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Polynomial Identity Testing (PIT)

• The Problem: Given a polynomial 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , check if 𝑓 is identically zero.
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• The Problem: Given a polynomial 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , check if 𝑓 is identically zero.

The coefficients of all monomials are 0. 
Denoted 𝑓 ≡ 0. 

Not the same as 𝑓(𝑎1, … , 𝑎𝑛) = 0 
∀𝑎1, … , 𝑎𝑛 ∈ 𝔽. Eg. 𝑥2 − 𝑥 over 𝔽2.



Polynomial Identity Testing (PIT)

• The Problem: Given a polynomial 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , check if 𝑓 is identically zero.

List of coefficients: Problem trivial



Polynomial Identity Testing (PIT)

• The Problem: Given a polynomial 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , check if 𝑓 is identically zero.

Arithmetic circuit

+

+

+

𝑥1 𝑥2 𝑥3 𝑥4 42 𝑥5

+

× ×

× ×

𝑓



Polynomial Identity Testing (PIT)

• The Problem: Given a polynomial 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , check if 𝑓 is identically zero.

Arithmetic circuit

+

+

+

𝑥1 𝑥2 𝑥3 𝑥4 42 𝑥5

+

× ×

× ×

Black box access

𝑓

𝑎1 𝑎2

⋯  

⋯  𝑎𝑛

𝑓(𝑎1, … , 𝑎𝑛)
𝑓



Polynomial Identity Testing (PIT)

• The Problem: Given a polynomial 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , check if 𝑓 is identically zero.

White box PIT

+

+

+

𝑥1 𝑥2 𝑥3 𝑥4 42 𝑥5

+

× ×

× ×

Black box PIT

𝑓

𝑎1 𝑎2

⋯  

⋯  𝑎𝑛

𝑓(𝑎1, … , 𝑎𝑛)
𝑓

along with 𝑛, 𝑑, 𝑠.

3



Polynomial Identity Testing (PIT)

• The Problem: Given a polynomial 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , check if 𝑓 is identically zero.

White box PIT

+

+

+

𝑥1 𝑥2 𝑥3 𝑥4 42 𝑥5

+

× ×

× ×

Hitting sets

𝑓

𝑎1 𝑎2

⋯  

⋯  𝑎𝑛

𝑓(𝑎1, … , 𝑎𝑛)
𝑓

along with 𝑛, 𝑑, 𝑠.

3



Efficient randomised algorithm

• Schwartz-Zippel Lemma [DL78, Zip79, Sch80]: Let 𝑓 ∈ 𝔽[𝑥1, … , 𝑥𝑛] be a non-zero, 
degree 𝑑 polynomial. Then, for any 𝑆 ⊆ 𝔽 and 𝑎1, … , 𝑎𝑛 ∈𝑅  𝑆,

Pr 𝑓 𝑎1, … , 𝑎𝑛 ≠ 0 ≥ 1 −
𝑑

|𝑆|
.

• Gives a poly(𝑛, 𝑑) randomised algorithm for PIT: Pick 𝑎1, … , 𝑎𝑛 uniformly at 
random from a large enough subset of 𝔽 and check whether 𝑓 𝑎1, … , 𝑎𝑛  is 0. 

• Goal: Obtain an efficient, deterministic algorithm for PIT.

DL78: DeMillo-Lipton, Information Processing Letters, 78.
Zip79: Zippel, EUROSAM, 79.
Sch80: Schwartz, JACM, 80. 



Efficient randomised algorithm

• Schwartz-Zippel Lemma [DL78, Zip79, Sch80]: Let 𝑓 ∈ 𝔽[𝑥1, … , 𝑥𝑛] be a non-zero, 
degree 𝑑 polynomial. Then, for any 𝑆 ⊆ 𝔽 and 𝑎1, … , 𝑎𝑛 ∈𝑅  𝑆,

Pr 𝑓 𝑎1, … , 𝑎𝑛 ≠ 0 ≥ 1 −
𝑑

|𝑆|
.

• Gives a poly(𝑛, 𝑑) randomised algorithm for PIT: Pick 𝑎1, … , 𝑎𝑛 uniformly at 
random from a large enough subset of 𝔽 and check whether 𝑓 𝑎1, … , 𝑎𝑛  is 0. 

• Goal: Obtain an efficient, deterministic algorithm for PIT.

Running time = poly 𝑛, 𝑑, 𝑠 .



Connections to other problems

• Primality testing: The AKS primality test was obtained by derandomizing an 
instance of PIT over a ring.

