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* The Problem: Given a polynomial f € F[xq, ..., x,,], check if f is identically zero.




* The Problem: Given a polynomial f € F[xq, ..., x,,], check if f is identically zero.

e

The coefficients of all monomials are 0.
Denoted f = 0.

Not the same as f (a4, ...,a,) =0
vay,..,a, € F.Eg. x? — x over FF,.



* The Problem: Given a polynomial f € F[xq, ..., x,,], check if f is identically zero.

e

List of coefficients: Problem trivial
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* The Problem: Given a polynomial f € F[xq, ..., x,,|, check if f is identically zero.

/ .

White box PIT Hitting sets
f f(aq,...,ay)
_I_
3
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along withn, d, s.

Xy X3 X4 42 xs a, a, ... 4y



* Schwartz-Zippel Lemma : Let f € F[xq, ..., x,,| be a non-zero,

degree d polynomial. Then, forany S € Fand a4, ...,a,, €g S,
d

Pr[f(a,..,a,) #0] > 1 S

* Gives a poly(n,d) randomised algorithm for PIT: Pick a4,...,a, uniformly at
random from a large enough subset of [F and check whether f (a4, ..., a,,) is 0.

* Goal: Obtain an efficient, deterministic algorithm for PIT.

DL78: DeMillo-Lipton, Information Processing Letters, 78.
Zip79: Zippel, EUROSAM, 79.
Sch80: Schwartz, JACM, 80.



* Schwartz-Zippel Lemma : Let f € F[xq, ..., x,,| be a non-zero,

degree d polynomial. Then, forany S € Fand a4, ...,a,, €g S,
d

Pr(f(aq,..,a,) #0] =1 ~

* Gives a poly(n,d) randomised algorithm for PIT: Pick a4,...,a, uniformly at
random from a large enough subset of [F and check whether f (a4, ..., a,,) is 0.

* Goal: Obtain an efficient, deterministic algorithm for PIT.

T~

Running time = poly(n,d, s).




* Primality testing: The AKS primality test was obtained by derandomizing an
instance of PIT over a ring.

* Perfect matchings: The best known randomised parallel algorithm for finding
perfect matchings in graphs uses PIT . Derandomizing PIT will give a
deterministic parallel algorithm to find perfect matchings in graphs.

* Polynomial factoring: A deterministic algorithm for PIT would vyield a
deterministic algorithm for polynomial factorisation

MVV87: Mulmuley-Vazirani-Vazirani, STOC, 87.
KSS15: Kopparty-Saraf-Shpilka, CCC, 14.



* Theorem . If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized
Boolean circuits or

2. the permanent polynomial can not be computed by polynomial sized
arithmetic circuits.

KIO3: Kabanets-Impagliazzo, STOC, 03.



* Theorem . If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized
Boolean circuits or

2. the permanent polynomial can not be computed by polynomial sized
arithmetic Circuits.

Perm]| : L = Z l lxi,a(i)
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* Theorem . If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized
Boolean circuits or

2. the permanent polynomial can not be computed by polynomial sized
arithmetic circuits.

* The result applies to both the white box and the black box setting.



* Theorem . Let T : N = N be an increasing function. Suppose there
is an algorithm which runs in time T'(s) and solves the black box version of PIT for
size s circuits. Then there exists an n variate polynomial whose coefficients can

be computed in time 29 that requires arithmetic circuits of size at least
T—l(zO(n)).

HS80: Heintz-Schnorr, STOC, 80.
Agr05: Agrawal, FSTTCS, 05.



* Theorem . Let T : N = N be an increasing function. Suppose there
is an algorithm which runs in time T'(s) and solves the black box version of PIT for
size s circuits. Then there exists an n variate polynomial whose coefficients can
be computed in time 29 that requires arithmetic circuits of size at least

T-1(200).

e Polynomial time black box PIT = exponential arithmetic circuit lower bound.

 Quasi-polynomial time black box PIT = arithmetic circuit lower bound of the
form 2_”6




* Theorem . If there is an n variate, multilinear polynomial that requires
arithmetic circuits of size 290V (resp. n®(), then there is a 2P°W108(1) (resp.
sub-exponential) time black box PIT algorithm for poly(n) sized arithmetic
circuits computing n variate polynomials of poly(n) degree.

