Derandomizing PIT: A Survey of Results and Techniques

Bhargav Thankey
Indian Institute of Science, Bengaluru

Outline

- The PIT problem
- PIT and circuit lower bounds
- PIT for constant depth circuits
- PIT for constant read circuits
- PIT for orbits of circuit classes

Polynomial Identity Testing (PIT)

- The Problem: Given a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if f is identically zero.

Polynomial Identity Testing (PIT)

- The Problem: Given a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if f is identically zero.

The coefficients of all monomials are 0 . Denoted $f \equiv 0$.

> Not the same as $f\left(a_{1}, \ldots, a_{n}\right)=0$
> $\forall a_{1}, \ldots, a_{n} \in \mathbb{F}$. Eg. $x^{2}-x$ over \mathbb{F}_{2}.

Polynomial Identity Testing (PIT)

- The Problem: Given a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if f is identically zero.

List of coefficients: Problem trivial

Polynomial Identity Testing (PIT)

- The Problem: Given a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if f is identically zero.

Polynomial Identity Testing (PIT)

- The Problem: Given a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if f is identically zero.

Polynomial Identity Testing (PIT)

- The Problem: Given a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if f is identically zero.

Polynomial Identity Testing (PIT)

- The Problem: Given a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, check if f is identically zero.

Efficient randomised algorithm

- Schwartz-Zippel Lemma [DL78, Zip79, Sch80]: Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero, degree d polynomial. Then, for any $S \subseteq \mathbb{F}$ and $a_{1}, \ldots, a_{n} \in_{R} S$,

$$
\operatorname{Pr}\left[f\left(a_{1}, \ldots, a_{n}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

- Gives a $\operatorname{poly}(n, d)$ randomised algorithm for PIT: Pick a_{1}, \ldots, a_{n} uniformly at random from a large enough subset of \mathbb{F} and check whether $f\left(a_{1}, \ldots, a_{n}\right)$ is 0 .
- Goal: Obtain an efficient, deterministic algorithm for PIT.

DL78: DeMillo-Lipton, Information Processing Letters, 78.
Zip79: Zippel, EUROSAM, 79.
Sch80: Schwartz, JACM, 80.

Efficient randomised algorithm

- Schwartz-Zippel Lemma [DL78, Zip79, Sch80]: Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero, degree d polynomial. Then, for any $S \subseteq \mathbb{F}$ and $a_{1}, \ldots, a_{n} \in_{R} S$,

$$
\operatorname{Pr}\left[f\left(a_{1}, \ldots, a_{n}\right) \neq 0\right] \geq 1-\frac{d}{|S|^{\circ}}
$$

- Gives a $\operatorname{poly}(n, d)$ randomised algorithm for PIT: Pick a_{1}, \ldots, a_{n} uniformly at random from a large enough subset of \mathbb{F} and check whether $f\left(a_{1}, \ldots, a_{n}\right)$ is 0 .
- Goal: Obtain an efficient, deterministic algorithm for PIT.

Running time $=\operatorname{poly}(n, d, s)$.

Connections to other problems

- Primality testing: The AKS primality test was obtained by derandomizing an instance of PIT over a ring.
- Perfect matchings: The best known randomised parallel algorithm for finding perfect matchings in graphs uses PIT [MVV87]. Derandomizing PIT will give a deterministic parallel algorithm to find perfect matchings in graphs.
- Polynomial factoring: A deterministic algorithm for PIT would yield a deterministic algorithm for polynomial factorisation [KSS15].

PIT and circuit lower bounds

- Theorem [KIO3]: If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized Boolean circuits or
2. the permanent polynomial can not be computed by polynomial sized arithmetic circuits.

PIT and circuit lower bounds

- Theorem [KIO3]: If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized Boolean circuits or
2. the permanent polynomial can not be computed by polynomial sized arithmetic dircuits.

$$
\operatorname{Perm}\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, n}
\end{array}\right]:=\sum_{\sigma \in S_{n}} \prod_{i \in[n]} x_{i, \sigma(i)}
$$

PIT and circuit lower bounds

- Theorem [KIO3]: If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized Boolean circuits or
2. the permanent polynomial can not be computed by polynomial sized arithmetic circuits.

- The result applies to both the white box and the black box setting.

PIT and circuit lower bounds

- Theorem [HS80, Agr05]: Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing function. Suppose there is an algorithm which runs in time $T(s)$ and solves the black box version of PIT for size s circuits. Then there exists an n variate polynomial whose coefficients can be computed in time $2^{O(n)}$ that requires arithmetic circuits of size at least $T^{-1}\left(2^{O(n)}\right)$.

PIT and circuit lower bounds

- Theorem [HS80, Agr05]: Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing function. Suppose there is an algorithm which runs in time $T(s)$ and solves the black box version of PIT for size s circuits. Then there exists an n variate polynomial whose coefficients can be computed in time $2^{O(n)}$ that requires arithmetic circuits of size at least $T^{-1}\left(2^{O(n)}\right)$.
- Polynomial time black box PIT \Rightarrow exponential arithmetic circuit lower bound.
- Quasi-polynomial time black box PIT \Longrightarrow arithmetic circuit lower bound of the form ${\underline{2^{n}}}^{n^{\epsilon}}$.