• Perfect matchings: The best known randomised parallel algorithm for finding 
perfect matchings in graphs uses PIT [MVV87]. Derandomizing PIT will give a 
deterministic parallel algorithm to find perfect matchings in graphs.

• Polynomial factoring: A deterministic algorithm for PIT would yield a 
deterministic algorithm for polynomial factorisation [KSS15].

MVV87: Mulmuley-Vazirani-Vazirani, STOC, 87.
KSS15: Kopparty-Saraf-Shpilka, CCC, 14.



PIT and circuit lower bounds

• Theorem [KI03]: If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized 
Boolean circuits or 

2. the permanent polynomial can not be computed by polynomial sized 
arithmetic circuits.

KI03: Kabanets-Impagliazzo, STOC, 03.
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PIT and circuit lower bounds

• Theorem [KI03]: If there is a sub-exponential time algorithm for PIT, then either:

1. There is a function in NEXP that can not be computed by polynomial sized 
Boolean circuits or 

2. the permanent polynomial can not be computed by polynomial sized 
arithmetic circuits.

• The result applies to both the white box and the black box setting.



PIT and circuit lower bounds

• Theorem [HS80, Agr05]: Let 𝑇 ∶ ℕ → ℕ be an increasing function. Suppose there 
is an algorithm which runs in time 𝑇 𝑠  and solves the black box version of PIT for 
size 𝑠 circuits. Then there exists an 𝑛 variate polynomial whose coefficients can 
be computed in time 2𝑂(𝑛) that requires arithmetic circuits of size at least 
𝑇−1 2𝑂 𝑛 .

HS80: Heintz-Schnorr, STOC, 80.
Agr05: Agrawal, FSTTCS, 05.



PIT and circuit lower bounds

• Theorem [HS80, Agr05]: Let 𝑇 ∶ ℕ → ℕ be an increasing function. Suppose there 
is an algorithm which runs in time 𝑇 𝑠  and solves the black box version of PIT for 
size 𝑠 circuits. Then there exists an 𝑛 variate polynomial whose coefficients can 
be computed in time 2𝑂(𝑛) that requires arithmetic circuits of size at least 
𝑇−1 2𝑂 𝑛 .

• Polynomial time black box PIT ⟹ exponential arithmetic circuit lower bound.

• Quasi-polynomial time black box PIT ⟹ arithmetic circuit lower bound of the 
form 2𝑛𝜖

.



PIT and circuit lower bounds

• Theorem [KI03]: If there is an 𝑛 variate, multilinear polynomial that requires 
arithmetic circuits of size 2Ω(𝑛) (resp. 𝑛𝜔(1)), then there is a 2polylog(𝑛) (resp. 
sub-exponential) time black box PIT algorithm for poly(𝑛) sized arithmetic 
circuits computing 𝑛 variate polynomials of poly(𝑛) degree.

• Thus, derandomizing PIT and proving arithmetic circuit lower bounds are two 
sides of the same coin.

KI03: Kabanets-Impagliazzo, STOC, 03.



PIT for special circuit classes

• Since proving arithmetic circuit lower bounds seems to be difficult, we can expect 
derandomizing PIT to be a challenging problem.  

• So the focus has been on derandomizing PIT for special classes of circuits.

• Some restrictions that have been imposed are:
• Restricting the depth of the circuit,

• Restricting the number of times the circuit can read a variable,

• Restricting the fan-in of the gates in the circuit,

• Combinations of the above three, etc.



PIT for Constant Depth Circuits
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ΣΠ circuits 

• A ΣΠ circuit (aka a sparse polynomial) computes an 𝔽-linear combination of 
monomials and is thus a universal model of computation.

• White box PIT: Trivial.

• Black box PIT [KS01]: There is a poly(𝑛, 𝑑, 𝑠) time black box PIT algorithm for the 
class of 𝑛 variate, degree 𝑑, 𝑠 sparse polynomials over fields of size poly(𝑛, 𝑑, 𝑠).

KS01: Klivans-Spielman, STOC, 01.



ΣΠ circuits – black box PIT 

• Let 𝑓 = σ𝑖∈[𝑠] 𝑐𝑖 ⋅ 𝑥1

𝑑𝑖,1 ⋯ 𝑥𝑛
𝑑𝑖,𝑛  be a non-zero, degree 𝑑, 𝑠 sparse polynomial.

• Map 𝑥𝑖 ↦ 𝑥𝑡𝑖−1 mod 𝑞 , ∀𝑖 ∈ 𝑛 , where 𝑞 is a prime number > 𝑠2𝑛𝑑. Thus the 

monomial 𝑥1

𝑑𝑖,1 ⋯ 𝑥𝑛
𝑑𝑖,𝑛  maps to 𝑥𝑑𝑖,𝑛(𝑡𝑛−1mod 𝑞)+𝑑𝑖,𝑛−1 (𝑡𝑛−2mod 𝑞)+⋯+𝑑𝑖,1.

