
Introduction to algebraic complexity theory

and how geometry enters

Christian Ikenmeyer

Algebraic Complexity Theory Workshop at ICALP 2023

Christian Ikenmeyer 1



Agenda

1 Algebraic complexity theory

2 Geometry

Christian Ikenmeyer 2



Agenda

1 Algebraic complexity theory

2 Geometry

Christian Ikenmeyer 3



Algebraic algorithms

Fast Fourier transform, fast matrix multiplication, . . .

Solving systems of linear equations

Solving systems of polynomial equations: Gröbner bases

Coding Theory: Reed-Muller codes, . . .

Number theory: Euclidean algorithm, Chinese Remainder Theorem, . . .

Analyzing running time of algebraic algorithms:

Number of arithmetic operations

Size/growth/precision of the numbers

Christian Ikenmeyer 4



Arithmetization
Computation modulo 2: The field F2

∗ 0 1
0 0 0
1 0 1

+ 0 1
0 0 1
1 1 0

Boolean “and” Boolean “xor“

Translate Boolean circuit using {and, or, not} ↭ algebraic circuit using {+, ∗}:

x

y

and x not

x

y

or

x

y

or

and not

and

x

y

∗

x

1

+

x

y

1
+

+

∗ + x

y

+

During the translation the circuit only grows in size by at most a factor of 4.

Christian Ikenmeyer 5



Example

x1

x2

x3 and

and

not

or

x1

x2

x3

1

∗

∗

+

+

+

∗ +

(x1 and x3) or (x2 and not(x3)) x1x2x2
3 + x1x2x3 + x1x3 + x2x3 + x2

Christian Ikenmeyer 6



Infinite fields

Algebraic circuits naturally compute a polynomial

Problem: Different polynomials can give the same function:

x2y + x = xy + x2 for all x, y ∈ F2,

but coeffxy(x2y + x) = 0 ̸= 1 = coeffxy(xy + x2).

The situation is better over infinite fields (for example C):

Lemma

Over an infinite field, two polynomials compute the same function iff they have the
same coefficient list.

Proof: Simple induction and polynomial division.

Christian Ikenmeyer 7



“Algebraic P vs NP”

The determinant polynomial:

detm =
∑

π∈Sm

sgn(π)
m∏
i=1

xi,π(i)

The permanent polynomial:

perm =
∑

π∈Sm

m∏
i=1

xi,π(i)

Assume from now on charF ̸= 2, because otherwise detm = perm.

Def.: The algebraic circuit size a(perm) is the smallest size of an algebraic circuit computing perm.

Algebraic P vs NP conjecture (VP ̸= VNP, Valiant 1979)

a(perm) is not polynomially bounded.

Christian Ikenmeyer 8



Determinants instead of circuits

Theorem (Valiant 1979)

Every multivariate polynomial f can be written as the determinant of a matrix whose entries are
polynomials of degree ≤ 1.

Example: f := y + 2x+ xz + 2xy − x2z = det

 x y 0
−1 z + y + 2 x
1 z 1


Def.: Required size of the matrix is called the determinantal complexity dc(f).

In the example we have dc(f) ≤ 3.

Valiant’s determinant vs permanent conjecture

dc(perm) is not polynomially bounded.

This is implied by VP ̸= VNP.

Christian Ikenmeyer 9



Resources in algebraic computation
x

1

x

1

y

+

+

∗ +

det

(
x+ 1 y
−1 x+ 1

) x

1

y

+ ∗ +

formula size determinantal complexity dc circuit size

s t

x +
y

−2x

3z
− y

y + z

2x
x

2y
+

3z

3z

x − y

2x

z

x

x +
2y

2y + z

x −
y

Computes
∑

s-t-path p

∏
edge e∈p label(e)

w(p) := the smallest width of an ABP computing p.

Theorem (Toda 1991)

dc(p) and w(p) are polynomially related.

Christian Ikenmeyer 10



Definition p-family

A p-family is a sequence (fn)n∈N of polynomials such that:

The number of variables is polynomially bounded

The degree is polynomially bounded

VF := { p-family whose formula size is polynomially bounded }
VBP := { p-family whose dc (or w) is polynomially bounded }
VP := { p-family whose circuit size is polynomially bounded }

VF ⊆ VBP ⊆ VP

(fn) ∈ C is complete for C if ∀(gm) ∈ C there exists a polynomially bounded s and linear polynomials ℓi such that

∀m : gm = fs(m)(ℓ1, ℓ2, . . .).