PIT and circuit lower bounds

- Theorem [KIO3]: If there is an n variate, multilinear polynomial that requires arithmetic circuits of size $2^{\Omega(n)}\left(\right.$ resp. $\left.n^{\omega(1)}\right)$, then there is a $2^{\text {polylog }(n)}$ (resp. sub-exponential) time black box PIT algorithm for $\operatorname{poly}(n)$ sized arithmetic circuits computing n variate polynomials of poly (n) degree.
- Thus, derandomizing PIT and proving arithmetic circuit lower bounds are two sides of the same coin.

PIT for special circuit classes

- Since proving arithmetic circuit lower bounds seems to be difficult, we can expect derandomizing PIT to be a challenging problem.
- So the focus has been on derandomizing PIT for special classes of circuits.
- Some restrictions that have been imposed are:
- Restricting the depth of the circuit,
- Restricting the number of times the circuit can read a variable,
- Restricting the fan-in of the gates in the circuit,
- Combinations of the above three, etc.

PIT for Constant Depth Circuits

Constant depth circuits

- Alternating layers/levels of + and \times gates with unbounded fan-in.

Constant depth circuits

- Alternating layers/levels of + and \times gates with unbounded fan-in.
- Every layer of + gates is denoted by Σ. Every layer of \times gates is denoted by Π.
- Every depth Δ cirucit can be denoted by a string of length Δ consisting of alternating Σs and Пs.

Constant depth circuits

A $\Sigma \Pi \Sigma$ circuit

- Alternating layers/levels of + and \times gates with unbounded fan-in.
- Every layer of + gates is denoted by Σ. Every layer of \times gates is denoted by Π.
- Every depth Δ cirucit can be denoted by a string of length Δ consisting of alternating Σs and Пs.

$\Sigma \Pi$ circuits

- A $\Sigma \Pi$ circuit (aka a sparse polynomial) computes an \mathbb{F}-linear combination of monomials and is thus a universal model of computation.
- White box PIT: Trivial.
- Black box PIT [KSO1]: There is a poly (n, d, s) time black box PIT algorithm for the class of n variate, degree d, s sparse polynomials over fields of size poly (n, d, s).

$\Sigma \Pi$ circuits - black box PIT

- Let $f=\sum_{i \in[s]} c_{i} \cdot x_{1}^{d_{i, 1}} \cdots x_{n}^{d_{i, n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_{i} \mapsto x^{t^{i-1}} \bmod q, \forall i \in[n]$, where q is a prime number $>s^{2} n d$. Thus the

- Let $p_{i}(t)=d_{i, n}\left(t^{n-1} \bmod q\right)+d_{i, n-1}\left(t^{n-2} \bmod q\right)+\cdots+d_{i, 1}$. We find an $\alpha \in$ \mathbb{N} s.t. $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha) \bmod q$. Then $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha)$.

$\Sigma \Pi$ circuits - black box PIT

- Let $f=\sum_{i \in[s]} c_{i} \cdot x_{1}^{d_{i, 1}} \cdots x_{n}^{d_{i, n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_{i} \mapsto x^{t^{i-1}} \bmod q, \forall i \in[n]$, where q is a prime number $>s^{2} n d$. Thus the monomial $x_{1}^{d_{i, 1}} \cdots x_{n}^{d_{i, n}}$ maps to $x^{d_{i, n}\left(t^{n-1} \bmod q\right)+d_{i, n-1}\left(t^{n-2} \bmod q\right)+\cdots+d_{i, 1}}$.
- Let $p_{i}(t)=d_{i, n}\left(t^{n-1} \bmod q\right)+d_{i, n-1}\left(t^{n-2} \bmod q\right)+\cdots+d_{i, 1}$. We find an $\alpha \in$ \mathbb{N} s.t. $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha) \bmod q$. Then $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha)$.

Any α which is not a root of

$$
\prod_{i \neq j}\left(p_{i}(t)-p_{j}(t)\right) \bmod q \text { over }
$$

\mathbb{F}_{q} will work. As $q>s^{2} n$ such an α exists.

$\Sigma \Pi$ circuits - black box PIT

- Let $f=\sum_{i \in[s]} c_{i} \cdot x_{1}^{d_{i, 1}} \cdots x_{n}^{d_{i, n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_{i} \mapsto x^{t^{i-1}} \bmod q, \forall i \in[n]$, where q is a prime number $>s^{2} n d$. Thus the monomial $x_{1}^{d_{i, 1}} \cdots x_{n}^{d_{i, n}}$ maps to $x^{d_{i, n}\left(t^{n-1} \bmod q\right)+d_{i, n-1}\left(t^{n-2} \bmod q\right)+\cdots+d_{i, 1}}$.
- Let $p_{i}(t)=d_{i, n}\left(t^{n-1} \bmod q\right)+d_{i, n-1}\left(t^{n-2} \bmod q\right)+\cdots+d_{i, 1}$. We find an $\alpha \in$ \mathbb{N} s.t. $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha) \bmod q$. Then $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha)$.
- Now $f\left(x, x^{\alpha \bmod q}, \ldots, x^{\alpha^{n-1} \bmod q}\right)$ is a non-zero, univariate polynomial of degree $\leq d q$. Thus, by trying out $\leq d q+1$ many values for x, we find a $\beta \in \mathbb{F}$ s.t. $f\left(\beta, \beta^{\alpha \bmod q}, \ldots, \beta^{\alpha^{n-1} \bmod q}\right) \neq 0$.

