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Polynomials

f (x1, x2, x3, x4) = 1 + x1 + x2 + x3 + x4

+ x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

+ x2x3x4 + x1x3x4 + x1x2x4 + x1x2x3

+ x1x2x3x4

f (x1, x2, x3, x4) = (1 + x1)(1 + x2)(1 + x3)(1 + x4)

more compact representation!
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Arithmetic Formulas

1 x1 1 x2 1 x3 1 x4

+ + + +

×

f (x1, x2, x3, x4)

▶ Tree
▶ Leaves containing variables or constants



Arithmetic Circuits

x1 x2 x3

+ + + + + +

× × ×

+

f (x1, x2, x3)

Size = number of gates

Depth = longest path



Algebraic classes VP vs VNP

VP ∋ (Pn) if
– Pn computed by circuits of size nO(1)

– Pn has degree nO(1)

VNP : exponential sum in front of VP
(Qn) ∈ VNP if there exists Pn(x̄ , ȳ) ∈ VP s.t.

Qn(x̄) =
∑

ȳ∈{0,1}|ȳ|

Pn(x̄ , ȳ)

[Valiant-79] VP = VNP?



What does VNP contain?

▶ polynomials with coefficients computable in polynomial time

▶ in particular: generating functions of graph properties
– Permanent: perfect matchings of Kn,n (cycle covers of Kn)∑

{(i1,j1),...,(in,jn)} perfect matching

Xi1,j1 . . . Xin,jn

– Hamiltonian cycles of Kn ∑
C Ham. cycle

∏
e∈C

Xe
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Determinant vs. Permanent

Detn(x11, . . . , xnn) =
∑

σ∈Sn

sign(σ) · x1σ(1) . . . xnσ(n)

Permn(x11, . . . , xnn) =
∑

σ∈Sn

sign(σ)·x1σ(1) . . . xnσ(n)

(Detn) ∈ VP, (Permn) ∈ VNP

Variant of VP vs. VNP:
Is the Permanent a projection of a "not too large" Determinant?
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Algebraic vs. Boolean lower bounds

[Bürgisser-99] (Under GRH) If VP = VNP over C, then
#P ⊆ FNC (non-uniform)



Main goal of algebraic complexity

Lower bounds for the size of circuits computing polynomials

[Baur-Strassen-83] Computing

xn
1 + xn

2 + . . . + xn
n

requires Ω(n log n) arithmetic operations.

Strong lower bounds for restricted models:
– branching program, formulas, bounded-depth formulas
– non-commutative, monotone, multilinear models
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Restricted circuits

⋆ A circuit C is homogeneous if every gate computes a
homogeneous polynomial.

⋆ A circuit C is multilinear if every gate computes a multilinear
polynomial.

A circuit computing a homogeneous or multilinear polynomial may
not be homogeneous or multilinear

Many lower bounds hold for such restricted models of computation
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Complexity of the elementary symmetric polynomials Sd
n

Elementary symmetric polynomials of degree d on X1, . . . , Xn:

Sd
n =

∑
T∈([n]

d )
XT where XT :=

∏
i∈T

Xi

Upper bound by interpolation
Sd

n is the coefficent of T n−d in

(T + X1)(T + X2) . . . (T + Xn)

so it is equal to a linear combination of this polynomial (in T )
evaluated at n distinct points
⇒ ΣΠΣ formula of size O(n2)
Remark: the formula obtained is not multilinear and not
homogeneous
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Lower bounds for restricted models
Model Lower bound

General circuits Ω(n log n) [Baur-Strassen-83]

Monotone 2Ω(n) [Nisan-91]
Formula

Homogeneous 2Ω(n) [Nisan-Wigderson-97]
Depth-3 circuits

Multilinear 2Ω(n log n) [Raz-09]
formula

Constant-depth ndΩ(1) [Limaye-Srinivasan-Tavenas-21]
circuits
(poly of small degree d)



Outline

▶ Some lower bounds based on partial derivatives

⋆ Partial derivatives of order 1
⋆ Dimension of partial derivatives of all order
⋆ Partial derivatives w.r.t. a subset of variables

▶ Structural results

⋆ homogenization
⋆ depth-reduction



Computing all partial derivatives of degree 1

Lemma (Baur and Strassen)
If P(x1, . . . , xn) is computed by a circuit of size s, there is a circuit
of size O(s) computing {

∂P
∂x1

, . . . ,
∂P
∂xn

}
.

Proof. By induction on the size on the size of the circuit, using
chain rule for partial derivatives.

(Proof of lower bound.) Let

P = xd
1 + xd

2 + . . . + xd
n

computed by a circuit of size s. There is a circuit of size O(s)
computing simultaneously xd

1 , . . . , xd
n .

