires $\Omega(n \log n)$ arithmetic operations.

Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials
[Baur-Strassen-83] Computing

$$
x_{1}^{n}+x_{2}^{n}+\ldots+x_{n}^{n}
$$

requires $\Omega(n \log n)$ arithmetic operations.

Strong lower bounds for restricted models:

- branching program, formulas, bounded-depth formulas
- non-commutative, monotone, multilinear models

Restricted circuits

* A circuit C is homogeneous if every gate computes a homogeneous polynomial.
\star A circuit C is multilinear if every gate computes a multilinear polynomial.

Restricted circuits

\star A circuit C is homogeneous if every gate computes a homogeneous polynomial.
\star A circuit C is multilinear if every gate computes a multilinear polynomial.

A circuit computing a homogeneous or multilinear polynomial may not be homogeneous or multilinear

Many lower bounds hold for such restricted models of computation

Complexity of the elementary symmetric polynomials S_{n}^{d}

Elementary symmetric polynomials of degree d on X_{1}, \ldots, X_{n} :

$$
S_{n}^{d}=\sum_{T \in\binom{[n]}{d}} X_{T} \quad \text { where } X_{T}:=\prod_{i \in T} X_{i}
$$

Complexity of the elementary symmetric polynomials S_{n}^{d}

Elementary symmetric polynomials of degree d on X_{1}, \ldots, X_{n} :

$$
S_{n}^{d}=\sum_{T \in\binom{[n]}{d}} X_{T} \quad \text { where } X_{T}:=\prod_{i \in T} X_{i}
$$

Upper bound by interpolation S_{n}^{d} is the coefficent of T^{n-d} in

$$
\left(T+X_{1}\right)\left(T+X_{2}\right) \ldots\left(T+X_{n}\right)
$$

so it is equal to a linear combination of this polynomial (in T) evaluated at n distinct points

Complexity of the elementary symmetric polynomials S_{n}^{d}

Elementary symmetric polynomials of degree d on X_{1}, \ldots, X_{n} :

$$
S_{n}^{d}=\sum_{T \in\binom{[n]}{d}} X_{T} \quad \text { where } X_{T}:=\prod_{i \in T} X_{i}
$$

Upper bound by interpolation S_{n}^{d} is the coefficent of T^{n-d} in

$$
\left(T+X_{1}\right)\left(T+X_{2}\right) \ldots\left(T+X_{n}\right)
$$

so it is equal to a linear combination of this polynomial (in T) evaluated at n distinct points
$\Rightarrow \Sigma \Pi \Sigma$ formula of size $O\left(n^{2}\right)$
Remark: the formula obtained is not multilinear and not homogeneous

Lower bounds for restricted models

Model

General circuits $\quad \Omega(n \log n)$
Monotone $\quad 2^{\Omega(n)}$
Formula

Homogeneous $\quad 2^{\Omega(n)}$
Depth-3 circuits

Multilinear $\quad 2^{\Omega(n \log n)}$
formula

Constant-depth $n^{d^{\Omega(1)}}$ circuits
(poly of small degree d)
[Baur-Strassen-83]
[Nisan-91]
[Nisan-Wigderson-97]
[Limaye-Srinivasan-Tavenas-21]

Outline

- Some lower bounds based on partial derivatives
\star Partial derivatives of order 1
\star Dimension of partial derivatives of all order
\star Partial derivatives w.r.t. a subset of variables
- Structural results
\star homogenization
\star depth-reduction

Computing all partial derivatives of degree 1

Lemma (Baur and Strassen)
If $P\left(x_{1}, \ldots, x_{n}\right)$ is computed by a circuit of size s, there is a circuit of size $O(s)$ computing

$$
\left\{\frac{\partial P}{\partial x_{1}}, \ldots, \frac{\partial P}{\partial x_{n}}\right\} .
$$

Proof. By induction on the size on the size of the circuit, using chain rule for partial derivatives.

Computing all partial derivatives of degree 1

Lemma (Baur and Strassen)

If $P\left(x_{1}, \ldots, x_{n}\right)$ is computed by a circuit of size s, there is a circuit of size $O(s)$ computing

$$
\left\{\frac{\partial P}{\partial x_{1}}, \ldots, \frac{\partial P}{\partial x_{n}}\right\} .
$$

Proof. By induction on the size on the size of the circuit, using chain rule for partial derivatives.
(Proof of lower bound.) Let

$$
P=x_{1}^{d}+x_{2}^{d}+\ldots+x_{n}^{d}
$$

computed by a circuit of size s. There is a circuit of size $O(s)$ computing simultaneously $x_{1}^{d}, \ldots, x_{n}^{d}$.
Using Bezout this requires $n \log d$ products: $s=\Omega(n \log d)$.
(tight by doing fast exponentiation)

Computing all partial derivatives of degree 1

Multinear setting

A circuit is syntactically multilinear if for any product gate $P \times Q$, the polynomials P and Q are over disjoint sets of variables

Lemma
If a polynomial is computed by a syntactically multilinear circuit of size s, all its first order partial derivatives are computed by a syntactically multilinear circuit of size $O(s)$.

