Introduction to algebraic complexity theory and how geometry enters

Christian Ikenmeyer

WORKSHOP
Algebraic Complexity Theory Workshop at ICALP 2023

Agenda

(1) Algebraic complexity theory
(2) Geometry

Agenda

(1) Algebraic complexity theory

```
Geometry
```


Algebraic algorithms

- Fast Fourier transform, fast matrix multiplication, ...
- Solving systems of linear equations
- Solving systems of polynomial equations: Gröbner bases
- Coding Theory: Reed-Muller codes, ...
- Number theory: Euclidean algorithm, Chinese Remainder Theorem, ...

Analyzing running time of algebraic algorithms:

- Number of arithmetic operations
- Size/growth/precision of the numbers

Arithmetization

Computation modulo 2: The field \mathbb{F}_{2}

$*$	0	1
0	0	0
1	0	1

Boolean "and"

+	0	1
0	0	1
1	1	0

Boolean "xor"

Translate Boolean circuit using \{and, or, not $\} \nrightarrow$ algebraic circuit using $\{+, *\}$:

During the translation the circuit only grows in size by at most a factor of 4.

Example

Infinite fields

- Algebraic circuits naturally compute a polynomial
- Problem: Different polynomials can give the same function:

$$
x^{2} y+x=x y+x^{2} \quad \text { for all } x, y \in \mathbb{F}_{2}
$$

but coeff $x y\left(x^{2} y+x\right)=0 \neq 1=\operatorname{coeff}_{x y}\left(x y+x^{2}\right)$.

- The situation is better over infinite fields (for example \mathbb{C}):

Lemma
Over an infinite field, two polynomials compute the same function iff they have the same coefficient list.

Proof: Simple induction and polynomial division.

"Algebraic P vs NP"

The determinant polynomial:

$$
\operatorname{det}_{m}=\sum_{\pi \in \mathfrak{S}_{m}} \operatorname{sgn}(\pi) \prod_{i=1}^{m} x_{i, \pi(i)}
$$

The permanent polynomial:

$$
\operatorname{per}_{m}=\sum_{\pi \in \mathfrak{S}_{m}} \prod_{i=1}^{m} x_{i, \pi(i)}
$$

Assume from now on char $\mathbb{F} \neq 2$, because otherwise $\operatorname{det}_{m}=\operatorname{per}_{m}$.
Def.: The algebraic circuit size $\mathrm{a}\left(\operatorname{per}_{m}\right)$ is the smallest size of an algebraic circuit computing per $_{m}$.

Algebraic \mathbf{P} vs NP conjecture (VP $\neq \mathbf{V N P}$, Valiant 1979)

$\mathrm{a}\left(\operatorname{per}_{m}\right)$ is not polynomially bounded.

Determinants instead of circuits

Theorem (Valiant 1979)

Every multivariate polynomial f can be written as the determinant of a matrix whose entries are polynomials of degree ≤ 1.

Example: $\quad f:=y+2 x+x z+2 x y-x^{2} z=\operatorname{det}\left(\begin{array}{ccc}x & y & 0 \\ -1 & z+y+2 & x \\ 1 & z & 1\end{array}\right)$
Def.: Required size of the matrix is called the determinantal complexity $\operatorname{dc}(f)$.
In the example we have $\operatorname{dc}(f) \leq 3$.

Valiant's determinant vs permanent conjecture

 dc $\left(\operatorname{per}_{m}\right)$ is not polynomially bounded.This is implied by VP $\neq \mathbf{V N P}$.

Resources in algebraic computation

$$
\operatorname{det}\left(\begin{array}{cc}
x+1 & y \\
-1 & x+1
\end{array}\right)
$$

circuit size

- Computes $\sum_{s-t \text {-path } p} \prod_{\text {edge } e \in p}$ label (e)
- $\mathrm{w}(p):=$ the smallest width of an ABP computing p.

Theorem (Toda 1991)
$\mathrm{dc}(p)$ and $\mathrm{w}(p)$ are polynomially related.