• Let 𝑝𝑖 𝑡 = 𝑑𝑖,𝑛(𝑡𝑛−1mod 𝑞) + 𝑑𝑖,𝑛−1 (𝑡𝑛−2mod 𝑞) + ⋯ + 𝑑𝑖,1. We find an 𝛼 ∈
ℕ s.t. ∀𝑖 ≠ 𝑗, 𝑝𝑖 𝛼 ≠ 𝑝𝑗 𝛼  mod 𝑞. Then ∀𝑖 ≠ 𝑗, 𝑝𝑖 𝛼 ≠ 𝑝𝑗 𝛼 .
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ΣΠ circuits – black box PIT 

• Running time of the algorithm: The algorithm finds 𝑞, tries at most 𝑠2𝑛 +
1 many values of 𝛼 and for each value of 𝛼, tries at most 𝑑𝑞 + 1 many values of 
𝛽.

• A prime 𝑠2𝑛𝑑 < 𝑞 ≤ 2𝑠2𝑛𝑑 exists and can be found in poly(𝑛, 𝑑, 𝑠) time. Time 
required to try various values of 𝛼 and 𝛽 is ≤ (𝑠2𝑛 + 1)(𝑑𝑞 + 1) = poly(𝑛, 𝑑, 𝑠). 
Total time = poly(𝑛, 𝑑, 𝑠). 



ΣΠΣ circuits

• Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If 𝑓 is an 𝑛 variate, degree 
poly(𝑛) polynomial computed by a poly(𝑛) size circuit, then it can also be 
computed by a ΣΠΣ circuit of size 𝑛𝑂( 𝑛).

• Polynomial time PIT for ΣΠΣ circuits ⟹ sub-exponential PIT for poly(𝑛) size 
circuits computing poly(𝑛)  degree polynomials. PIT for ΣΠΣ  circuits is as 
challenging as PIT for general circuits.

• Researchers have studied restricted classes of ΣΠΣ circuits.  

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SICOMP, 83.
AV08: Agrawal-Vinay, FOCS, 08.
Koi12: Koiran, Theor. Comput. Sci., 12.
GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.
Tav13: Tavenas, MFCS 13.



Σ𝑘Π𝑑Σ circuits

• A Σ𝑘Π𝑑Σ circuit is a ΣΠΣ circuit where the fan-in of the top + gate is at most 𝑘 
and the fan-in of all product gates in the second level is at most 𝑑. Think of 𝑘 as a 
constant. 

• Both white box and black box PIT for  Σ𝑘Π𝑑Σ circuits have been studied 
extensively.



PIT for Σ𝑘Π𝑑Σ circuits

Paper Version Result

DS05 White box poly(𝑛, 𝑑𝑂 𝑘2 log𝑘−2 𝑑 )

KS06 White box poly(𝑛, 𝑑𝑂 𝑘 )

KS08 Black box poly(𝑛, 𝑑𝑂 𝑘2 log𝑘−2 𝑑 )

SS09 Black box poly(𝑛, 𝑑𝑂 𝑘3 log 𝑑 )

KS09 Black box poly(𝑛, 𝑑𝑂 𝑘𝑘
) over ℝ

SS10 Black box poly(𝑛, 𝑑𝑂 𝑘2 
) over ℝ

poly(𝑛, 𝑑𝑂 𝑘2 log 𝑑 ) over any 𝔽

SS11 Black box poly(𝑛, 𝑑𝑂 𝑘 )

DS05: Dvir-Shpilka, STOC, 05.
KS06: Kayal-Saxena, CCC, 06.
KS08: Karnin-Shpilka, CCC, 08.
SS09: Saxena-Seshadhri, CCC, 09.
KS09: Kayal-Saraf, FOCS, 09.
SS10: Saxena-Seshadhri, FOCS, 10.
SS11: Saxena-Seshadhri, STOC, 11.



An approach for Σ𝑘Π𝑑Σ black box PIT

• Let 𝑓 = 𝑇1 + ⋯ + 𝑇𝑘, 𝑇𝑖 = ℓ𝑖,1 ⋯ ℓ𝑖,𝑑𝑖
, where ℓ𝑖,𝑗  are linear polynomials, be a 

Σ𝑘Π𝑑Σ circuit computing an 𝑛 variate polynomial. 