* Thus, derandomizing PIT and proving arithmetic circuit lower bounds are two
sides of the same coin.

KIO3: Kabanets-Impagliazzo, STOC, 03.



* Since proving arithmetic circuit lower bounds seems to be difficult, we can expect
derandomizing PIT to be a challenging problem.

* So the focus has been on derandomizing PIT for special classes of circuits.

* Some restrictions that have been imposed are:
* Restricting the depth of the circuit,
* Restricting the number of times the circuit can read a variable,
* Restricting the fan-in of the gates in the circuit,
 Combinations of the above three, etc.



PIT for Constant Depth Circuits



Constant depth circuits

" Layer 1  Alternating layers/levels of + and
X gates with unbounded fan-in.

» Layer 2




* Alternating layers/levels of + and
X gates with unbounded fan-in.

* Every layer of + gates is denoted
by X. Every layer of X gates is
denoted by II.

e Every depth A cirucit can be
denoted by a string of length A
consisting of alternating Xs and
[1s.



* Alternating layers/levels of + and
X gates with unbounded fan-in.

* Every layer of + gates is denoted
by X. Every layer of X gates is
denoted by II.

e Every depth A cirucit can be

{x1, ..., x,JUTF denoted by a string of length A
consisting of alternating Xs and
[1s.

A 211X circuit



A Xllcircuit (aka a sparse polynomial) computes an [F-linear combination of
monomials and is thus a universal model of computation.

e White box PIT: Trivial.

* Black box PIT : There is a poly(n, d, s) time black box PIT algorithm for the
class of n variate, degree d, s sparse polynomials over fields of size poly(n, d, s).

KSO1: Klivans-Spielman, STOC, 01.



d: d: .
* Let f = Dieps1 Gt X, “*...x "" be a non-zero, degree d, s sparse polynomial.

t'mod q v ¢ [n], where g is a prime number > s?nd. Thus the

t"™ mod q)+d;p—1 (t""*mod q)+--+d; 1

* Map x; = x

9 maps to xin

o Let p;(t) =d; n(t" 'mod q) + d; ,_1 (t" *mod q) + --- + d; ;. We find an a €
Ns.t. Vi # j,p;(a) # p;(a) mod q. Then Vi # j,p;(a) # p;(a).

1 i
monomial X, X



d: d: .
* Let f = Dieps1 Gt X, “*...x "" be a non-zero, degree d, s sparse polynomial.

t'mod q v ¢ [n], where g is a prime number > s?nd. Thus the

di n(t" tmod q)+d; n—1 (t""*mod q)+---+d; 4

* Map x; = x

: di1 in
monomial x; " --- x,, " maps to x

n

o Let p;(t) =d; n(t" 'mod q) + d; ,_1 (t" *mod q) + --- + d; ;. We find an a €

Ns.t. Vi # j,p;(a) # p;(a) mod q. Then Vi # j, p;(a) iV

Any a which is not a root of

Hi;tj (Pi(t) — pj(t)) mod g over

F, will work. As ¢ > s*n such an a
exists.



d: d: .
Let [ = Dies) Ci * X, “*...x "" be a non-zero, degree d, s sparse polynomial.

t'mod q v ¢ [n], where g is a prime number > s?nd. Thus the

t"™ mod q)+d;p—1 (t""*mod q)+--+d; 1

Map x; — x

. d; ' .
monomial x, " -+ x,,"" maps to x%in(

n
Let p;(t) = d; ,(t" *mod q) + d;,,_1 (t" " *mod q) + -+ + d; ;. We find an a €
Ns.t. Vi # j,p;(a) # p;(a) mod q. Then Vi # j,p;(a) # p;(a).

Now f (x, x*moda, ---,x“n_lm"dq) is a non-zero, univariate polynomial of degree
< dq. Thus, by trying out < dg + 1 many values for x, we find a ff € FF s.t.

f(,B,,Ba mod q ___“Ba"‘lmod q) + 0.



d: d: .
Let [ = Dies) Ci * X, “*...x "" be a non-zero, degree d, s sparse polynomial.

t'mod q v ¢ [n], where g is a prime number > s?nd. Thus the

di n(t" tmod q)+d; n—1 (t""*mod q)+---+d; 4

Map x; — x

: di1 in
monomial x; " --- x,, " maps to x

n
Let p;(t) = d; ,(t" *mod q) + d;,,_1 (t" " *mod q) + -+ + d; ;. We find an a €
Ns.t. Vi # j,p;(a) # p;(a) mod q. Then Vi # j,p;(a) # p;(a).