Using Bezout this requires n log d products: s = Ω(n log d).
(tight by doing fast exponentiation)
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Computing all partial derivatives of degree 1

Multinear setting

A circuit is syntactically multilinear if for any product gate P × Q,
the polynomials P and Q are over disjoint sets of variables

Lemma
If a polynomial is computed by a syntactically multilinear circuit of
size s, all its first order partial derivatives are computed by a
syntactically multilinear circuit of size O(s).

Applications in the mutilinear setting:
⋆ NC1 ̸= NC2 (formulas ⊊ circuits)
⋆ Ω(n2/ log2 n) lower bound



Computing all partial derivatives of degree 1

Non-commutative setting [P.Chaterjee-Hrubes-23]

Partial derivative with respect to the first position:
∂x (xu) = u (where u non-commutative monomial)
∂x (yu) = 0 (y variable, y ̸= x)

Lemma
If P ∈ C⟨x1, . . . , xn⟩ is computed by a homogeneous
non-commutative circuit of size s, all ∂xi P (i ∈ [n]) can be
simultaneously computed by a homogeneous circuit of size O(s).

Application:
Ω(nd) lower bound for the size of homogeneous non-commutative
circuits (for some polynomial of degree d over n variables)

Question: can homogeneity assumption be removed?
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Complexity measure Γ

Construct a map Γ : F[x1, . . . , xn] → N, that assigns a number to
every polynomial such that:

1. If f is computable by “small” circuits, then Γ(f ) is “small”.

2. For the polynomial f for which we wish to show a lower
bound, Γ(f ) is “large”.



Measure based on Partial Derivative

[Nisan-Wigderson-97]

∂(f ) def= Set of partial derivatives (of all orders) of f

Γ(f ) def= dim {∂(f )}

Properties:
▶ Γ(f + g) ⩽ Γ(f ) + Γ(g) (sub-additivity)
▶ Γ(fg) ⩽ Γ(f )Γ(g)

Application: Lower bounds on the elementary symmetric
polynomials
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Lower bounds on elementary symmetric polynomials (1/3)

Elementary symmetric polynomials of degree d on X1, . . . , Xn:

Sd
n =

∑
T∈([n]

d )
XT where XT :=

∏
i∈T

Xi

Step 1: Γ(f ) is small for f computed by Σ[s]Π[d]Σ circuits

g of the form Π[d]Σ : g = ℓ1ℓ2 . . . ℓd with ℓi affine

∂(g) ⊆ span{
∏
i∈I

ℓi | I ⊂ [d ]}

Hence Γ(g) ⩽ 2d

f sum of s polynomials computed by Π[d]Σ circuits
Γ(f ) ⩽ s · 2d by sub-additivity
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Lower bounds on elementary symmetric polynomials (2/3)

Step 2: Γ(Sd
n ) is large

Consider the matrix M:
– Rows indexed by subsets A ∈

( [n]
d/2
)

– Columns indexed by subsets B ∈
( [n]

d/2
)

– Column B is the polynomial ∂Sd
n

∂XB

Element in row A and column B is the coefficient of XA in ∂Sd
n

∂XB

MA,B = 1 if A ∩ B = ∅ and 0 otherwise
M is a disjointness matrix, known to be full-rank

Hence, Γ(Sd
n ) ⩾

( n
d/2
)
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Lower bounds on elementary symmetric polynomials (3/3)

Step 1: Γ(f ) ⩽ s · 2d is small for f computed by Σ[s]Π[d]Σ circuit

Step 2:
( n

d/2
)
⩽ Γ(Sd

n )

Conclusion: if a Σ[s]Π[d]Σ circuit computes Sd
n :(

n
d/2

)
⩽ Γ(Sd

n ) ⩽ s2d

Hence s = Ω(( n
4d )d)



Rank of the coefficient matrix

[Raz-09] Multilinear polynomial f over variables X
Partition of the variables X = Y ∪̇Z

Matrix M of coefficients:

Z monomials





. . . . . . . .

. . . . . . . .

.

. (coef) .

.

. . . . . . . .



Y monomials︷ ︸︸ ︷

ΓY ,Z (f ) = rank of M

Remark. ΓY ,Z (f ) is the rank of partial derivatives of all orders
w.r.t. Y variables
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Rank of the coefficient matrix: properties

⋆ Subadditivity:
Γ(f + g) ⩽ Γ(f ) + Γ(g)

(because Mf +g = Mf + Mg)

⋆ If f and g are polynomials over disjoint variables:

Γ(fg) = Γ(f )Γ(g)

(because Mfg = Mf ⊗ Mg)



Proof sketch of separation in the multilinear setting

⋆ The formula

(y1 + z1)(y2 + z2) . . . (yn + zn)

has rank 2n with respect to the partition Y ∪ Z
(maximum possible rank for 2n variables)

⋆ But formulas have the following weakness [Raz-05]
no small formula can be full rank for any balanced partition