$\Sigma \Pi$ circuits - black box PIT

- Let $f=\sum_{i \in[s]} c_{i} \cdot x_{1}^{d_{i, 1}} \cdots x_{n}^{d_{i, n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_{i} \mapsto x^{t^{i-1}} \bmod q, \forall i \in[n]$, where q is a prime number $>s^{2} n d$. Thus the monomial $x_{1}^{d_{i, 1}} \cdots x_{n}^{d_{i, n}}$ maps to $x^{d_{i, n}\left(t^{n-1} \bmod q\right)+d_{i, n-1}\left(t^{n-2} \bmod q\right)+\cdots+d_{i, 1}}$.
- Let $p_{i}(t)=d_{i, n}\left(t^{n-1} \bmod q\right)+d_{i, n-1}\left(t^{n-2} \bmod q\right)+\cdots+d_{i, 1}$. We find an $\alpha \in$ \mathbb{N} s.t. $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha) \bmod q$. Then $\forall i \neq j, p_{i}(\alpha) \neq p_{j}(\alpha)$.
- Now $f\left(x, x^{\alpha \bmod q}, \ldots, x^{\alpha^{n-1} \bmod q}\right)$ is a non-zero, univariate polynomial of degree $\leq d q$. Thus, by trying out $\leq d q+1$ many values for x, we find a $\beta \in \mathbb{F}$ s.t. $f\left(\beta, \beta^{\alpha \bmod q}, \ldots, \beta^{\alpha^{n-1} \bmod q}\right) \neq 0$.

Such a β will exist as $|\mathbb{F}|=$ $\operatorname{poly}(n, d, s)$.

$\Sigma \Pi$ circuits - black box PIT

- Running time of the algorithm: The algorithm finds q, tries at most $s^{2} n+$ 1 many values of α and for each value of α, tries at most $d q+1$ many values of β.
- A prime $s^{2} n d<q \leq 2 s^{2} n d$ exists and can be found in poly (n, d, s) time. Time required to try various values of α and β is $\leq\left(s^{2} n+1\right)(d q+1)=\operatorname{poly}(n, d, s)$. Total time $=\operatorname{poly}(n, d, s)$.

$\Sigma \Pi \Sigma$ circuits

- Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly (n) polynomial computed by a poly (n) size circuit, then it can also be computed by a $\Sigma \Pi \Sigma$ circuit of size $n^{O(\sqrt{n})}$.
- Polynomial time PIT for $\Sigma \Pi \Sigma$ circuits \Longrightarrow sub-exponential PIT for poly (n) size circuits computing poly (n) degree polynomials. PIT for $\Sigma \Pi \Sigma$ circuits is as challenging as PIT for general circuits.
- Researchers have studied restricted classes of $\Sigma \Pi \Sigma$ circuits.

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SICOMP, 83.
AV08: Agrawal-Vinay, FOCS, 08.
Koi12: Koiran, Theor. Comput. Sci., 12.
GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.
Tav13: Tavenas, MFCS 13.

$\Sigma^{k} \Pi^{d} \Sigma$ circuits

- A $\Sigma^{k} \Pi^{d} \Sigma$ circuit is a $\Sigma \Pi \Sigma$ circuit where the fan-in of the top + gate is at most k and the fan-in of all product gates in the second level is at most d. Think of k as a constant.
- Both white box and black box PIT for $\Sigma^{k} \Pi^{d} \Sigma$ circuits have been studied extensively.

PIT for $\Sigma^{k} \Pi^{d} \sum$ circuits

Paper	Version	Result
DS05	White box	$\operatorname{poly}\left(n, d^{O\left(k^{2} \log ^{k-2} d\right)}\right)$
KS06	White box	poly $\left(n, d^{O(k)}\right)$
KS08	Black box	$\operatorname{poly}\left(n, d^{O\left(k^{2} \log ^{k-2} d\right)}\right)$
SS09	Black box	$\operatorname{poly}\left(n, d^{O\left(k^{3} \log d\right)}\right)$
KS09	Black box	$\operatorname{poly}\left(n, d^{O\left(k^{k}\right)}\right)$ over \mathbb{R}
SS10	Black box	$\operatorname{poly}\left(n, d^{O\left(k^{2}\right)}\right)$ over \mathbb{R} poly $\left(n, d^{O\left(k^{2} \log d\right)}\right)$ over any \mathbb{F} SS11 Black box

DS05: Dvir-Shpilka, STOC, 05.
KS06: Kayal-Saxena, CCC, 06.
KS08: Karnin-Shpilka, CCC, 08.
SS09: Saxena-Seshadhri, CCC, 09.
KS09: Kayal-Saraf, FOCS, 09.
SS10: Saxena-Seshadhri, FOCS, 10.
SS11: Saxena-Seshadhri, STOC, 11.