Definition p-family

A p-family is a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of polynomials such that:

- The number of variables is polynomially bounded
- The degree is polynomially bounded
- VF $:=\{$ p-family whose formula size is polynomially bounded $\}$
- VBP $:=\{p$-family whose dc (or w) is polynomially bounded $\}$

$$
\mathbf{V F} \subseteq \mathbf{V B P} \subseteq \mathbf{V P}
$$

- VP $:=\{\mathrm{p}$-family whose circuit size is polynomially bounded $\}$
$\left(f_{n}\right) \in C$ is complete for C if $\forall\left(g_{m}\right) \in C$ there exists a polynomially bounded s and linear polynomials ℓ_{i} such that

$$
\forall m: \quad g_{m}=f_{s(m)}\left(\ell_{1}, \ell_{2}, \ldots\right)
$$

For example, $\left(\operatorname{det}_{n}\right)$ is VBP-complete.
Example: $\left(x_{1} x_{2} \cdots x_{n}\right) \in \mathbf{V B P}$, because $\operatorname{det}\left(\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=x_{1} x_{2} \cdots x_{n}$.

$$
\operatorname{IMM}_{r}^{(d)}:=\left(\begin{array}{llll}
x_{1,1,1} & x_{1,2,1} & \cdots & x_{1, r, 1}
\end{array}\right)\left(\begin{array}{ccc}
x_{1,1,2} & \cdots & x_{1, r, 2} \\
\vdots & \ddots & \vdots \\
x_{r, 1,2} & \cdots & x_{r, r, 2}
\end{array}\right) \cdots\left(\begin{array}{ccc}
x_{1,1, d-1} & \cdots & x_{1, r, d-1} \\
\vdots & \ddots & \vdots \\
x_{r, 1, d-1} & \cdots & x_{r, r, d-1}
\end{array}\right)\left(\begin{array}{c}
x_{1,1, d} \\
\vdots \\
x_{1, r, d}
\end{array}\right)
$$

- $\mathrm{IMM}_{3}^{(n)}$ is VF-complete [Ben-Or, Cleve 1988].
- $\mathrm{IMM}_{n}^{(n)}$ is VBP-complete.
- There is no equally nice VP-complete p-family known.

Definition VNP

A p-family $\left(f_{n}\right)$ is in VNP if there exists a p-family $\left(g_{n}\right) \in \mathbf{V P}$ and polynomially bounded functions r, s, t such that

$$
\forall n: f_{n}=\sum_{b \in\{0,1\}^{r(n)}} g_{t(n)}\left(x_{1}, \ldots, x_{s(n)}, b_{1}, \ldots, b_{r(n)}\right)
$$

For example,

$$
\operatorname{per}_{n}=\sum_{b \in\{0,1\}^{n^{2}}} C(b) \prod_{1 \leq i, j \leq n}\left(b_{i, j}\left(x_{i, j}-1\right)+1\right)
$$

where C is the arithmetization of a Boolean circuit checking if b is a permutation matrix.

- One can also take $\left(g_{n}\right) \in \mathbf{V F}$ and it gives the same class: VNP $=$ VNF.
- One can also take $\left(g_{n}\right)$ to be just a polynomially long product of linear polynomials (Bringmann-I-Zuiddam 2018)

Valiant 1979:

- The permanent p-family $\left(\operatorname{per}_{n}\right)$ is VNP-complete.

Efficient computation:

- VF $\subseteq \mathbf{V B P} \subseteq \mathbf{V P}$
- "VBP = linear algebra" (determinant, iterated matrix multiplication)

Efficiently definable ("explicit polynomials"):

- VNP
- "VNP $=$ combinatorics/counting" (Cycle covers, permanent)

```
Valiant's conjectures
VF}\not=\mathbf{VNP
VBP}\not=\mathrm{ VNP, determinant vs permanent, linear algebra vs counting
VP}\not=\mathbf{VNP
```

```
Valiant's conjectures
VF }\not=\mathbf{VNP
VBP}\not=\mathrm{ VNP, determinant vs permanent, linear algebra vs counting
VP}\not=\mathbf{VNP
```