Applications in the mutilinear setting:
$\star \mathrm{NC}_{1} \neq \mathrm{NC}_{2}$ (formulas \subsetneq circuits)
$\star \Omega\left(n^{2} / \log ^{2} n\right)$ lower bound

Computing all partial derivatives of degree 1

Non-commutative setting [P.Chaterjee-Hrubes-23]
Partial derivative with respect to the first position:
$\partial_{x}(x u)=u$ (where u non-commutative monomial)
$\partial_{x}(y u)=0(y$ variable, $y \neq x)$

Lemma
If $P \in \mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is computed by a homogeneous non-commutative circuit of size s, all $\partial_{x_{i}} P(i \in[n])$ can be simultaneously computed by a homogeneous circuit of size $O(s)$.

Application:
$\Omega(n d)$ lower bound for the size of homogeneous non-commutative circuits (for some polynomial of degree d over n variables)

Computing all partial derivatives of degree 1

Non-commutative setting [P.Chaterjee-Hrubes-23]
Partial derivative with respect to the first position:
$\partial_{x}(x u)=u$ (where u non-commutative monomial)
$\partial_{x}(y u)=0(y$ variable, $y \neq x)$

Lemma
If $P \in \mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is computed by a homogeneous non-commutative circuit of size s, all $\partial_{x_{i}} P(i \in[n])$ can be simultaneously computed by a homogeneous circuit of size $O(s)$.

Application:
$\Omega(n d)$ lower bound for the size of homogeneous non-commutative circuits (for some polynomial of degree d over n variables)

Question: can homogeneity assumption be removed?

Complexity measure 「

Construct a map $\Gamma: \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{N}$, that assigns a number to every polynomial such that:

1. If f is computable by "small" circuits, then $\Gamma(f)$ is "small".
2. For the polynomial f for which we wish to show a lower bound, $\Gamma(f)$ is "large".

Measure based on Partial Derivative

[Nisan-Wigderson-97]
$\partial(f) \stackrel{\text { def }}{=}$ Set of partial derivatives (of all orders) of f
$\Gamma(f) \stackrel{\text { def }}{=} \operatorname{dim}\{\partial(f)\}$

Measure based on Partial Derivative

[Nisan-Wigderson-97]

$$
\begin{aligned}
& \partial(f) \stackrel{\text { def }}{=} \text { Set of partial derivatives (of all orders) of } f \\
& \Gamma(f) \stackrel{\text { def }}{=} \operatorname{dim}\{\partial(f)\}
\end{aligned}
$$

Properties:

- $\Gamma(f+g) \leqslant \Gamma(f)+\Gamma(g) \quad$ (sub-additivity)
- $\Gamma(f g) \leqslant \Gamma(f) \Gamma(g)$

Measure based on Partial Derivative

[Nisan-Wigderson-97]

$$
\begin{aligned}
& \partial(f) \stackrel{\text { def }}{=} \text { Set of partial derivatives (of all orders) of } f \\
& \Gamma(f) \stackrel{\text { def }}{=} \operatorname{dim}\{\partial(f)\}
\end{aligned}
$$

Properties:

- $\Gamma(f+g) \leqslant \Gamma(f)+\Gamma(g) \quad$ (sub-additivity)
- $\Gamma(f g) \leqslant \Gamma(f) \Gamma(g)$

Application: Lower bounds on the elementary symmetric polynomials

Lower bounds on elementary symmetric polynomials $(1 / 3)$

Elementary symmetric polynomials of degree d on X_{1}, \ldots, X_{n} :

$$
S_{n}^{d}=\sum_{T \in\binom{[n]}{d}} X_{T} \quad \text { where } X_{T}:=\prod_{i \in T} X_{i}
$$

Lower bounds on elementary symmetric polynomials $(1 / 3)$

Elementary symmetric polynomials of degree d on X_{1}, \ldots, X_{n} :

$$
S_{n}^{d}=\sum_{T \in\binom{[n]}{d}} X_{T} \quad \text { where } X_{T}:=\prod_{i \in T} X_{i}
$$