An approach for $\Sigma^{k} \Pi^{d} \Sigma$ black box PIT

- Let $f=T_{1}+\cdots+T_{k}, T_{i}=\ell_{i, 1} \cdots \ell_{i, d_{i}}$, where $\ell_{i, j}$ are linear polynomials, be a $\Sigma^{k} \Pi^{d} \Sigma$ circuit computing an n variate polynomial.

An approach for $\Sigma^{k} \Pi^{d} \Sigma$ black box PIT

- Let $f=T_{1}+\cdots+T_{k}, T_{i}=\ell_{i, 1} \cdots \ell_{i, d}$, where $\ell_{i, j}$ are linear forms, be a $\Sigma^{k} \Pi^{d} \Sigma$ circuit computing an n variate polynomial.
- A lot of black box PIT algorithms for $\Sigma^{k} \Pi^{d} \Sigma$ circuits use the rank bound idea.
- $\operatorname{rank}(f):=\operatorname{dim} \operatorname{span}\left\{\ell_{1,1}, \ldots, \ell_{k, d}\right\}$.

rank and $\Sigma^{k} \Pi^{d} \Sigma$ PIT

- Suppose $\operatorname{rank}(f)=r$. Let $\left\{\ell_{i_{1}, j_{1}}, \ldots, \ell_{i_{r}, j_{r}}\right\}$ be a basis of $\operatorname{span}\left\{\ell_{1,1}, \ldots, \ell_{k, d}\right\}$.
- Rank extractors: Let V be an unknown but fixed space of linear functions from \mathbb{F}^{n} to \mathbb{F} of dimension at most r. [GR05] showed that a linear transformation $T: \mathbb{F}^{r} \rightarrow$ \mathbb{F}^{n} s.t. $\operatorname{dim} V \circ T=\operatorname{dim} V$ can be constructed in $\operatorname{poly}(n, r)$ time provided that $|\mathbb{F}|=\operatorname{poly}(n, r)$.
- $V:=\operatorname{span}\left\{\ell_{i_{1}, j_{1}}, \ldots, \ell_{i_{r}, j_{r}}\right\}$. It is not to difficult to show that $f \equiv 0 \Leftrightarrow f \circ T \equiv 0$.
- $f \circ T$ is an r variate polynomial. If r is "small" we can find a non-root of $f \circ T$ by brute force search.

rank and $\Sigma^{k} \Pi^{d} \Sigma$ PIT

- We can not expect the rank of an arbitrary $\Sigma^{k} \Pi^{d} \Sigma$ circuit to be small.
- However, it turns out that a rank bound for simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuits computing the 0 polynomial suffices.

rank and $\Sigma^{k} \Pi^{d} \Sigma$ PIT

- We can not expect the rank of an arbitrary $\Sigma^{k} \Pi^{d} \Sigma$ circuit to be small.
- However, it turns out that a rank bound for simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuits computing the 0 polynomial suffices.

$$
\begin{gathered}
f=T_{1}+\cdots+T_{k} \text { is simple if there is no linear } \\
\text { form that divides all of } T_{1}, \ldots, T_{k} .
\end{gathered}
$$

rank and $\Sigma^{k} \Pi^{d} \Sigma$ PIT

- We can not expect the rank of an arbitrary $\Sigma^{k} \Pi^{d} \Sigma$ circuit to be small.
- However, it turns out that a rank bound for simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuits computing the 0 polynomial suffices.

$$
f=T_{1}+\cdots+T_{k} \text { is minimal if } \forall S \subseteq
$$

rank and $\Sigma^{k} \Pi^{d} \Sigma$ PIT

- We can not expect the rank of an arbitrary $\Sigma^{k} \Pi^{d} \Sigma$ circuit to be small.
- However, it turns out that a rank bound for simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuits computing the 0 polynomial suffices.
- Theorem [KS06]: Suppose that the rank of all n variate simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuits computing the 0 polynomial is at most $R(k, d)$. Then, there is an $\operatorname{poly}\left(n, 2^{k}, d^{R(k, d)}\right)$ time black box PIT algorithm for $\Sigma^{k} \Pi^{d} \sum$ circuits.
- The proof of the above theorem crucially uses the rank extractors from [GR05].

KS06: Karnin-Shpilka, CCC, 06.
GR05: Gabizon-Raz, FOCS, 05.

rank and $\Sigma^{k} \Pi^{d} \Sigma$ PIT

- How can we show that the rank of every simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuit computing the 0 polynomial is "small"?
- One way is to use Sylvester-Gallai type theorems.