An approach for Σ𝑘Π𝑑Σ black box PIT

• Let 𝑓 = 𝑇1 + ⋯ + 𝑇𝑘, 𝑇𝑖 = ℓ𝑖,1 ⋯ ℓ𝑖,𝑑, where ℓ𝑖,𝑗  are linear forms, be a Σ𝑘Π𝑑Σ 
circuit computing an 𝑛 variate polynomial. 

• A lot of black box PIT algorithms for Σ𝑘Π𝑑Σ circuits use the rank bound idea.

• rank 𝑓 ≔ dim span{ℓ1,1, … , ℓ𝑘,𝑑}.



rank and Σ𝑘Π𝑑Σ PIT

• Suppose rank 𝑓 = 𝑟. Let ℓ𝑖1,𝑗1
, … , ℓ𝑖𝑟,𝑗𝑟

 be a basis of span ℓ1,1, … , ℓ𝑘,𝑑 .

• Rank extractors: Let 𝑉 be an unknown but fixed space of linear functions from  𝔽𝑛 
to 𝔽 of dimension at most 𝑟. [GR05] showed that a linear transformation 𝑇: 𝔽𝑟 →
𝔽𝑛 s.t. dim 𝑉 ∘ 𝑇 = dim 𝑉 can be constructed in poly(𝑛, 𝑟) time provided that
𝔽 = poly(𝑛, 𝑟).

• 𝑉: = span{ℓ𝑖1,𝑗1
, … , ℓ𝑖𝑟,𝑗𝑟

}. It is not to difficult to show that 𝑓 ≡ 0 ⟺ 𝑓 ∘ 𝑇 ≡ 0.

• 𝑓 ∘ 𝑇 is an 𝑟 variate polynomial. If 𝑟 is “small” we can find a non-root of 𝑓 ∘ 𝑇 by 
brute force search.

GR05: Gabizon-Raz, FOCS, 05. 



rank and Σ𝑘Π𝑑Σ PIT

• We can not expect the rank of an arbitrary Σ𝑘Π𝑑Σ circuit to be small.

• However, it turns out that a rank bound for simple and minimal Σ𝑘Π𝑑Σ circuits 
computing the 0 polynomial suffices.



rank and Σ𝑘Π𝑑Σ PIT

• We can not expect the rank of an arbitrary Σ𝑘Π𝑑Σ circuit to be small.

• However, it turns out that a rank bound for simple and minimal Σ𝑘Π𝑑Σ circuits 
computing the 0 polynomial suffices.

𝑓 = 𝑇1 + ⋯ + 𝑇𝑘 is simple if there is no linear 
form that divides all of 𝑇1, … , 𝑇𝑘. 



rank and Σ𝑘Π𝑑Σ PIT

• We can not expect the rank of an arbitrary Σ𝑘Π𝑑Σ circuit to be small.

• However, it turns out that a rank bound for simple and minimal Σ𝑘Π𝑑Σ circuits 
computing the 0 polynomial suffices.

𝑓 = 𝑇1 + ⋯ + 𝑇𝑘 is minimal if ∀𝑆 ⊆
𝑘 , σ𝑖∈𝑆 𝑇𝑖  ≢ 0.



rank and Σ𝑘Π𝑑Σ PIT

• We can not expect the rank of an arbitrary Σ𝑘Π𝑑Σ circuit to be small.

• However, it turns out that a rank bound for simple and minimal Σ𝑘Π𝑑Σ circuits 
computing the 0 polynomial suffices.

• Theorem [KS06]: Suppose that the rank of all 𝑛 variate simple and minimal Σ𝑘Π𝑑Σ 
circuits computing the 0 polynomial is at most 𝑅(𝑘, 𝑑). Then, there is an 
poly(𝑛, 2𝑘 , 𝑑𝑅 𝑘,𝑑 ) time black box PIT algorithm for Σ𝑘Π𝑑Σ circuits.

• The proof of the above theorem crucially uses the rank extractors from [GR05].

KS06: Karnin-Shpilka, CCC, 06.
GR05: Gabizon-Raz, FOCS, 05. 



rank and Σ𝑘Π𝑑Σ PIT

• How can we show that the rank of every simple and minimal Σ𝑘Π𝑑Σ circuit 
computing the 0 polynomial is “small”? 

• One way is to use Sylvester-Gallai type theorems.



A detour: Sylvester-Gallai theorem

• Sylvester-Gallai Theorem: Let 𝑆 ⊆ ℝ2 be a finite set. If ∀𝒂, 𝒃 ∈ 𝑆, ∃𝒄 ∈ 𝑆, s.t. the 
line passing through 𝒂 and 𝒃 also contains 𝒄, then all points in 𝑆 are collinear.