Step 1: $\Gamma(f)$ is small for f computed by $\Sigma^{[s]} \Pi^{[d]} \Sigma$ circuits g of the form $\Pi^{[d]} \Sigma: g=\ell_{1} \ell_{2} \ldots \ell_{d}$ with ℓ_{i} affine

$$
\partial(g) \subseteq \operatorname{span}\left\{\prod_{i \in I} \ell_{i} \mid I \subset[d]\right\}
$$

Hence $\Gamma(g) \leqslant 2^{d}$

Lower bounds on elementary symmetric polynomials $(1 / 3)$

Elementary symmetric polynomials of degree d on X_{1}, \ldots, X_{n} :

$$
S_{n}^{d}=\sum_{T \in\binom{[n]}{d}} X_{T} \quad \text { where } X_{T}:=\prod_{i \in T} X_{i}
$$

Step 1: $\Gamma(f)$ is small for f computed by $\Sigma^{[s]} \Pi^{[d]} \Sigma$ circuits
g of the form $\Pi^{[d]} \Sigma: g=\ell_{1} \ell_{2} \ldots \ell_{d}$ with ℓ_{i} affine

$$
\partial(g) \subseteq \operatorname{span}\left\{\prod_{i \in I} \ell_{i} \mid I \subset[d]\right\}
$$

Hence $\Gamma(g) \leqslant 2^{d}$
f sum of s polynomials computed by $\Pi^{[d]} \Sigma$ circuits
$\Gamma(f) \leqslant s \cdot 2^{d}$ by sub-additivity

Lower bounds on elementary symmetric polynomials $(2 / 3)$

Step 2: $\Gamma\left(S_{n}^{d}\right)$ is large

Lower bounds on elementary symmetric polynomials $(2 / 3)$

Step 2: $\Gamma\left(S_{n}^{d}\right)$ is large
Consider the matrix M :

- Rows indexed by subsets $A \in\binom{[n]}{d / 2}$
- Columns indexed by subsets $B \in\binom{[n]}{d / 2}$
- Column B is the polynomial $\frac{\partial S_{n}^{d}}{\partial X_{B}}$

Element in row A and column B is the coefficient of X_{A} in $\frac{\partial S_{n}^{d}}{\partial X_{B}}$

Lower bounds on elementary symmetric polynomials $(2 / 3)$

Step 2: $\Gamma\left(S_{n}^{d}\right)$ is large
Consider the matrix M :

- Rows indexed by subsets $A \in\binom{[n]}{d / 2}$
- Columns indexed by subsets $B \in\binom{[n]}{d / 2}$
- Column B is the polynomial $\frac{\partial S_{n}^{d}}{\partial X_{B}}$

Element in row A and column B is the coefficient of X_{A} in $\frac{\partial S_{n}^{d}}{\partial X_{B}}$
$M_{A, B}=1$ if $A \cap B=\emptyset$ and 0 otherwise
M is a disjointness matrix, known to be full-rank
Hence, $\Gamma\left(S_{n}^{d}\right) \geqslant\binom{ n}{d / 2}$

Lower bounds on elementary symmetric polynomials $(3 / 3)$

Step 1: $\Gamma(f) \leqslant s \cdot 2^{d}$ is small for f computed by $\Sigma^{[s]} \Pi^{[d]} \Sigma$ circuit

Step 2: $\binom{n}{d / 2} \leqslant \Gamma\left(S_{n}^{d}\right)$

Conclusion: if a $\Sigma^{[s]} \Pi^{[d]} \Sigma$ circuit computes S_{n}^{d} :

$$
\binom{n}{d / 2} \leqslant \Gamma\left(S_{n}^{d}\right) \leqslant s 2^{d}
$$

Hence $s=\Omega\left(\left(\frac{n}{4 d}\right)^{d}\right)$

Rank of the coefficient matrix

[Raz-09] Multilinear polynomial f over variables X
Partition of the variables $X=Y \dot{U} Z$
Matrix M of coefficients:

$\Gamma_{Y, Z}(f)=$ rank of M

Rank of the coefficient matrix

[Raz-09] Multilinear polynomial f over variables X
Partition of the variables $X=Y \dot{U} Z$
Matrix M of coefficients:

$\Gamma_{Y, Z}(f)=$ rank of M
Remark. $\Gamma_{Y, Z}(f)$ is the rank of partial derivatives of all orders w.r.t. Y variables