A detour: Sylvester-Gallai theorem

- Sylvester-Gallai Theorem: Let $S \subseteq \mathbb{R}^{2}$ be a finite set. If $\forall \boldsymbol{a}, \boldsymbol{b} \in S, \exists \boldsymbol{c} \in S$, s.t. the line passing through a and b also contains c, then all points in S are collinear.
- Edelstein-Kelly Theorem: Let $R, G, B \subseteq \mathbb{R}^{2}$ be disjoint, finite sets of the same size. If for every pair of points $\boldsymbol{a}, \boldsymbol{b}$ from two distinct sets, there exists \boldsymbol{c} in the third set, s.t. the line passing through \boldsymbol{a} and \boldsymbol{b} also contains \boldsymbol{c}, then all points in $R \cup G \cup B$ are collinear.

rank and $\Sigma^{k} \Pi^{d} \Sigma$ PIT

- How can we show that the rank of every simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuit computing the 0 polynomial is "small"?
- Let $f=T_{1}+T_{2}+T_{3}$ be a simple and minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuit computing the 0 polynomial. Let $T_{i}=\ell_{i, 1} \cdots \ell_{i, d}$ and $S_{i}=\left\{\ell_{i, 1}, \ldots, \ell_{i, d}\right\}$. Since f is simple, the S_{i} are disjoint. Now, $0 \equiv f \bmod \ell_{1,1}=\left(T_{2}+T_{3}\right) \bmod \ell_{1,1} \Longrightarrow \forall \ell_{2, j}, \exists \ell_{3, j^{\prime}}$ s.t. $\ell_{3, j^{\prime}}=\ell_{2, j} \bmod \ell_{1,1}$. I.e. $\ell_{3, j^{\prime}} \in \operatorname{span}\left\{\ell_{2, j}, \ell_{1,1}\right\}$. Thus, S_{1}, S_{2}, S_{3} have a structure like the one found in the hypothesis of the Edelstein-Kelly Theorem. Perhaps this can be used to bound the rank.
- Sylvester-Gallai type theorems were used to bound rank in [KS09, SS10].

$\Sigma^{k} \Pi^{d} \Sigma$ black box PIT

- Summary:

1. Rank bound on simple, minimal $\Sigma^{k} \Pi^{d} \sum$ circuits computing the 0 polynomial + Rank extractors imply black box PIT for $\Sigma^{k} \Pi^{d} \Sigma$ circuits.
2. Sylvester-Gallai type theorems can be used to prove that the rank of simple, minimal $\Sigma^{k} \Pi^{d} \Sigma$ circuits computing the 0 polynomial is "small".

$\Sigma \wedge \Sigma$ circuits

- $\Sigma \wedge \Sigma$ circuits are a natural sub-class of $\Sigma \Pi \Sigma$ circuits.
- A $\Sigma \wedge \Sigma$ circuit looks like $\Sigma_{i \in[k]} \ell_{i}^{d}$. I.e. all the inputs of a \times gate in the second level are the same.
- [Sax08, FS13] showed that $\Sigma \wedge \Sigma$ circuits are a sub-class of Read-once Oblivious Algebraic Branching Programs (ROABPs).
- This observation yields polynomial time white box and quasi-polynomial time black box PIT algorithms for this model.

Sax08: Saxena, ICALP, 08.
FS13: Forbes-Shpilka, FOCS, 13.

Depth 4 circuits

- Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly (n) polynomial computed by a poly (n) size circuit, then it can also be computed by a $\Sigma \Pi \Sigma \Pi$ circuit of size $n^{O(\sqrt{n})}$.

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83.
AV08: Agrawal-Vinay, FOCS, 08.
Koi12: Koiran, Theor. Comput. Sci., 12.
GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.
Tav13: Tavenas, MFCS 13.

Depth 4 circuits

- Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly (n) polynomial computed by a poly (n) size circuit, then it can also be computed by a $\Sigma \Pi \Sigma \Pi$ circuit of size $n^{O(\sqrt{n})}$.

In fact, by circuits where \times gates have fan-in $O(\sqrt{n})$.

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83.
AV08: Agrawal-Vinay, FOCS, 08.
Koi12: Koiran, Theor. Comput. Sci., 12.
GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.
Tav13: Tavenas, MFCS 13.

Depth 4 circuits

- Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly (n) polynomial computed by a poly (n) size circuit, then it can also be computed by a $\Sigma \Pi \Sigma \Pi$ circuit of size $n^{O(\sqrt{n})}$.
- Polynomial time PIT for $\Sigma \Pi \Sigma \Pi$ circuits \Rightarrow sub-exponential PIT for poly (n) size circuits computing poly (n) degree polynomials.
- A natural sub-class to study is $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits.

PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits?

- One natural approach is to generalise the notion of rank, rank extractors, and Sylvester-Gallai type theorems used for $\Sigma^{k} \Pi^{d} \Sigma$ circuits to appropriate notions for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits. This was done in [BMS11, Gup14].
- [BMS11] replaces rank by transcendence degree.

A detour: algebraic independence

- $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ are said to be algebraically independent if there does not exist any non-zero $P \in \mathbb{F}\left[y_{1}, \ldots, y_{m}\right]$ s.t. $P\left(f_{1}, \ldots, f_{m}\right) \equiv 0$.
- $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ forms a matroid under algebraic independence.
- Transcendence degree: For any $S \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the transcendence degree of S, denoted by $\operatorname{tr}-\operatorname{deg}(S)$, is the size of the maximum cardinality set of algebraically independent polynomials in S. It can be shown that $\operatorname{tr}-\operatorname{deg}(S) \leq n$.

PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits?

- One natural approach is to generalise the notion of rank, rank extractors, and Sylvester-Gallai type theorems used for $\Sigma^{k} \Pi^{d} \Sigma$ circuits to appropriate notions for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits. This was done in [BMS11, Gup14].
- [BMS11] replaces rank by transcendence degree. Let $f=\sum_{i \in[k]} \prod_{j \in[s]} f_{i, j}$ be a $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuit. Then,

$$
\operatorname{rank}(f):=\operatorname{tr}-\operatorname{deg}\left\{f_{i, j}\right\}_{i, j}
$$

PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits?

- [BMS11] replaces rank extractors by faithful homomorphisms.

PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits?

- [BMS11] replaces rank extractors by faithful homomorphisms.

$$
\begin{gathered}
\phi: \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{F}\left[y_{1}, \ldots, y_{m}\right] \text { s.t. } \\
\forall p, q \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], \\
\phi(p+q)=\phi(p)+\phi(q) \text { and } \\
\phi(p q)=\phi(p) \phi(q) .
\end{gathered}
$$

PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits?

- [BMS11] replaces rank extractors by faithful homomorphisms.

$$
\begin{aligned}
& \phi: \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{F}\left[y_{1}, \ldots, y_{m}\right] \text { is said to be faithful } \\
& \text { to }\left\{f_{1}, \ldots, f_{s}\right\} \text { if } \\
& \operatorname{tr}-\operatorname{deg}\left\{f_{1}, \ldots, f_{s}\right\}=\operatorname{tr}-\operatorname{deg}\left\{\phi\left(f_{1}\right), \ldots, \phi\left(f_{s}\right)\right\} .
\end{aligned}
$$

PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits?

- [BMS11] replaces rank extractors by faithful homomorphisms.
- Theorem [BMS11]: If the rank of every n variate simple and minimal size s $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuit computing the 0 polynomial is at most r, then there is a black box PIT algorithm for size-s $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits that runs in time poly $(n, r, \delta, s)^{\delta^{2} k r}$.

PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits?

- To bound the rank of simple, minimal $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuit computing the 0 polynomial, [Gup14] proposed a Sylvester-Gallai type conjecture for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits.
- [Shp19, PS20, PS21] proved Gupta's conjecture for $\Sigma^{3} \Pi \Sigma \Pi^{2}$ circuits thereby obtaining a black box, poly (n, d) PIT algorithm for $\Sigma^{3} \Pi \Sigma \Pi^{2}$ circuits.

PIT for depth 4 circuits

Model	Paper	Version	Result
$\Sigma^{k} \Pi^{\delta} \Sigma \wedge$	Sax08	White box	poly $\left(n, k, s^{O(\delta)}\right)$
Multilinear $\Sigma^{k} \Pi \Sigma \Pi$	SV11, ASSS12	Black box	poly $\left(n^{O\left(k^{2}\right)}\right)$
$\Sigma^{2} \Pi \Sigma \Pi^{\delta}$	BMS11	Black box	poly $(n, \delta, s)^{\delta^{2}}$
$\Sigma \wedge \Sigma \Pi^{\delta}$	For15	Black box	$s^{O(\delta \log s)}$
$\Sigma^{3} \Pi \Sigma \Pi^{2}$	PS21	Black box	poly (n, d)
$\Sigma^{k} \Pi \Sigma \wedge$	DDS20	White box	$s^{O\left(k 7^{k}\right)}$
$\Sigma^{k} \Pi \Sigma \wedge$	DDS20	Black box	$s^{O(k \log \log s)}$
$\Sigma^{k} \Pi \Sigma \Pi^{\delta}$	DDS20	Black box	$s^{O\left(\delta^{2} k \log s\right)}$
$\overline{\Sigma^{k} \Pi \Sigma \Lambda}$	DDS21	Black box	$s^{O\left(k 7^{k} \log \log s\right)}$
$\frac{\Sigma^{k} \Pi \Sigma \Pi^{\delta}}{}$	DDS21	Black box	$S^{O\left(\delta^{2} k 7^{k} \log s\right)}$

Sax08: Saxena, ICALP, 08.
SV11: Saraf-Volkovich, STOC, 11. ASSS12: Agrawal-Saha-SapthirishiSaxena, STOC, 12.
BMS11: Beecken-Mittmann-Saxena, ICALP, 11.
For15: Forbes, FOCS, 15.
PS21: Peleg-Shpilka, STOC, 21.
DDS20: Dutta-Dwivedi-Saxena, CCC, 2021.

DDS21: Dutta-Dwivedi-Saxena, FOCS, 2021.

PIT for low depth circuits

- In a breakthrough paper [LST21], Limaye, Srinivasan, and Tavenas proved superpolynomial lower bounds for low depth circuits.
- [DSY08, CKS19] showed that super-polynomial lower bounds for low depth circuits imply sub-exponential PIT for such circuits.
- Thus, [LST21] yields a $\left(n \cdot s^{\Delta+1}\right)^{n^{\epsilon}}, \epsilon>0$, time PIT for depth $\Delta=$ $o(\log \log \log n)$ circuits provided that $s=\operatorname{poly}(n)$.

