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Algebraic algorithms

o Fast Fourier transform, fast matrix multiplication, ...

@ Solving systems of linear equations

@ Solving systems of polynomial equations: Grébner bases
o Coding Theory: Reed-Muller codes, ...

@ Number theory: Euclidean algorithm, Chinese Remainder Theorem, ...

Analyzing running time of algebraic algorithms:
@ Number of arithmetic operations

o Size/growth/precision of the numbers
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Arithmetization
Computation modulo 2: The field F2

*= | 0 1 + 10 1

0|0 O 0|0 1

110 1 1 1 0
Boolean “and” Boolean *“xor"“

Translate Boolean circuit using {and, or,not} «~ algebraic circuit using {4+, *}:

x T r —»| or
x not *@
Y Y Y —»| and |/ not
x T T
Y 1 Y

During the translation the circuit only grows in size by at most a factor of 4.
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Example

(z1 and z3) or (z2 and not(z3)) mlazgxg + x1Tox3 + T123 + T2T3 + T2
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Infinite fields

o Algebraic circuits naturally compute a polynomial

o Problem: Different polynomials can give the same function:
2y+z=azy+a® forallz,yeFy,
but coeff,y (z2y + x) = 0 # 1 = coeffgy (zy + x2).
@ The situation is better over infinite fields (for example C):

Lemma

Over an infinite field, two polynomials compute the same function iff they have the
same coefficient list.

Proof: Simple induction and polynomial division.
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“Algebraic P vs NP”

The determinant polynomial:

m
dety, = Z sgn(m) Ha:i,,,(i)
i=1

TEGm
The permanent polynomial:
m
pery = > [l i)

TEG, i=1

Assume from now on charF # 2, because otherwise det,, = per,,.

Def.: The algebraic circuit size a(per,,) is the smallest size of an algebraic circuit computing per,,.

a(per,,) is not polynomially bounded.

Algebraic P vs NP conjecture (VP # VNP, Valiant 1979) J
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Determinants instead of circuits

Theorem (Valiant 1979)

Every multivariate polynomial f can be written as the determinant of a matrix whose entries are
polynomials of degree < 1.

T Y 0
Example: f:=y+2zx+axz+2zy—a?z=det| -1 2z+y+2 =z
1 z 1

Def.: Required size of the matrix is called the determinantal complexity dc(f).

In the example we have dc(f) < 3.

Valiant's determinant vs permanent conjecture
dc(per,,,) is not polynomially bounded. J

This is implied by VP % VNP.
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Resources in algebraic computation

x+1 Y
det( -1 w-i-l)

formula size determinantal complexity dc circuit size

o Computes Zs_t_path » Hedge eep label(e)
@ w(p) := the smallest width of an ABP computing p.

Theorem (Toda 1991)
dc(p) and w(p) are polynomially related.

Christian Ikenmeyer 10



Definition p-family
A p-family is a sequence (fpn)nen of polynomials such that:
@ The number of variables is polynomially bounded

@ The degree is polynomially bounded

o VF := { p-family whose formula size is polynomially bounded }
o VBP := { p-family whose dc (or w) is polynomially bounded } VF C VBP C VP
@ VP := { p-family whose circuit size is polynomially bounded }
(fn) € C is complete for C if V(gm) € C there exists a polynomially bounded s and linear polynomials ¢; such that
Vm: gm = fe(m)(l1,€2,...).
For example, (detn) is VBP-complete.
Example: (z1z2 - zn) € VBP, because det(diag(z1,z2,...,2n)) = 2122 - Tn.
1,12 0 T2 T1,1,d—1  “°  Tird-1 T1,1,d
IMMgd) = (1,1,1 T1,2,1 -+ Tie1)
Tr1,2 ot T2 Trl,d—1 "0 Tropd—1 T1,r,d
° IMMg") is VF-complete [Ben-Or, Cleve 1988].

° IMM%”) is VBP-complete.
@ There is no equally nice VP-complete p-family known.
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Definition VNP
A p-family (fr) is in VNP if there exists a p-family (gn) € VP and polynomially bounded functions r, s, t such that

Vi fa= D Gy (@ Ts(n) blse s b))
be{0,1}7(7)

For example,
per, = >, CO) ] (s -1+,
be{0,137? 1<ij<n
where C' is the arithmetization of a Boolean circuit checking if b is a permutation matrix.
@ One can also take (gn) € VF and it gives the same class: VNP = VNF.
@ One can also take (gn) to be just a polynomially long product of linear polynomials (Bringmann-I-Zuiddam 2018)

Valiant 1979:
@ The permanent p-family (per,,) is VNP-complete.
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Efficient computation:
e VF C VBP C VP

o “VBP = linear algebra” (determinant, iterated matrix multiplication)

Efficiently definable (“explicit polynomials”):
o VNP

o “VNP = combinatorics/counting” (Cycle covers, permanent)

Valiant's conjectures
VF # VNP
VBP # VNP, determinant vs permanent, linear algebra vs counting

VP £ VNP
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Valiant's conjectures

VF # VNP

VBP # VNP, determinant vs permanent, linear algebra vs counting
VP # VNP

These algebraic conjectures are “easier” than the Boolean ones:

Karp-Lipton 1982 Biirgisser 2000
_— —

PH # %, NP Z P/poly VP #VNP = VBP # VNP = VF # VNP

Biirgisser's result works
@ over finite fields, and

@ over C (if the generalized Riemann hypothesis is true).
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We work with homogenized algebraic branching programs!