These algebraic conjectures are "easier" than the Boolean ones:

$$
\mathbf{P H} \neq \Sigma_{2} \stackrel{\text { Karp-Lipton }}{\Longrightarrow}{ }^{1982} \mathbf{N P} \nsubseteq \mathbf{P} / \text { poly } \stackrel{\text { Bürgisser }}{\Longrightarrow}{ }^{2000} \mathbf{V P} \neq \mathbf{V N P} \Longrightarrow \mathbf{V B P} \neq \mathbf{V N P} \Longrightarrow \mathbf{V F} \neq \mathbf{V N P}
$$

Bürgisser's result works

- over finite fields, and
- over \mathbb{C} (if the generalized Riemann hypothesis is true).

Agenda

Algebraic complexity theory
(2) Geometry

We work with homogenized algebraic branching programs!
In fact, inhomogeneous set-ups can lead to weird behavior in the representation theory (Landsberg-Kadish 2012, I-Panova 2015, Bürgisser-I-Panova 2015)

For a fixed degree d and number of variables n and a complexity bound r, study the set

$$
X_{r}:=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \mid \mathrm{w}(f) \leq r\right\}
$$

$$
\left.\begin{array}{c}
X_{1} \subseteq X_{2} \subseteq X_{3} \subseteq \cdots \subseteq X_{\max }=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \\
\operatorname{IMM}_{r}^{(d)}:=\left(\begin{array}{lll}
x_{1,1,1} & x_{1,2,1} & \cdots
\end{array} x_{1, r, 1}\right.
\end{array}\right)\left(\begin{array}{ccc}
x_{1,1,2} & \cdots & x_{1, r, 2} \\
\vdots & \ddots & \vdots \\
x_{r, 1,2} & \cdots & x_{r, r, 2}
\end{array}\right) \cdots\left(\begin{array}{ccc}
x_{1,1, d-1} & \cdots & x_{1, r, d-1} \\
\vdots & \ddots & \vdots \\
x_{r, 1, d-1} & \cdots & x_{r, r, d-1}
\end{array}\right)\left(\begin{array}{c}
x_{1,1, d} \\
\vdots \\
x_{1, r, d}
\end{array}\right) .
$$

VBP completeness with homogenization gives:

- If $f \in X_{r}$, then $f(A \vec{x}) \in X_{r}$ for any linear map A.
- Every $f \in X_{r}$ can be obtained via a linear map A as $f=\operatorname{IMM}_{r}^{(d)}(A \vec{x})$

For example, if $f=x_{1}^{3}+x_{1} x_{2} x_{3}$, and $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$, then $f(A \vec{x})=f\left(x_{2}, x_{1}, x_{1}+x_{2}\right)=x_{2}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$.

$$
X_{r}:=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \mid \mathrm{w}(f) \leq r\right\} .
$$

- Goal: find more useful mathematical structure on X_{r}.
- X_{r} is closed under base changes: Changing input variables to linear combination comes at no extra cost.
- But X_{r} is lacking a crucial property: It is not topologically closed.

Example from now on via Waring rank WR instead of w.

For a homogeneous degree d polynomial f the Waring rank $\mathrm{WR}(f)$ is defined as the smallest r such that there exist homogeneous linear ℓ_{i} such that $f=\sum_{i=1}^{r}\left(\ell_{i}\right)^{d}$.