Rank of the coefficient matrix: properties

* Subadditivity:

$$
\Gamma(f+g) \leqslant \Gamma(f)+\Gamma(g)
$$

(because $M_{f+g}=M_{f}+M_{g}$)

* If f and g are polynomials over disjoint variables:

$$
\Gamma(f g)=\Gamma(f) \Gamma(g)
$$

(because $M_{f g}=M_{f} \otimes M_{g}$)

Proof sketch of separation in the multilinear setting

\star The formula

$$
\left(y_{1}+z_{1}\right)\left(y_{2}+z_{2}\right) \ldots\left(y_{n}+z_{n}\right)
$$

has rank 2^{n} with respect to the partition $Y \cup Z$ (maximum possible rank for $2 n$ variables)

Proof sketch of separation in the multilinear setting

\star The formula

$$
\left(y_{1}+z_{1}\right)\left(y_{2}+z_{2}\right) \ldots\left(y_{n}+z_{n}\right)
$$

has rank 2^{n} with respect to the partition $Y \cup Z$ (maximum possible rank for $2 n$ variables)

* But formulas have the following weakness [Raz-05] no small formula can be full rank for any balanced partition

Consider $f_{1} f_{2}$ over $2 n$ variables (f_{1}, f_{2} over disjoint sets of var.) f_{i} is over variables $X_{i}, n_{i}:=\left|X_{i}\right|, n_{1}+n_{2}=2 n$
Consider a balanced partition of the variables $X=Y \cup Z$ $\rightarrow X_{i}=Y_{i} \cup Z_{i}$. Let $\delta:=\frac{1}{2}| | Y_{i}\left|-\left|Z_{i}\right|\right|$
Then

$$
\Gamma_{f_{1} f_{2}} \leqslant 2^{\left(n_{1}-\delta\right) / 2} 2^{\left(n_{2}-\delta\right) / 2}=\frac{1}{2^{\delta}} \cdot 2^{n}
$$

Proof sketch of separation of multilinear formulas and circuits

\star The is a polynomial size circuit computing a polynomial P which is full rank w.r.t. any balanced partition $X=Y \cup Z$ (dynamic programming)
\star Consider a formula of $n^{O(1)}$-size computing f
One can write

$$
f=\sum_{i=1}^{s} f_{i, 1} f_{i_{2}} \ldots f_{i, \log n}
$$

Proof sketch of separation of multilinear formulas and circuits

\star The is a polynomial size circuit computing a polynomial P which is full rank w.r.t. any balanced partition $X=Y \cup Z$ (dynamic programming)
\star Consider a formula of $n^{O(1)}$-size computing f
One can write

$$
f=\sum_{i=1}^{s} f_{i, 1} f_{i_{2}} \ldots f_{i, \log n}
$$

For a random balanced partition $X=Y \cup Z$, with positive probability, the rank defect in each term is enough so that f not full rank for the partition $Y \cup Z$

Proof sketch of separation of multilinear formulas and circuits

\star The is a polynomial size circuit computing a polynomial P which is full rank w.r.t. any balanced partition $X=Y \cup Z$ (dynamic programming)
\star Consider a formula of $n^{O(1)}$-size computing f
One can write

$$
f=\sum_{i=1}^{s} f_{i, 1} f_{i_{2}} \ldots f_{i, \log n}
$$

For a random balanced partition $X=Y \cup Z$, with positive probability, the rank defect in each term is enough so that f not full rank for the partition $Y \cup Z$
[Raz-06] Any multilinear formula computing P has size $n^{\Omega(\log n)}$

Formulas with small individual degree

[Raz-05] Any multilinear formula computing det_{n} or per_{n} has size $n^{\Omega(\log n)}$

Question: Lower bound for the size of multiquadratic formula computing det_{n} or per_{n}.

Formulas with small individual degree

[Raz-05] Any multilinear formula computing det_{n} or per_{n} has size $n^{\Omega(\log n)}$

Question: Lower bound for the size of multiquadratic formula computing det_{n} or per $_{n}$.

Related work: Lower bounds for homogeneous multi-r-ic formulas [Kayal-Saha-Tavenas-18]

Homogenization of circuits

Consider a circuit C computing a homogeneous polynomial of degree d : we will construct C^{\prime} homogeneous circuit computing P

Each node u of the circuit C is replaced with u_{0}, \ldots, u_{d} in C^{\prime} computing the homogeneous components of the polynomial computed at u in P.

- Addition gate: if $u=v+w$ in $C, u_{k}=v_{k}+w_{k}$ in C^{\prime}
- Product gate: if $u=v \times w$ in C, in C^{\prime} :

$$
u_{k}=\sum_{i+j=k} v_{i} \times w_{j}
$$

in C^{\prime}.