Consider f1f2 over 2n variables (f1, f2 over disjoint sets of var.)
fi is over variables Xi , ni := |Xi |, n1 + n2 = 2n
Consider a balanced partition of the variables X = Y ∪ Z
→ Xi = Yi ∪ Zi . Let δ := 1

2 ||Yi | − |Zi ||
Then

Γf1f2 ⩽ 2(n1−δ)/22(n2−δ)/2 = 1
2δ

· 2n
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Proof sketch of separation of multilinear formulas and
circuits

⋆ The is a polynomial size circuit computing a polynomial P which
is full rank w.r.t. any balanced partition X = Y ∪ Z (dynamic
programming)

⋆ Consider a formula of nO(1)-size computing f
One can write

f =
s∑

i=1
fi ,1fi2 . . . fi ,log n

For a random balanced partition X = Y ∪ Z , with positive
probability, the rank defect in each term is enough so that f not
full rank for the partition Y ∪ Z

[Raz-06] Any multilinear formula computing P has size nΩ(log n)
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Formulas with small individual degree

[Raz-05] Any multilinear formula computing detn or pern has size
nΩ(log n)

Question: Lower bound for the size of multiquadratic formula
computing detn or pern.

Related work: Lower bounds for homogeneous multi-r-ic formulas
[Kayal-Saha-Tavenas-18]



Formulas with small individual degree

[Raz-05] Any multilinear formula computing detn or pern has size
nΩ(log n)

Question: Lower bound for the size of multiquadratic formula
computing detn or pern.

Related work: Lower bounds for homogeneous multi-r-ic formulas
[Kayal-Saha-Tavenas-18]



Homogenization of circuits

Consider a circuit C computing a homogeneous polynomial of
degree d : we will construct C ′ homogeneous circuit computing P

Each node u of the circuit C is replaced with u0, . . . , ud in C ′

computing the homogeneous components of the polynomial
computed at u in P.
– Addition gate: if u = v + w in C , uk = vk + wk in C ′

– Product gate: if u = v × w in C , in C ′:

uk =
∑

i+j=k
vi × wj

in C ′.

If C has size s, C ′ has size O(sd2).
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Homogenization of formulas

Given F formula of size s computing a polynomial of degree d :

– Do the circuit homogenization on F to get C ′ homogeneous
circuit
– Duplicate gates in C ′ to get a homogeneous formula F ′

F ′ has size s log d

[Raz-10] A formula of size d and degree d = O(log s) can be
homogenized in size sO(1).
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Depth-reduction (parallelization)

▶ With polynomial blow-up of size
⋆ Formulas: reduction to depth O(log s)

(Brent, Kuck and Maruyama)
⋆ Circuits: reduction de depth O(log d)

(Valiant, Skyum, Berkowitz and Rackoff)

▶ With subexponential blow-up
⋆ Reduction to depth 4

(Agrawal and Vinay ; Koiran ; Tavenas)
⋆ Reduction to depth 3

(Gupta, Kamath, Kayal and Saptharishi)
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Reduction to depth O(log s) for formulas

For a formula F of size s:
▶ Find a subformula G of size ≈ s/2
▶ The polynomial computed by F can be written as

F = G × H1 + H2

where H1 and H2 are also computed by formulas of size ≈ s/2
▶ Apply induction to these three subformulas G , H1, H2



Depth-reduction for formulas

[Fournier-Limaye-Malod-Srinivasan-Tavenas-23] Let F be a
homogeneous algebraic formula of size s and syntactic degree d
computing a polynomial P. Then P is also computed by a formula
F ′ of size sO(1) and depth O(log d).

Moreover, the construction preserves
▶ monotonicity
▶ non-commutativity
▶ (set-)multilinearity
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▶ monotonicity
▶ non-commutativity
▶ (set-)multilinearity



Reducing the size blow-up

Depth-reduction with near-linear size [Bshouty-Cleve-Eberly-95],
[Bonnet-Buss-94]

ε > 0, F be a algebraic formula of size s computing P.
Then there is an algebraic formula F ′ of
– size at most s1+ε

– depth ∆ = 2O(1/ε) · log s
computing P.

The construction preserves
▶ homogeneity
▶ monotonicity
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Depth-reduction with small size blow-up

Using the above result, we can prove the following improved
version of our depth-reduction:

Assume that P is computed by a formula of size s and syntactic
degree d ≥ 1. Then P is also computed by a formula of size at
most s1+ε and depth ∆ = 2O(1/ε) · log d .

Works also in the non-commutative case.
Preserves homogeneous and/or monotonicity.



Depth-reduction: optimality in the monotone setting

Let n and d = d(n) be growing parameters such that d(n) ≤
√

n.