For example, (detn) is VBP-complete.
Example: (x1x2 · · ·xn) ∈ VBP, because det(diag(x1, x2, . . . , xn)) = x1x2 · · ·xn.

IMM
(d)
r :=

(
x1,1,1 x1,2,1 · · · x1,r,1

)x1,1,2 · · · x1,r,2

...
. . .

...
xr,1,2 · · · xr,r,2

 · · ·

x1,1,d−1 · · · x1,r,d−1

...
. . .

...
xr,1,d−1 · · · xr,r,d−1


x1,1,d

...
x1,r,d


IMM

(n)
3 is VF-complete [Ben-Or, Cleve 1988].

IMM
(n)
n is VBP-complete.

There is no equally nice VP-complete p-family known.

Christian Ikenmeyer 11



Definition VNP

A p-family (fn) is in VNP if there exists a p-family (gn) ∈ VP and polynomially bounded functions r, s, t such that

∀n : fn =
∑

b∈{0,1}r(n)

gt(n)(x1, . . . , xs(n), b1, . . . , br(n))

For example,

pern =
∑

b∈{0,1}n2

C(b)
∏

1≤i,j≤n

(bi,j(xi,j − 1) + 1),

where C is the arithmetization of a Boolean circuit checking if b is a permutation matrix.

One can also take (gn) ∈ VF and it gives the same class: VNP = VNF.

One can also take (gn) to be just a polynomially long product of linear polynomials (Bringmann-I-Zuiddam 2018)

Valiant 1979:

The permanent p-family (pern) is VNP-complete.

Christian Ikenmeyer 12



Efficient computation:

VF ⊆ VBP ⊆ VP

“VBP = linear algebra” (determinant, iterated matrix multiplication)

Efficiently definable (“explicit polynomials”):

VNP

“VNP = combinatorics/counting” (Cycle covers, permanent)

Valiant’s conjectures

VF ̸= VNP

VBP ̸= VNP, determinant vs permanent, linear algebra vs counting

VP ̸= VNP

Christian Ikenmeyer 13



Valiant’s conjectures

VF ̸= VNP

VBP ̸= VNP, determinant vs permanent, linear algebra vs counting

VP ̸= VNP

These algebraic conjectures are “easier” than the Boolean ones:

PH ̸= Σ2
Karp-Lipton 1982

=⇒ NP ̸⊆ P/poly
Bürgisser 2000

=⇒ VP ̸= VNP =⇒ VBP ̸= VNP =⇒ VF ̸= VNP

Bürgisser’s result works

over finite fields, and

over C (if the generalized Riemann hypothesis is true).

Christian Ikenmeyer 14



Agenda

1 Algebraic complexity theory

2 Geometry

Christian Ikenmeyer 15



We work with homogenized algebraic branching programs!
In fact, inhomogeneous set-ups can lead to weird behavior in the representation theory (Landsberg-Kadish 2012, I-Panova
2015, Bürgisser-I-Panova 2015)

For a fixed degree d and number of variables n and a complexity bound r, study the set

Xr := {f ∈ C[x1, . . . , xn]d | w(f) ≤ r}.

X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ Xmax = C[x1, . . . , xn]d

IMM
(d)
r :=

(
x1,1,1 x1,2,1 · · · x1,r,1

)x1,1,2 · · · x1,r,2

...
. . .

...
xr,1,2 · · · xr,r,2

 · · ·

x1,1,d−1 · · · x1,r,d−1

...
. . .

...
xr,1,d−1 · · · xr,r,d−1


x1,1,d

...
x1,r,d


VBP completeness with homogenization gives:

If f ∈ Xr, then f(A #»x ) ∈ Xr for any linear map A.

Every f ∈ Xr can be obtained via a linear map A as f = IMM
(d)
r (A #»x )

For example, if f = x3
1 + x1x2x3, and A =

(
0 1 1
1 0 1

)
, then f(A #»x ) = f(x2, x1, x1 + x2) = x3

2 + x2
1x2 + x1x2

2.