Not entirely obvious at first: $\operatorname{WR}(f)$ is always finite.
For example:
$12 x^{3} y=(x+y)^{4}+i^{3}(x+i y)^{4}+i^{2}\left(x+i^{2} y\right)^{4}+i\left(x+i^{3} y\right)^{4}$, hence $\mathrm{WR}\left(x^{3} y\right) \leq 4 . \operatorname{In}$ fact, $\mathrm{WR}\left(x^{d-1} y\right)=d$.

$$
12 x^{3} y=(x+y)^{4}+i^{3}(x+i y)^{4}+i^{2}\left(x+i^{2} y\right)^{4}+i\left(x+i^{3} y\right)^{4}
$$

$\frac{1}{\varepsilon}\left((x+\varepsilon y)^{4}-x^{4}\right)=4 x^{3} y+\varepsilon\left(6 x^{2} y^{2}+4 \varepsilon x y^{3}+\varepsilon^{2} y^{4}\right) \xrightarrow{\varepsilon \rightarrow 0} 4 x^{3} y$
The border Waring rank $\underline{\mathrm{WR}}(f)$ is defined as the smallest r such that f can be approximated arbitrarily closely by polynomials of Waring rank $\leq r$.

For example, $\underline{\mathrm{WR}}\left(x^{3} y\right) \leq 2$.
For a space of polynomials $V=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$, the elements of $\mathbb{C}[V]$ are called meta-polynomials.
Example: For $a x^{2}+b x y+c y^{2}$, the discriminant $b^{2}-4 a c$ is a meta-polynomial.

Theorem (algebraic geometry)

The set $\overline{W_{r}}=\{f \mid \underline{\mathrm{WR}}(f) \leq k\}$ is an algebraic variety, i.e., there exist finitely many meta-polynomials $\Delta_{1}, \ldots, \Delta_{N}$ with

$$
f \in \overline{W_{r}} \quad \Leftrightarrow \quad \Delta_{1}(f)=\Delta_{2}(f)=\cdots=\Delta_{N}(f)=0
$$

We conclude that we know how complexity lower bounds must look like:
Theorem: If $f \notin \overline{W_{r}}$, then there exists a meta-polynomial Δ with $\quad \bullet \Delta\left(\overline{W_{r}}\right)=\{0\} \quad$ and $\quad \bullet \Delta(f) \neq 0$

```
A :=\mathbb{C}[x,y\mp@subsup{]}{2}{}=\langle\mp@subsup{x}{}{2},xy,\mp@subsup{y}{}{2}\rangle.
Every element in \mathbb{A}\mathrm{ can be represented as ax 2}+bxy+c\mp@subsup{y}{}{2}.
- \(X:=\left\{f \in \mathbb{A} \mid \exists \alpha, \beta \in \mathbb{C}: f=(\alpha x+\beta y)^{2}\right\} \quad\) set of Waring rank 1 polynomials
- \(f \in X\) iff \(\Delta(f)=b^{2}-4 a c=0\).
- To prove \(\mathrm{WR}(f) \geq 2\) we compute \(\Delta(f) \neq 0\)
```


Topological closures of algebraic complexity classes

$\mathrm{WR} \longrightarrow \underline{\mathrm{WR}}$

Analogously, we can allow such approximations

- for formulas,
- for algebraic branching programs,
- for circuits,
- or for hypercube summations of circuits.

The corresponding complexity classes are

- $\mathbf{V F} \subseteq \overline{\mathbf{V F}}$,
- VBP $\subseteq \overline{\mathrm{VBP}}$,
- VP $\subseteq \mathbf{V P}$,
- VNP $\subseteq \overline{\mathrm{VNP}}$.

Wide open question: Is $\overline{\mathbf{V F}} \subseteq$ VNP?

Let $X_{r}:=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \mid \mathrm{w}(f) \leq r\right\}$.

- To find meta-polynomials Δ for $\overline{X_{r}}$, instead of studying $\overline{X_{r}}$ directly, one can study its coordinate ring, i.e., ring of polynomial funtions restricted to $\overline{X_{r}}$.
- Representation theory helps to study the coordinate ring using the weighs of the GL_{n} : a finer variant of a degree for meta-polynomials
- Connections to invariant theory and algebraic combinatorics, established by Mulmuley and Sohoni 2001, 2008.

Conclusion

- We do not know how powerful approximations in algebraic complexity theory are, but
- if we allow approximations, then all complexity lower bounds come from meta-polynomials, and this opens a wide array of tools from algebraic geometry and representation theory.

Thank you very much for your attention!