Then there is a monotone algebraic formula F of size at most n
and depth O(log d) computing a polynomial P ∈ F[x1, . . . , xn] of
degree at most d such that:

any monotone formula of depth o(log d) computing P must have
size nω(1).



Optimality of O(log d) depth-reduction: the hard
polynomial

Parameters k ≥ 1 and r ≥ 2. The polynomial H = H(k,r) is:

k-nested inner products, each one of size r

H is computed by a monotone formula M of size (2r)k and depth
2k, with a +-gate at the top, alternating layers of +-gates and
×-gates, with +-gates of fan-in r and ×-gates of fan-in 2, and
leaves labelled with distinct variables.

H is a polynomial of degree d = 2k and has rd−1 monomials.

Lower bound: A monotone formula of product-depth ∆ ≤ log d
which computes H has size at least rΩ(∆d1/∆).
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Depth-reduction: proof (1/5)

Formula G of syntactic degree dG ≥ 1 and sum-depth ∆(G)
Potential function ϕδ(G):{

ϕδ,1(G) = ⌈log(dG)⌉
ϕδ,2(G) = ⌈∆(G)/δ⌉

and let
ϕδ(G) = ϕδ,1(G) + ϕδ,2(G).

(δ : positive integer to be chosen)



Depth-reduction: proof (2/5)

Formula F of
– size s
– syntactic degree d (not necessarily homogeneous)
– depth O(log s), fanin 2

(after classical depth-reduction).

We prove that F can be parallelized into a formula of arbitrary
fan-in with

– product-depth at most ϕδ(F )
– size at most s · 2δ log(d)

Taking δ = log s
log d gives the result

Potential function: ϕδ(H) = ⌈log(dH)⌉ + ⌈∆(H)/δ⌉
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Depth-reduction: proof (3/5)

Potential function: ϕδ(H) = ⌈log(dH)⌉ + ⌈∆(H)/δ⌉

Consider the following set of gates of F :

A =
{

α | ϕδ(Fα) < ϕδ(F ) = ϕδ(Fparent(α))
}

.

G : formula obtained from F by replacing gates from A by variables

▶ G is skew
▶ G has sum-depth at most δ
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Depth-reduction: proof (4/5)

Lemma] The polynomial computed by G is a multilinear
polynomial with at most 2δ monomials. Moreover any variable
labelling in G
▶ son a +-leaf,
▶ or son a ×-leaf, and whose sibling is a leaf

appears in exactly one monomial (non-duplicable leaves).

Proof: parse trees
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Depth-reduction: proof (5/5)
Start with F of fanin 2 and depth reduced to O(log s)
Potential function ϕδ(H) = ⌈log(dH)⌉ + ⌈∆(H)/δ⌉ with δ = log s

log d
F = G(F1, . . . , Fℓ) where Fi are highest gates where ϕ decreases

▶ Write G as a
∑∏

-formula
▶ Recurse on each Fi , where F = G(F1, . . . , Fℓ)

Depth of the formula obtained is ϕδ(F ) = O(log d)
Size of the resulting formula is bounded by

∑
α non-duplicable

(
sα · 2δ log(dα)

)
+

2δ ·
∑

α duplicable

(
sα · 2δ log(dα)

) .

≤ s · 2δ log d +
∑

α duplicable
2δ
(
sα · 2δ(log(d)−1)

)

≤ s · 2δ log d= s · 2log s = sO(1)
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Structure inside VF

Consider these three classes
▶ homF[s(n)]: (fn) computed by a homogeneous formula of size

poly(s(n)),
▶ lowSynDegF[s(n)]: (fn) computed by a formula of size

poly(s(n)) and of syntactic degree poly(deg(fn))
▶ lowDepthF[s(n)]: computed by a formula of size poly(s(n))

and of depth O(log deg(fn)).

homF[poly(n)] ⊆ lowSynDegF[poly(n)] ⊆ lowDepthF[poly(n)] ⊆ VF,

Question: which inclusions are strict?
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Homegenous vs. Low syntactic degree

Elementary Symmetric Polynomials Sd
n (x1, . . . , xn)

⋆ Computed by inhomogeneous formula of depth-3 and size O(n2)
[Ben-Or]
Sd

n is in lowDepthF[poly(n)].
⋆ Sd

n has depth-6 formulas of syntactic degree at most poly(d)
[Shpilka-Wigderson]
Sd

n in lowSynDegF[poly(n)].
⋆ Sd

n is not known to have poly(n)-sized homogeneous formulas

If Sd
n does not have poly(n)-sized homogeneous formulas

homF[poly(n)] ⊊ lowSynDegF[poly(n)]

If Sd
n is computed by poly(n)-sized homogeneous formulas, any

depth-3 formula of polynomial size and low syntactic degree can be
homogenized :

∑
[c ·

∏
i(1 + ℓi)]
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Thank you!