Homogenization of circuits

Consider a circuit C computing a homogeneous polynomial of degree d : we will construct C^{\prime} homogeneous circuit computing P

Each node u of the circuit C is replaced with u_{0}, \ldots, u_{d} in C^{\prime} computing the homogeneous components of the polynomial computed at u in P.

- Addition gate: if $u=v+w$ in $C, u_{k}=v_{k}+w_{k}$ in C^{\prime}
- Product gate: if $u=v \times w$ in C, in C^{\prime} :

$$
u_{k}=\sum_{i+j=k} v_{i} \times w_{j}
$$

in C^{\prime}.

If C has size s, C^{\prime} has size $O\left(s d^{2}\right)$.

Homogenization of formulas

Given F formula of size s computing a polynomial of degree d :

- Do the circuit homogenization on F to get C^{\prime} homogeneous circuit
- Duplicate gates in C^{\prime} to get a homogeneous formula F^{\prime}
F^{\prime} has size $s^{\log d}$

Homogenization of formulas

Given F formula of size s computing a polynomial of degree d :

- Do the circuit homogenization on F to get C^{\prime} homogeneous circuit
- Duplicate gates in C^{\prime} to get a homogeneous formula F^{\prime}
F^{\prime} has size $s^{\log d}$
[Raz-10] A formula of size d and degree $d=O(\log s)$ can be homogenized in size $s^{O(1)}$.

Depth-reduction (parallelization)

- With polynomial blow-up of size \star Formulas: reduction to depth $O(\log s)$
(Brent, Kuck and Maruyama)
* Circuits: reduction de depth $O(\log d)$
(Valiant, Skyum, Berkowitz and Rackoff)

Depth-reduction (parallelization)

- With polynomial blow-up of size
\star Formulas: reduction to depth $O(\log s)$
(Brent, Kuck and Maruyama)
* Circuits: reduction de depth $O(\log d)$
(Valiant, Skyum, Berkowitz and Rackoff)
- With subexponential blow-up
* Reduction to depth 4
(Agrawal and Vinay; Koiran ; Tavenas)
* Reduction to depth 3
(Gupta, Kamath, Kayal and Saptharishi)

Reduction to depth $O(\log s)$ for formulas

For a formula F of size s :

- Find a subformula G of size $\approx s / 2$
- The polynomial computed by F can be written as

$$
F=G \times H_{1}+H_{2}
$$

where H_{1} and H_{2} are also computed by formulas of size $\approx s / 2$

- Apply induction to these three subformulas G, H_{1}, H_{2}

Depth-reduction for formulas

[Fournier-Limaye-Malod-Srinivasan-Tavenas-23] Let F be a homogeneous algebraic formula of size s and syntactic degree d computing a polynomial P. Then P is also computed by a formula F^{\prime} of size $s^{O(1)}$ and depth $O(\log d)$.

Depth-reduction for formulas

[Fournier-Limaye-Malod-Srinivasan-Tavenas-23] Let F be a homogeneous algebraic formula of size s and syntactic degree d computing a polynomial P. Then P is also computed by a formula F^{\prime} of size $s^{O(1)}$ and depth $O(\log d)$.

Moreover, the construction preserves

- monotonicity
- non-commutativity
- (set-)multilinearity

Reducing the size blow-up

Depth-reduction with near-linear size [Bshouty-Cleve-Eberly-95], [Bonnet-Buss-94]
$\varepsilon>0, F$ be a algebraic formula of size s computing P.
Then there is an algebraic formula F^{\prime} of

- size at most $s^{1+\varepsilon}$
- depth $\Delta=2^{O(1 / \varepsilon)} \cdot \log s$
computing P.

Reducing the size blow-up

Depth-reduction with near-linear size [Bshouty-Cleve-Eberly-95], [Bonnet-Buss-94]
$\varepsilon>0, F$ be a algebraic formula of size s computing P.
Then there is an algebraic formula F^{\prime} of

- size at most $s^{1+\varepsilon}$
- depth $\Delta=2^{O(1 / \varepsilon)} \cdot \log s$
computing P.

The construction preserves

- homogeneity
- monotonicity

Depth-reduction with small size blow-up

Using the above result, we can prove the following improved version of our depth-reduction:

Assume that P is computed by a formula of size s and syntactic degree $d \geq 1$. Then P is also computed by a formula of size at most $s^{1+\varepsilon}$ and depth $\Delta=2^{O(1 / \varepsilon)} \cdot \log d$.