In fact, inhomogeneous set-ups can lead to weird behavior in the representation theory (Landsberg-Kadish 2012, I-Panova
2015, Biirgisser-I-Panova 2015)

For a fixed degree d and number of variables n and a complexity bound r, study the set

Xy :={f €Clz1,...,znla | Ww(f) <r}.

X1 € X2 € X3 € C Xmax = Clai,..., 0l

Ti12 o T2 Ti1,d-1 ccc Tind-1\ (%114
@ : : :
IMM;™ = (%1,1,1 T1,2,1 - T1,r1)

Tr,1,2 ot T2 Ty 1,d—1 0 Tppd—1 T1,r,d

VBP completeness with homogenization gives:

For example, if f = a:i’ + x1z223, and A = ([1J (1] }), then f(A?) = f(z2,71,71 +22) = x% —I—x%xg + xlxg.
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Xr={f €Clzr,...,xnla | w(f) <r}.

@ Goal: find more useful mathematical structure on X,-.
o X, is closed under base changes: Changing input variables to linear combination comes at no extra cost.

@ But X, is lacking a crucial property: It is not topologically closed.

Example from now on via Waring rank WR instead of w.

For a homogeneous degree d polynomial f the Warmg rank WR(f) is defined as the smallest r such that there exist
homogeneous linear ¢; such that f = Y"7_, (4;)%.

e S S o
e e

Not entirely obvious at first: WR(f) is always finite.
For example:
1223y = (x + y)* + 33 (x + iy)* + i%(z + i%y)* +i(z + i3y)?, hence WR(z3y) < 4. In fact, WR(z4~1y) = d.

01

=0
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1223y = (z + y)* + 3 (x +iy)* + 32 (x + i%y)* +i(z + 3y)L.

WR(f) <4

é ((w +ey)t — x4) = dady + e(6x3y? + dexy® + 2y?) =9 423y
The border Waring rank WR(f) is defined as the smallest r such that f can be approximated arbitrarily closely by
polynomials of Waring rank < 7. For example, WR/(23y) < 2.

For a space of polynomials V' = C[z1, ..., Zn]4, the elements of C[V] are called meta-polynomials. )

Example: For az? + bzy + cy?, the discriminant b2 — 4ac is a meta-polynomial.
Theorem (algebraic geometry)

The set W, = {f | WR(f) < k} is an algebraic variety, i.e., there exist finitely many meta-polynomials A1, ..., Ax with

FeEW, & Ai(f)=22(f)=---=An(f)=0

We conclude that we know how complexity lower bounds must look like:

Theorem: If f ¢ W, then there exists a meta-polynomial A with o A(W;) = {0} and o A(f)#0 J
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A= Cla,ylz = (a2, 2y, 9%).
Every element in A can be represented as az? + bxy + cy?.
o X:={f€eA|3a,B€C: f=(ax+Py)?} setof Waring rank 1 polynomials

o f e X iff A(f) =b% —dac=0.
@ To prove WR(f) > 2 we compute A(f) #0
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Topological closures of algebraic complexity classes

WR — WR

Analogously, we can allow such approximations
e for formulas,
o for algebraic branching programs,
e for circuits,

@ or for hypercube summations of circuits.

The corresponding complexity classes are
e VF C VF,
e VBP C VBP,
e VP C VP,
e VNP C VNP.

Wide open question: Is VF C VNP?
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Let X; :={f € Clz1,...,zn]q | w(f) <7}

@ To find meta-polynomials A for XiL instead of studying X, directly, one can study its coordinate ring, i.e., ring of
polynomial funtions restricted to X,-.

@ Representation theory helps to study the coordinate ring using the weighs of the GL,,: a finer variant of a degree for
meta-polynomials

o Connections to invariant theory and algebraic combinatorics, established by Mulmuley and Sohoni 2001, 2008.

Conclusion

@ We do not know how powerful approximations in algebraic complexity theory are, but

o if we allow approximations, then all complexity lower bounds come from meta-polynomials, and this opens a wide array
of tools from algebraic geometry and representation theory.

Thank you very much for your attention!
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