Now f (x, x*moda, ---,x“n_lm"dq) is a non-zero, univariate polynomial of degree
< dq. Thus, by trying out < dg + 1 many values for x, we find a ff € FF s.t.

f(,B,,Ba mod q ___“Ba"‘lmod q) + 0.

Such a f will exist as |F| =
poly(n,d, s).



 Running time of the algorithm: The algorithm finds g, tries at most s°n +
1 many values of a and for each value of a, tries at most dg + 1 many values of

L.

A prime s?nd < g < 2s*nd exists and can be found in poly(n,d,s) time. Time
required to try various values of @ and 8 is < (s*n + 1)(dq + 1) = poly(n,d, s).
Total time = poly(n, d, s).



* Theorem : If f is an nvariate, degree
poly(n) polynomial computed by a poly(n) size circuit, then it can also be

computed by a 2112 circuit of size n®WM,

* Polynomial time PIT for ZIIX circuits = sub-exponential PIT for poly(n) size
circuits computing poly(n) degree polynomials. PIT for XIIX circuits is as
challenging as PIT for general circuits.

e Researchers have studied restricted classes of XI1X circuits.

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SICOMP, 83.
AV08: Agrawal-Vinay, FOCS, 08.

Koil2: Koiran, Theor. Comput. Sci., 12.

GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.
Tav13: Tavenas, MFCS 13.



e A ZFTI?Y circuit is a ZI1T circuit where the fan-in of the top + gate is at most k
and the fan-in of all product gates in the second level is at most d. Think of k as a
constant.

e Both white box and black box PIT for X¥T1%Y circuits have been studied
extensively.



Paper Version Result

White box poly(n, 0 (k?logh=2 d))
White box poly(n, d°0)

Black box poly(n, 0 (k?logh=2 d))
Black box poly(n, d0(k* log @)y

Black box poly(n, dO(kk)) over R
Black box poly(n, d0(k? )) over R

poly(n, d2(k* 1og @)y oyer any FF

Black box poly(n, d°%))

DSO05: Dvir-Shpilka, STOC, 05.
KS06: Kayal-Saxena, CCC, 06.
KS08: Karnin-Shpilka, CCC, 08.
SS09: Saxena-Seshadhri, CCC, 09.
KS09: Kayal-Saraf, FOCS, 09.

SS10: Saxena-Seshadhri, FOCS, 10.
SS11: Saxena-Seshadhri, STOC, 11.



clet f=T++Ty, Ty =41 ¥;q,, where £;;are linear polynomials, be a
YRT19% circuit computing an n variate polynomial.



clet f=Ty++Ty, T; =4;1%;q, where ¢;;are linear forms, be a Z*I1¢%
circuit computing an n variate polynomial.

* A lot of black box PIT algorithms for ZXT1¢X. circuits use the rank bound idea.

* rank(f) := dim span{fq 4, ..., €y a }.



 Suppose rank(f) = r. Let {fl- "fir»jr} be a basis of span{fljl, ...,fk,d}.

1,J1° **

* Rank extractors: Let IV be an unknown but fixed space of linear functions from [F"
to [F of dimension at most 7. showed that a linear transformation T: " —
F"* st. dimV oT = dimV can be constructed in poly(n,r) time provided that

|IF| = poly(n, ).

* V.= span{¥; ., ti_j ). Itis not to difficult toshowthat f =0 & foT = 0.

1.J1° **

* foT is an r variate polynomial. If 7 is “small” we can find a non-root of f o T by
brute force search.

GRO5: Gabizon-Raz, FOCS, 05.



* We can not expect the rank of an arbitrary Z*I1¢% circuit to be small.

 However, it turns out that a rank bound for simple and minimal Z*T1%Z circuits
computing the 0 polynomial suffices.




* We can not expect the rank of an arbitrary Z*I1¢% circuit to be small.