Works also in the non-commutative case.
Preserves homogeneous and/or monotonicity.

Depth-reduction: optimality in the monotone setting

Let n and $d=d(n)$ be growing parameters such that $d(n) \leq \sqrt{n}$.

Then there is a monotone algebraic formula F of size at most n and depth $O(\log d)$ computing a polynomial $P \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree at most d such that:
any monotone formula of depth $o(\log d)$ computing P must have size $n^{\omega(1)}$.

Optimality of $O(\log d)$ depth-reduction: the hard polynomial

Parameters $k \geq 1$ and $r \geq 2$. The polynomial $H=H^{(k, r)}$ is:
k-nested inner products, each one of size r
H is computed by a monotone formula M of size $(2 r)^{k}$ and depth $2 k$, with a + -gate at the top, alternating layers of + -gates and \times-gates, with + -gates of fan-in r and \times-gates of fan-in 2 , and leaves labelled with distinct variables.
H is a polynomial of degree $d=2^{k}$ and has r^{d-1} monomials.

Optimality of $O(\log d)$ depth-reduction: the hard polynomial

Parameters $k \geq 1$ and $r \geq 2$. The polynomial $H=H^{(k, r)}$ is:
k-nested inner products, each one of size r
H is computed by a monotone formula M of size $(2 r)^{k}$ and depth $2 k$, with a + -gate at the top, alternating layers of + -gates and \times-gates, with + -gates of fan-in r and \times-gates of fan-in 2 , and leaves labelled with distinct variables.
H is a polynomial of degree $d=2^{k}$ and has r^{d-1} monomials.
Lower bound: A monotone formula of product-depth $\Delta \leq \log d$ which computes H has size at least $r^{\Omega\left(\Delta d^{1 / \Delta}\right)}$.

Depth-reduction: proof $(1 / 5)$

Formula G of syntactic degree $d_{G} \geq 1$ and sum-depth $\Delta(G)$ Potential function $\phi_{\delta}(G)$:

$$
\left\{\begin{array}{l}
\phi_{\delta, 1}(G)=\left\lceil\log \left(d_{G}\right)\right\rceil \\
\phi_{\delta, 2}(G)=\lceil\Delta(G) / \delta\rceil
\end{array}\right.
$$

and let

$$
\phi_{\delta}(G)=\phi_{\delta, 1}(G)+\phi_{\delta, 2}(G)
$$

(δ : positive integer to be chosen)

Depth-reduction: proof $(2 / 5)$

Formula F of

- size s
- syntactic degree d (not necessarily homogeneous)
- depth $O(\log s)$, fanin 2
(after classical depth-reduction).

Depth-reduction: proof $(2 / 5)$

Formula F of

- size s
- syntactic degree d (not necessarily homogeneous)
- depth $O(\log s)$, fanin 2
(after classical depth-reduction).
We prove that F can be parallelized into a formula of arbitrary fan-in with
- product-depth at most $\phi_{\delta}(F)$
- size at most $s \cdot 2^{\delta \log (d)}$

Taking $\delta=\frac{\log s}{\log d}$ gives the result
Potential function: $\phi_{\delta}(H)=\left\lceil\log \left(d_{H}\right)\right\rceil+\lceil\Delta(H) / \delta\rceil$

Depth-reduction: proof $(3 / 5)$

Potential function: $\phi_{\delta}(H)=\left\lceil\log \left(d_{H}\right)\right\rceil+\lceil\Delta(H) / \delta\rceil$

Consider the following set of gates of F :

$$
\mathcal{A}=\left\{\alpha \mid \phi_{\delta}\left(F_{\alpha}\right)<\phi_{\delta}(F)=\phi_{\delta}\left(F_{\text {parent }(\alpha)}\right)\right\} .
$$

G : formula obtained from F by replacing gates from \mathcal{A} by variables

Depth-reduction: proof $(3 / 5)$

Potential function: $\phi_{\delta}(H)=\left\lceil\log \left(d_{H}\right)\right\rceil+\lceil\Delta(H) / \delta\rceil$

Consider the following set of gates of F :

$$
\mathcal{A}=\left\{\alpha \mid \phi_{\delta}\left(F_{\alpha}\right)<\phi_{\delta}(F)=\phi_{\delta}\left(F_{\text {parent }(\alpha)}\right)\right\} .
$$

G : formula obtained from F by replacing gates from \mathcal{A} by variables

- G is skew
- G has sum-depth at most δ

Depth-reduction: proof $(4 / 5)$

Lemma] The polynomial computed by G is a multilinear polynomial with at most 2^{δ} monomials. Moreover any variable labelling in G

- son a +-leaf,
- or son a \times-leaf, and whose sibling is a leaf appears in exactly one monomial (non-duplicable leaves).