LST21: Limaye-Srinivasan-Tavenas, FOCS 21.
DSY08: Dvir-Shpilka-Yehuayoff, STOC, 08.
CKS19: Chou-Kumar-Solomon, CCC, 18.

PIT for Constant Read Circuits

Read once formulas

- Arithmetic Formulas: Arithmetic circuits whose underlying graph is a tree.

Read once formulas

- Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in at most one leaf.

Read once formulas

- Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in at most one leaf.
- ROFs are a special class of multilinear circuits.
- [SV09] gave an $n^{O(\log n)}$ time black box PIT algorithm for ROFs.
- This was improved to a poly (n) time algorithm by [MV17].

Constant read formulas

- Read \boldsymbol{k} Formulas: Arithmetic formulas where each variable appears in at most k leaves.
- [SV09] gave an $n^{O(k+\log n)}$ time black box PIT algorithm for sum of $k \leq \frac{n}{3}$ ROFs.

Constant read formulas

- Read \boldsymbol{k} Formulas: Arithmetic formulas where each variable appears in at most k leaves.
- [AvMV11] gave a $\operatorname{poly}\left(s, n^{k^{O(k)}}\right)$ time white box and $n^{k^{O(k)}+O(k \log n)}$ time black box PIT algorithm for multilinear read k formulas.

Constant read formulas

- Read \boldsymbol{k} Formulas: Arithmetic formulas where each variable appears in at most k leaves.
- [ASSS12] gave an $s^{k^{O\left(\Delta 2^{\Delta}\right)}}$ time black box PIT algorithm for occur k formulas of depth Δ using the algebraic independence technique from [BMS11].

Constant read formulas

- Read \boldsymbol{k} Formulas: Arithmetic formulas where each variable appears in at most k leaves.
- [ASSS12] gave an $s^{k^{O\left(\Delta 2^{\Delta}\right)}}$ time black box PIT algorithm for occur k formulas of depth Δ using the algebraic independence technique from \lfloor \&

A generalisation of read k formulas. Capture other
interesting models like
multilinear $\Sigma^{k} \Pi \Sigma \Pi$ circuits.

Read-once oblivious algebraic branching programs

- ROABP: $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is said to be computed by a width-w ROABP in order $\pi \in S_{n}$ if

$$
f=[1, \ldots, 1]\left[M_{1}\left(x_{\pi(1)}\right)\right]_{w \times w} \ldots \ldots .\left[M_{n}\left(x_{\pi(n)}\right)\right]_{w \times w}\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] .
$$

- The classes of $\Sigma \wedge \Sigma$ and $\Sigma \wedge \Sigma \wedge$ circuits are contained in ROABPs.
- [OSV15] obtained a sub-exponential time black box PIT for multilinear depth 3 and depth 4 formulas by reducing to black box PIT for ROABPs.

Read-once oblivious algebraic branching programs

- A poly (n, d, w) white box PIT for ROABPs follows from [RS04].
- [FS13] gave a $\operatorname{poly}(n, d, w)^{O(\log w)}$ time black box PIT for ROABPs with known variable order.
- [FSS14] gave a $\operatorname{poly}(n, d)^{O(\log w)}$ time black box PIT for multilinear and commutative ROABPs.

RS05: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.

Read-once oblivious algebraic branching programs

- A poly (n, d, w) white box PIT for ROABPs follows from [RS04].
- [FS13] gave a $\operatorname{poly}(n, d, w)^{O(\log w)}$ time black box PIT for ROABPs with known variable order.
- [FSS14] gave a poly $(n, d)^{O(\log w)}$ time black box PIT for multilinear and commutative ROABPs.

RS05: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.

Read-once oblivious algebraic branching programs

- A poly (n, d, w) white box PIT for ROABPs follows from [RS04].
- [FS13] gave a $\operatorname{poly}(n, d, w)^{O(\log w)}$ time black box PIT for ROABPs with known variable order.
- [FSS14] gave a poly $(n, d)^{O(\log w)}$ time black box PIT for multilinear and commutative ROABPs.
- [AGKS15] gave a $\operatorname{poly}(n, d, w)^{O(\log n)}$ time black box PIT for ROABPs with unknown variable order.
- [GKST15] gave a poly $(n, d, w)^{O(\log n)}$ time black box PIT and poly (n, d, w) time white box PIT for sum of constantly many ROABPs.
RS05: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.
AGKS15: Agrawal-Gurjar-Korwar-Saxena, SICOMP, 15.
GKST15: Agrawal-Gurjar-Saxena-Thierauf, CCC, 15.

PIT for Orbits of Circuit Classes

Orbits

- Orbit of a polynomial: For $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\left\{f(A \mathbf{x}+\mathbf{b}): A \in \mathrm{GL}(n, \mathbb{F})\right.$ and $\left.\mathbf{b} \in \mathbb{F}^{n}\right\}$.