 However, it turns out that a rank bound for simple and minimal Z*T1%Z circuits

computing the 0 polynomial suffiV

f =T, + -+ Ty issimpleif there is no linear
form that divides all of 77, ..., T},.




* We can not expect the rank of an arbitrary Z*I1¢% circuit to be small.

 However, it turns out that a rank bound for simple and minimal Z*T1%Z circuits
computing the 0 polynomial suffices. /

f =T + -+ Ty isminimal if VS C



* We can not expect the rank of an arbitrary Z*I1¢% circuit to be small.

 However, it turns out that a rank bound for simple and minimal Z*T1%Z circuits
computing the 0 polynomial suffices.

* Theorem : Suppose that the rank of all n variate simple and minimal Z*T1¢%
circuits computing the 0 polynomial is at most R(k,d). Then, there is an

poly(n, 2%, dR%D) time black box PIT algorithm for ZXT19X circuits.

* The proof of the above theorem crucially uses the rank extractors from

KS06: Karnin-Shpilka, CCC, 06.
GRO5: Gabizon-Raz, FOCS, 05.



* How can we show that the rank of every simple and minimal Z*I1¢% circuit
computing the 0 polynomial is “small”?

* One way is to use Sylvester-Gallai type theorems.




* Sylvester-Gallai Theorem: Let S € R be a finite set. If Va,b € S,3c € S, s.t. the
line passing through a and b also contains ¢, then all points in S are collinear.

* Edelstein-Kelly Theorem: Let R, G, B € R? be disjoint, finite sets of the same size.
If for every pair of points a, b from two distinct sets, there exists ¢ in the third set,
s.t. the line passing through a and b also contains ¢, then all pointsin RUG UB
are collinear.



e How can we show that the rank of every simple and minimal Z*I1¢Z circuit
computing the 0 polynomial is “small”?

e let f =T, + T, + T; be a simple and minimal Z¥I1¢Z circuit computing the 0
polynomial. Let T; = £; -+ €; 5 and S; = {£; ¢, ..., ¥; q4}. Since f is simple, the S;
are disjoint. Now, 0= fmod?¥;; = (T,+T3) mod¥,; = V¥,;, 35, st
U3 0 =45 ;mod ¥y 4. le. €5 € span{fy j, €1 1}. Thus, 51,5;, 53 have a structure
like the one found in the hypothesis of the Edelstein-Kelly Theorem. Perhaps this
can be used to bound the rank.

» Sylvester-Gallai type theorems were used to bound rank in

KS09: Kayal-Saraf, FOCS, 09.
SS10: Saxena-Seshadhri, FOCS, 10.



* Summary:

1. Rank bound on simple, minimal Z*T1%Z circuits computing the 0 polynomial
+ Rank extractors imply black box PIT for Z¥T1¢Z circuits.

2. Sylvester-Gallai type theorems can be used to prove that the rank of simple,
minimal 2143 circuits computing the 0 polynomial is “small”.




e > A\ X circuits are a natural sub-class of XI1X circuits.

* A X AXcircuit looks like X;er f?. l.e. all the inputs of a X gate in the second level
are the same.

showed that X A X circuits are a sub-class of Read-once Oblivious
Algebraic Branching Programs (ROABPs).

* This observation yields polynomial time white box and quasi-polynomial time
black box PIT algorithms for this model.

Sax08: Saxena, ICALP, 08.
FS13: Forbes-Shpilka, FOCS, 13.



* Theorem : If f is an nvariate, degree
poly(n) polynomial computed by a poly(n) size circuit, then it can also be

computed by a ZIIXII circuit of size noGn),

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83.
AV08: Agrawal-Vinay, FOCS, 08.

Koil2: Koiran, Theor. Comput. Sci., 12.

GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.

Tav13: Tavenas, MFCS 13.



* Theorem : If f is an nvariate, degree
poly(n) polynomial computed by a poly(n) size circuit, then it can also be

computed by a ZIIXII circuit of size noGn),

\

In fact, by circuits
where X gates have

fan-in O(\/n).

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83.
AV08: Agrawal-Vinay, FOCS, 08.

Koil2: Koiran, Theor. Comput. Sci., 12.

GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.

Tav13: Tavenas, MFCS 13.