Depth-reduction: proof $(4 / 5)$

Lemma] The polynomial computed by G is a multilinear polynomial with at most 2^{δ} monomials. Moreover any variable labelling in G

- son a +-leaf,
- or son a \times-leaf, and whose sibling is a leaf appears in exactly one monomial (non-duplicable leaves).

Proof: parse trees

Depth-reduction: proof $(5 / 5)$

Start with F of fanin 2 and depth reduced to $O(\log s)$
Potential function $\phi_{\delta}(H)=\left\lceil\log \left(d_{H}\right)\right\rceil+\lceil\Delta(H) / \delta\rceil$ with $\delta=\frac{\log s}{\log d}$
$F=G\left(F_{1}, \ldots, F_{\ell}\right)$ where F_{i} are highest gates where ϕ decreases

- Write G as a $\sum \Pi$-formula
- Recurse on each F_{i}, where $F=G\left(F_{1}, \ldots, F_{\ell}\right)$

Depth-reduction: proof $(5 / 5)$

Start with F of fanin 2 and depth reduced to $O(\log s)$
Potential function $\phi_{\delta}(H)=\left\lceil\log \left(d_{H}\right)\right\rceil+\lceil\Delta(H) / \delta\rceil$ with $\delta=\frac{\log s}{\log d}$
$F=G\left(F_{1}, \ldots, F_{\ell}\right)$ where F_{i} are highest gates where ϕ decreases

- Write G as a $\sum \Pi$-formula
- Recurse on each F_{i}, where $F=G\left(F_{1}, \ldots, F_{\ell}\right)$

Depth of the formula obtained is $\phi_{\delta}(F)=O(\log d)$
Size of the resulting formula is bounded by
$\sum_{\alpha \text { non-duplicable }}\left(s_{\alpha} \cdot 2^{\delta \log \left(d_{\alpha}\right)}\right)+\left(2^{\delta} \cdot \sum_{\alpha \text { duplicable }}\left(s_{\alpha} \cdot 2^{\delta \log \left(d_{\alpha}\right)}\right)\right)$.

Depth-reduction: proof $(5 / 5)$

Start with F of fanin 2 and depth reduced to $O(\log s)$
Potential function $\phi_{\delta}(H)=\left\lceil\log \left(d_{H}\right)\right\rceil+\lceil\Delta(H) / \delta\rceil$ with $\delta=\frac{\log s}{\log d}$
$F=G\left(F_{1}, \ldots, F_{\ell}\right)$ where F_{i} are highest gates where ϕ decreases

- Write G as a $\sum \Pi$-formula
- Recurse on each F_{i}, where $F=G\left(F_{1}, \ldots, F_{\ell}\right)$

Depth of the formula obtained is $\phi_{\delta}(F)=O(\log d)$
Size of the resulting formula is bounded by
$\sum_{\alpha \text { non-duplicable }}\left(s_{\alpha} \cdot 2^{\delta \log \left(d_{\alpha}\right)}\right)+\left(2^{\delta} \cdot \sum_{\alpha \text { duplicable }}\left(s_{\alpha} \cdot 2^{\delta \log \left(d_{\alpha}\right)}\right)\right)$.

$$
\leq s \cdot 2^{\delta \log d}+\sum_{\alpha \text { duplicable }} 2^{\delta}\left(s_{\alpha} \cdot 2^{\delta(\log (d)-1)}\right)
$$

Depth-reduction: proof $(5 / 5)$

Start with F of fanin 2 and depth reduced to $O(\log s)$
Potential function $\phi_{\delta}(H)=\left\lceil\log \left(d_{H}\right)\right\rceil+\lceil\Delta(H) / \delta\rceil$ with $\delta=\frac{\log s}{\log d}$
$F=G\left(F_{1}, \ldots, F_{\ell}\right)$ where F_{i} are highest gates where ϕ decreases

- Write G as a $\sum \Pi$-formula
- Recurse on each F_{i}, where $F=G\left(F_{1}, \ldots, F_{\ell}\right)$

Depth of the formula obtained is $\phi_{\delta}(F)=O(\log d)$
Size of the resulting formula is bounded by
$\sum_{\alpha \text { non-duplicable }}\left(s_{\alpha} \cdot 2^{\delta \log \left(d_{\alpha}\right)}\right)+\left(2^{\delta} \cdot \sum_{\alpha \text { duplicable }}\left(s_{\alpha} \cdot 2^{\delta \log \left(d_{\alpha}\right)}\right)\right)$.