Orbits

- Orbit of a polynomial: For $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\left\{f(A \mathbf{x}+\mathbf{b}): A \in G L(n, \mathbb{F})\right.$ and $\left.\mathbf{b} \in \mathbb{F}^{n}\right\}$.

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]
$$

Orbits

- Orbit of a polynomial: For $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\left\{f(A \mathbf{x}+\mathbf{b}): A \in \mathrm{GL}(n, \mathbb{F})\right.$ and $\left.\mathbf{b} \in \mathbb{F}^{n}\right\}$.

Zero set of $f(x)$

Orbits

- Orbit of a polynomial: For $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\left\{f(A \mathbf{x}+\mathbf{b}): A \in \mathrm{GL}(n, \mathbb{F})\right.$ and $\left.\mathbf{b} \in \mathbb{F}^{n}\right\}$.
- Orbit of a circuit class: For a circuit class \mathcal{C}, the orbit of \mathcal{C}, denoted by $\operatorname{orb}(\mathcal{C})$ is the union of orb (f) for all $f \in \mathcal{C}$.

Orbits

- Orbit of a polynomial: For $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the orbit of f, denoted by orb (f) is the set $\left\{f(A \mathbf{x}+\mathbf{b}): A \in \operatorname{GL}(n, \mathbb{F})\right.$ and $\left.\mathbf{b} \in \mathbb{F}^{n}\right\}$.
- Orbit of a circuit class: For a circuit class \mathcal{C}, the orbit of \mathcal{C}, denoted by $\operatorname{orb}(\mathcal{C})$ is the union of $\operatorname{orb}(f)$ for all $f \in \mathcal{C}$.
- Recently [MS21, ST21, BG21] studied black-box PIT for orbits of various circuit classes.

The Power of Orbit Closures

- $\overline{\operatorname{orb}(\mathcal{C})}$ is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 1. $\overline{\operatorname{orb}(\Sigma \Pi)}$ contains depth 3 circuits.

The Power of Orbit Closures

- $\overline{\operatorname{orb}(\mathcal{C})}$ is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 2. orb(ROF) contains arithmetic formulas.

The Power of Orbit Closures

- $\overline{\operatorname{orb}(\mathcal{C})}$ is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 3. Iterated Matrix Multiplication $\mathrm{IMM}_{w, d}$.

The Power of Orbit Closures

- $\overline{\operatorname{orb}(\mathcal{C})}$ is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 3. Iterated Matrix Multiplication $\mathrm{IMM}_{w, d}$.
the (1,1)-th entry of

$$
\left[\begin{array}{ccc}
x_{1,1,1} & \cdots & x_{1,1, w} \\
\vdots & \ddots & \vdots \\
x_{1, w, 1} & \cdots & x_{1, w, w}
\end{array}\right] \cdots \cdots\left[\begin{array}{ccc}
x_{d, 1,1} & \cdots & x_{d, 1, w} \\
\vdots & \ddots & \vdots \\
x_{d, w, 1} & \cdots & x_{d, w, w}
\end{array}\right]
$$

The Power of Orbit Closures

- $\overline{\operatorname{orb}(\mathcal{C})}$ is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 3. Iterated Matrix Multiplication $\mathrm{IMM}_{w, d}$.
- Every polynomial computed by a size s formula is in $\overline{\operatorname{orb}\left(\operatorname{IMM}_{3, p o l y(s)}\right)}$.
- Every polynomial computed by a size s Algebraic Branching Program (ABP) is in orb $\left(\mathrm{IMM}_{S, S}\right)$.

The Power of Orbit Closures

- PIT for orbit closures of simple models \Rightarrow PIT for general models like formulas, ABPs, and circuits.
- As a first step, it is natural to try to do PIT for orbits.

PIT for Orbits

- [KS19] gave polynomial time black box PIT for $\operatorname{orb}\left(\sum_{i \in[n]} x_{i}^{d}\right)$.
- [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. Orbit closure of the continuant contains all polynomial sized formulas.

PIT for Orbits

- [KS19] gave polynomial time black box PIT for $\operatorname{orb}\left(\sum_{i \in[n]} x_{i}^{d}\right)$.
- [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. Orbit closure of the continuant contains all polynomial sized formulas.

PIT for Orbits

- [KS19] gave polynomial time black box PIT for $\operatorname{orb}\left(\sum_{i \in[n]} x_{i}^{d}\right)$.
- [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. Orbit closure of the continuant contains all polynomial sized formulas.
- [MS21] gave quasi-polynomial time black box PIT for orb($\Sigma \Pi$).
- [MS21, ST21] gave quasi-polynomial time black box PIT for orb(ROF).
- [ST21, BG21] gave quasi-polynomial time black box PIT for orbits of commutative ROABPs and constant width ROABPs computing polynomials with individual degree $O(\log n)$.

Some open problems

- Polynomial time PIT for $\Sigma^{k} \Pi \Sigma \Pi^{\delta}$ circuits by proving the Sylvester-Gallai type conjecture proposed by [Gup14].
- Polynomial time black box PIT for ROABPs.
- Black box PIT for orb $\left(\mathrm{IMM}_{w, d}\right)$ and orbits of ROABPs.

Thank You!