* Theorem : If f is an nvariate, degree
poly(n) polynomial computed by a poly(n) size circuit, then it can also be

computed by a ZIIXII circuit of size noGn),

* Polynomial time PIT for XIIZII circuits = sub-exponential PIT for poly(n) size
circuits computing poly(n) degree polynomials.

e A natural sub-class to study is Z¥TIZIT° circuits.



* One natural approach is to generalise the notion of rank, rank extractors, and
Sylvester-Gallai type theorems used for Z*I1¢3 circuits to appropriate notions for
YXTIXII® circuits. This was done in

replaces rank by transcendence degree.

BMS11: Beecken-Mittmann-Saxena, ICALP, 11.
Gup1l4: Gupta, ECCC, 14.



* f1, .o, fm € F[xq, ..., x, | are said to be algebraically independent if there does not
exist any non-zero P € F[yq, ..., Vi, | s.t. P(fy, ..., f,n) = 0.

* F|x4, ..., x,,] forms a matroid under algebraic independence.

* Transcendence degree: For any S C [F[x4, ..., x,, |, the transcendence degree of S,
denoted by tr — deg(5), is the size of the maximum cardinality set of algebraically
independent polynomials in S. It can be shown that tr — deg(S) < n.



* One natural approach is to generalise the notion of rank, rank extractors, and
Sylvester-Gallai type theorems used for 219X circuits to appropriate notions for
YXTIXII® circuits. This was done in

! ] replaces rank by transcendence degree. Let f = )icrqlljers) fij be a
XETIXITC circuit. Then,

rank(f) = tr — deg {fi'j}i,j'



replaces rank extractors by faithful homomorphisms.

BMS11: Beecken-Mittmann-Saxena, ICALP, 11.



PIT for ZXTIXIIC circuits?

* [BMS11] replaces rank extractors by faithful homomorphisms.

/

¢: Flxq, ..., x,] = Flyq, o, Y] s.t.
Vp,q € Flxq, ..., x,],
¢+ q) = ¢(p) + ¢(q) and
¢(pq) = d(P)P(q).




replaces rank extractors by faithful homomorphisms.

\

¢: Flxq, ..., x| = Flyq, ..., v,,,] is said to be faithful
to{f1, ..., [s}if

tr — degify, ..., fo} = tr — deglo(f1), .., ¢(fs)}-




replaces rank extractors by faithful homomorphisms.

* Theorem : If the rank of every n variate simple and minimal size s
YXTIXII® circuit computing the 0 polynomial is at most 7, then there is a black box

PIT algorithm for size-s YKTIZI1% circuits that runs in time poly(n,r, 6, S)‘Szk”.



e To bound the rank of simple, minimal ZXIIZII® circuit computing the 0

polynomial, proposed a Sylvester-Gallai type conjecture for XXIIZIT9
circuits.

proved Gupta’s conjecture for X3IIZI1? circuits thereby
obtaining a black box, poly(n, d) PIT algorithm for Z3IIXI1* circuits.

Gup14: Gupta, ECCC, 14.
Shp19: Shpilka, FOCS, 19.
PS20: Peleg-Shpilka, CCC, 20.
PS21: Peleg-Shpilka, STOC, 21.



Model Paper Version Result
KT A White box poly(n, k, s9(9))
Multilinear Black box poly(nO(kz))

SETIEIT
IR Black box poly(n, 8, 5)°°

PNIR Black box g0(8logs)
»3TIZI1? Black box poly(n, d)
SRIIZ A White box 0k 7
YETIZ A Black box s0(kloglogs)
AINIG Black box 50(8%k log 5)
TETIS A Black box g0k 7% loglog s)
SK[IT[10 Black box g0(8%k 7% log s)

Sax08: Saxena, ICALP, 08.

SV11: Saraf-Volkovich, STOC, 11.

ASSS12: Agrawal-Saha-Sapthirishi-
Saxena, STOC, 12.

BMS11: Beecken-Mittmann-Saxena,
ICALP, 11.

Forl5: Forbes, FOCS, 15.

PS21: Peleg-Shpilka, STOC, 21.

DDS20: Dutta-Dwivedi-Saxena, CCC,
2021.

DDS21: Dutta-Dwivedi-Saxena, FOCS,
2021.