$$
\begin{gathered}
\leq s \cdot 2^{\delta \log d}+\sum_{\alpha \text { duplicable }} 2^{\delta}\left(s_{\alpha} \cdot 2^{\delta(\log (d)-1)}\right) \\
\leq s \cdot 2^{\delta \log d}=s \cdot 2^{\log s}=s^{O(1)}
\end{gathered}
$$

Structure inside VF

Consider these three classes

- homF[s(n)]: $\left(f_{n}\right)$ computed by a homogeneous formula of size $\operatorname{poly}(s(n))$,
- lowSynDegF[s(n)]: $\left(f_{n}\right)$ computed by a formula of size $\operatorname{poly}(s(n))$ and of syntactic degree $\operatorname{poly}\left(\operatorname{deg}\left(f_{n}\right)\right)$
- lowDepthF[s(n)]: computed by a formula of size poly $(s(n))$ and of depth $O\left(\log \operatorname{deg}\left(f_{n}\right)\right)$.

Structure inside VF

Consider these three classes

- homF[s(n)]: $\left(f_{n}\right)$ computed by a homogeneous formula of size $\operatorname{poly}(s(n))$,
- lowSynDegF[s(n)]: $\left(f_{n}\right)$ computed by a formula of size $\operatorname{poly}(s(n))$ and of syntactic degree poly $\left(\operatorname{deg}\left(f_{n}\right)\right)$
- lowDepthF[s(n)]: computed by a formula of size poly $(s(n))$ and of depth $O\left(\log \operatorname{deg}\left(f_{n}\right)\right)$.
$\operatorname{homF}[\operatorname{poly}(n)] \subseteq \operatorname{lowSynDegF}[\operatorname{poly}(n)] \subseteq \operatorname{lowDepthF}[\operatorname{poly}(n)] \subseteq \mathrm{VF}$,
Question: which inclusions are strict?

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials $S_{n}^{d}\left(x_{1}, \ldots, x_{n}\right)$
\star Computed by inhomogeneous formula of depth-3 and size $O\left(n^{2}\right)$
[Ben-Or]
S_{n}^{d} is in lowDepthF[poly $\left.(n)\right]$.
$\star S_{n}^{d}$ has depth-6 formulas of syntactic degree at most poly (d)
[Shpilka-Wigderson]
S_{n}^{d} in lowSynDegF[poly(n)].
$\star S_{n}^{d}$ is not known to have poly(n)-sized homogeneous formulas

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials $S_{n}^{d}\left(x_{1}, \ldots, x_{n}\right)$
\star Computed by inhomogeneous formula of depth-3 and size $O\left(n^{2}\right)$
[Ben-Or]
S_{n}^{d} is in lowDepthF[poly $\left.(n)\right]$.
$\star S_{n}^{d}$ has depth-6 formulas of syntactic degree at most poly (d)
[Shpilka-Wigderson]
S_{n}^{d} in lowSynDegF[poly(n)].
$\star S_{n}^{d}$ is not known to have poly(n)-sized homogeneous formulas
If S_{n}^{d} does not have $\operatorname{poly}(n)$-sized homogeneous formulas

$$
\operatorname{homF}[\operatorname{poly}(n)] \subsetneq \operatorname{lowSynDegF}[\operatorname{poly}(n)]
$$

Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials $S_{n}^{d}\left(x_{1}, \ldots, x_{n}\right)$
\star Computed by inhomogeneous formula of depth-3 and size $O\left(n^{2}\right)$
[Ben-Or]
S_{n}^{d} is in lowDepthF[poly $\left.(n)\right]$.
$\star S_{n}^{d}$ has depth-6 formulas of syntactic degree at most poly (d)
[Shpilka-Wigderson]
S_{n}^{d} in lowSynDegF[poly(n)].
$\star S_{n}^{d}$ is not known to have poly (n)-sized homogeneous formulas
If S_{n}^{d} does not have poly (n)-sized homogeneous formulas

$$
\operatorname{homF}[\operatorname{poly}(n)] \subsetneq \operatorname{lowSynDegF}[\operatorname{poly}(n)]
$$

If S_{n}^{d} is computed by poly (n)-sized homogeneous formulas, any depth-3 formula of polynomial size and low syntactic degree can be homogenized: $\sum\left[c \cdot \prod_{i}\left(1+\ell_{i}\right)\right]$

Thank you!