Christian Ikenmeyer 16



Xr := {f ∈ C[x1, . . . , xn]d | w(f) ≤ r}.

Goal: find more useful mathematical structure on Xr.

Xr is closed under base changes: Changing input variables to linear combination comes at no extra cost.

But Xr is lacking a crucial property: It is not topologically closed.

Example from now on via Waring rank WR instead of w.

For a homogeneous degree d polynomial f the Waring rank WR(f) is defined as the smallest r such that there exist
homogeneous linear ℓi such that f =

∑r
i=1(ℓi)

d.

s t
ℓ3

...

ℓ1

ℓ3

...

ℓ1

ℓ3

...

ℓ1

ℓ3

...

ℓ1

Not entirely obvious at first: WR(f) is always finite.
For example:
12x3y = (x+ y)4 + i3(x+ iy)4 + i2(x+ i2y)4 + i(x+ i3y)4, hence WR(x3y) ≤ 4. In fact, WR(xd−1y) = d.

Christian Ikenmeyer 17



12x3y = (x+ y)4 + i3(x+ iy)4 + i2(x+ i2y)4 + i(x+ i3y)4.

WR(f) ≤ 1 WR(f) ≤ 2 WR(f) ≤ 3 WR(f) ≤ 4
x3y

1
ε

(
(x+ εy)4 − x4

)
= 4x3y + ε(6x2y2 + 4εxy3 + ε2y4)

ε→0−→ 4x3y

The border Waring rank WR(f) is defined as the smallest r such that f can be approximated arbitrarily closely by
polynomials of Waring rank ≤ r. For example, WR(x3y) ≤ 2.

For a space of polynomials V = C[x1, . . . , xn]d, the elements of C[V ] are called meta-polynomials.

Example: For ax2 + bxy + cy2, the discriminant b2 − 4ac is a meta-polynomial.

Theorem (algebraic geometry)

The set Wr = {f | WR(f) ≤ k} is an algebraic variety, i.e., there exist finitely many meta-polynomials ∆1, . . . ,∆N with

f ∈ Wr ⇔ ∆1(f) = ∆2(f) = · · · = ∆N (f) = 0

We conclude that we know how complexity lower bounds must look like:

Theorem: If f /∈ Wr, then there exists a meta-polynomial ∆ with • ∆(Wr) = {0} and • ∆(f) ̸= 0

Christian Ikenmeyer 18



A := C[x, y]2 = ⟨x2, xy, y2⟩.
Every element in A can be represented as ax2 + bxy + cy2.

X := {f ∈ A | ∃α, β ∈ C : f = (αx+ βy)2} set of Waring rank 1 polynomials

f ∈ X iff ∆(f) = b2 − 4ac = 0.

To prove WR(f) ≥ 2 we compute ∆(f) ̸= 0

Christian Ikenmeyer 19



Topological closures of algebraic complexity classes

WR −→ WR

Analogously, we can allow such approximations

for formulas,

for algebraic branching programs,

for circuits,

or for hypercube summations of circuits.

The corresponding complexity classes are

VF ⊆ VF,

VBP ⊆ VBP,

VP ⊆ VP,

VNP ⊆ VNP.

Wide open question: Is VF ⊆ VNP?

Christian Ikenmeyer 20



Let Xr := {f ∈ C[x1, . . . , xn]d | w(f) ≤ r}.

To find meta-polynomials ∆ for Xr, instead of studying Xr directly, one can study its coordinate ring, i.e., ring of
polynomial funtions restricted to Xr.

Representation theory helps to study the coordinate ring using the weighs of the GLn: a finer variant of a degree for
meta-polynomials

Connections to invariant theory and algebraic combinatorics, established by Mulmuley and Sohoni 2001, 2008.

Conclusion

We do not know how powerful approximations in algebraic complexity theory are, but

if we allow approximations, then all complexity lower bounds come from meta-polynomials, and this opens a wide array
of tools from algebraic geometry and representation theory.

Thank you very much for your attention!

Christian Ikenmeyer 21


	Algebraic complexity theory
	Geometry