* In a breakthrough paper , Limaye, Srinivasan, and Tavenas proved super-
polynomial lower bounds for low depth circuits.

showed that super-polynomial lower bounds for low depth circuits
imply sub-exponential PIT for such circuits.

* Thus, yields a (n - SA+1)n ,e>0, time PIT for depth A=
o(logloglogn) circuits provided that s = poly(n).

LST21: Limaye-Srinivasan-Tavenas, FOCS 21.
DSYO08: Dvir-Shpilka-Yehuayoff, STOC, 08.
CKS19: Chou-Kumar-Solomon, CCC, 18.



PIT for Constant Read Circuits



e Arithmetic Formulas: Arithmetic circuits whose underlying graph is a tree.



 Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in
at most one leaf.

O ()
TR ® o ®
o ¥ ®® ®

X4 y) X1 Xy Xp X3 X3 X4 3 Xso

ROF:



 Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in
at most one leaf.

* ROFs are a special class of multilinear circuits.
gave an n20°8™) time black box PIT algorithm for ROFs.

* This was improved to a poly(n) time algorithm by

SV09: Shpilka-Volkovich , APPROX-RANDOM, 09.
MV17: Minahan-Volkovich, CCC, 17.



* Read k Formulas: Arithmetic formulas where each variable appears in at most k
leaves.

gave an n?(k+1087) time black box PIT algorithm for sum of k < — ROFs.

w3

SV09: Shpilka-Volkovich , APPROX-RANDOM, 09.



* Read k Formulas: Arithmetic formulas where each variable appears in at most k
leaves.

k k
gave a poly(s,n<°") time white box and nk°"/+0(k1087) time black
box PIT algorithm for multilinear read k formulas.

AvMV11: Anderson-van Melkebeek-Volkovich, CCC, 11.



* Read k Formulas: Arithmetic formulas where each variable appears in at most k
leaves.

A
gave an sk?%) time black box PIT algorithm for occur k formulas of

depth A using the algebraic independence technique from

ASSS12: Agrawal-Saha-Sapthirishi-Saxena, STOC, 12.
BMS11: Beecken-Mittmann-Saxena, ICALP, 11.



* Read k Formulas: Arithmetic formulas where each variable appears in at most k
leaves.

A
gave an sk?“%) time black box PIT algorithm for occur k formulas of

depth A using the algebraic independence technique fro

A generalisation of read k
formulas. Capture other
interesting models like
multilinear Z*I1ZI1 circuits.



* ROABP: [ € [F[x4, ..., x,] is said to be computed by a width-w ROABP in order € §,,
if

1

_ : - | 1
f=101, ..,1] My(tny) | e Mn(n() []

“WXWwW - “WXW

* The classesof X A 2 and X A 2 A circuits are contained in ROABPs.

obtained a sub-exponential time black box PIT for multilinear depth 3 and
depth 4 formulas by reducing to black box PIT for ROABPs.

OSV15: Oliveira-Shpilka-Volk, CCC, 15.



* Apoly(n,d,w) white box PIT for ROABPs follows from

gave a poly(n,d, w)?U%€™) time black box PIT for ROABPs with known
variable order.

gave a poly(n, d)?U°8") time black box PIT for multilinear and commutative
ROABPs.

RS0O5: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.



* Apoly(n,d,w) white box PIT for ROABPs follows from

gave a poly(n,d, w)?U%€™) time black box PIT for ROABPs with known
variable order.

gave a poly(n, d)?U°8") time black box PIT for multilinear and commutative
ROABPs.

f is computed by a width w commutative
ROABP if it is computed by a width w ROABP
in every variable order.

RS0O5: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.



* Apoly(n,d,w) white box PIT for ROABPs follows from

gave a poly(n,d, w)?U%€™) time black box PIT for ROABPs with known
variable order.

gave a poly(n, d)?U°8") time black box PIT for multilinear and commutative
ROABPs.

gave a poly(n, d, w)?U0°8™ time black box PIT for ROABPs with unknown
variable order.

gave a poly(n, d, w)?U°8™ time black box PIT and poly(n, d, w) time white
box PIT for sum of constantly many ROABPs.

RS0O5: Raz-Shpilka, CCC, 04.

FS13: Forbes-Shpilka, FOCS, 13.

FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.
AGKS15: Agrawal-Gurjar-Korwar-Saxena, SICOMP, 15.
GKST15: Agrawal-Gurjar-Saxena-Thierauf, CCC, 15.



PIT for Orbits of Circuit Classes



* Orbit of a polynomial: For f € F[xq, ..., x,,], the orbit of f, denoted by orb(f) is
theset {f(Ax+b) : A € GL(n,F) and b € F"}.
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* Orbit of a polynomial: For f € F[xq, ..., x,,], the orbit of f, denoted by orb(f) is
theset {f(Ax+b) : A € GL(n,F) and b € F"}.

* Orbit of a circuit class: For a circuit class C, the orbit of C, denoted by orb(C) is
the union of orb(f) forall f € C.



* Orbit of a polynomial: For f € F[xq, ..., x,,], the orbit of f, denoted by orb(f) is
theset {f(Ax+b) : A € GL(n,F) and b € F"}.

* Orbit of a circuit class: For a circuit class C, the orbit of C, denoted by orb(C) is
the union of orb(f) forall f € C.

* Recently studied black-box PIT for orbits of various circuit
classes.

MS21: Medini-Shpilka, CCC, 21.
ST21: Saha-Thankey, APPROX-RANDOM, 21.
BG21: Bhargava-Ghosh, APPROX-RANDOM, 21.



* orb(C) is the set of all polynomials that are “well approximated” by polynomials
in orb(C).

e Ex. 1. orb(ZII) contains depth 3 circuits.




* orb(C) is the set of all polynomials that are “well approximated” by polynomials
in orb(C).

* Ex. 2. orb(ROF) contains arithmetic formulas.
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* Ex. 3. Iterated Matrix Multiplication IMM,, ;.



* orb(C) is the set of all polynomials that are “well approximated” by polynomials
in orb(C).

* Ex. 3. Iterated Matrix Multiplication IMM,, ;.

'

the (1, 1)-th entry of

X111 7 X11,w Xd11 °° Xdaiw

X1iw1i 7 Xiww

Xaw1 " Xdww



orb(C) is the set of all polynomials that are “well approximated” by polynomials
in orb(C).

Ex. 3. Iterated Matrix Multiplication IMM,, ;.

Every polynomial computed by a size s formula is in orb(IMM&poly(S)).

Every polynomial computed by a size s Algebraic Branching Program (ABP) is in

orb(IMM; ; ).



* PIT for orbit closures of simple models = PIT for general models like formulas,
ABPs, and circuits.

* As a first step, it is natural to try to do PIT for orbits.



gave polynomial time black box PIT for orb(Zie[n] xid).

gave polynomial time black box PIT for orbit of the continuant polynomial.
Orbit closure of the continuant contains all polynomial sized formulas.

KS19: Koiran-Skomra, CoRR, 19.
MS21: Medini-Shpilka, CCC, 21.



gave polynomial time black box PIT for orb(Zie[n] xl-d).

gave polynomial time black box PIT for orbit of the continuant polynomial.
Orbit closure of the continuant contains all polynomial si ormulas.

Trace of

X4 1] [xn 1]
1 0l [1 ol

KS19: Koiran-Skomra, CoRR, 19.
MS21: Medini-Shpilka, CCC, 21.



gave polynomial time black box PIT for orb(Zie[n] xid).

gave polynomial time black box PIT for orbit of the continuant polynomial.
Orbit closure of the continuant contains all polynomial sized formulas.

gave quasi-polynomial time black box PIT for orb(ZII).
gave quasi-polynomial time black box PIT for orb(ROF).

gave quasi-polynomial time black box PIT for orbits of commutative
ROABPs and constant width ROABPs computing polynomials with individual
degree O(logn).

KS19: Koiran-Skomra, CoRR, 19.

MS21: Medini-Shpilka, CCC, 21.

ST21: Saha-Thankey, APPROX-RANDOM, 21.
BG21: Bhargava-Ghosh, APPROX-RANDOM, 21.



e Polynomial time PIT for ZXTIZIIO circuits by proving the Sylvester-Gallai type
conjecture proposed by

* Polynomial time black box PIT for ROABPs.

* Black box PIT for orb(IMMW,d) and orbits of ROABPs.

Gup14: Gupta, ECCC, 14.



Thank You!
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