• Edelstein-Kelly Theorem: Let 𝑅, 𝐺, 𝐵 ⊆ ℝ2 be disjoint, finite sets of the same size. 
If for every pair of points 𝒂, 𝒃 from two distinct sets, there exists 𝒄 in the third set, 
s.t. the line passing through 𝒂 and 𝒃 also contains 𝒄, then all points in 𝑅 ∪ 𝐺 ∪ 𝐵 
are collinear.



rank and Σ𝑘Π𝑑Σ PIT

• How can we show that the rank of every simple and minimal Σ𝑘Π𝑑Σ circuit 
computing the 0 polynomial is “small”? 

• Let 𝑓 = 𝑇1 + 𝑇2 + 𝑇3 be a simple and minimal Σ𝑘Π𝑑Σ circuit computing the 0 
polynomial. Let 𝑇𝑖 = ℓ𝑖,1 ⋯ ℓ𝑖,𝑑  and 𝑆𝑖 = {ℓ𝑖,1, … , ℓ𝑖,𝑑}. Since 𝑓 is simple, the 𝑆𝑖  
are disjoint. Now, 0 ≡ 𝑓 mod ℓ1,1 = (𝑇2+𝑇3) mod ℓ1,1  ⟹ ∀ℓ2,𝑗 , ∃ ℓ3,𝑗′  s.t. 
ℓ3,𝑗′ = ℓ2,𝑗  mod ℓ1,1. I.e. ℓ3,𝑗′ ∈ span{ℓ2,𝑗 , ℓ1,1}. Thus, 𝑆1, 𝑆2, 𝑆3 have a structure 
like the one found in the hypothesis of the Edelstein-Kelly Theorem. Perhaps this 
can be used to bound the rank. 

• Sylvester-Gallai type theorems were used to bound rank in [KS09, SS10].

KS09: Kayal-Saraf, FOCS, 09.
SS10: Saxena-Seshadhri, FOCS, 10.



Σ𝑘Π𝑑Σ black box PIT

• Summary: 

1. Rank bound on simple, minimal Σ𝑘Π𝑑Σ circuits computing the 0 polynomial 
+ Rank extractors imply black box PIT for Σ𝑘Π𝑑Σ circuits.

2. Sylvester-Gallai type theorems can be used to prove that the rank of simple, 
minimal Σ𝑘Π𝑑Σ circuits computing the 0 polynomial is “small”.



Σ ∧ Σ circuits

• Σ ∧ Σ circuits are a natural sub-class of ΣΠΣ circuits. 

• A Σ ∧ Σ circuit looks like Σ𝑖∈[𝑘] ℓ𝑖
𝑑. I.e. all the inputs of a × gate in the second level 

are the same.

• [Sax08, FS13] showed that Σ ∧ Σ circuits are a sub-class of Read-once Oblivious 
Algebraic Branching Programs (ROABPs).

• This observation yields polynomial time white box and quasi-polynomial time 
black box PIT algorithms for this model.

Sax08: Saxena, ICALP, 08.
FS13: Forbes-Shpilka, FOCS, 13.



Depth 4 circuits

• Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If 𝑓 is an 𝑛 variate, degree 
poly(𝑛) polynomial computed by a poly(𝑛) size circuit, then it can also be 
computed by a ΣΠΣΠ circuit of size 𝑛𝑂( 𝑛).

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83.
AV08: Agrawal-Vinay, FOCS, 08.
Koi12: Koiran, Theor. Comput. Sci., 12.
GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.
Tav13: Tavenas, MFCS 13.



Depth 4 circuits

• Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If 𝑓 is an 𝑛 variate, degree 
poly(𝑛) polynomial computed by a poly(𝑛) size circuit, then it can also be 
computed by a ΣΠΣΠ circuit of size 𝑛𝑂( 𝑛).

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83.
AV08: Agrawal-Vinay, FOCS, 08.
Koi12: Koiran, Theor. Comput. Sci., 12.
GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13.
Tav13: Tavenas, MFCS 13.

In fact, by circuits 
where × gates have 

fan-in  𝑂( 𝑛). 



Depth 4 circuits

• Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If 𝑓 is an 𝑛 variate, degree 
poly(𝑛) polynomial computed by a poly(𝑛) size circuit, then it can also be 
computed by a ΣΠΣΠ circuit of size 𝑛𝑂( 𝑛).

• Polynomial time PIT for ΣΠΣΠ circuits ⟹ sub-exponential PIT for poly(𝑛) size 
circuits computing poly(𝑛) degree polynomials. 

• A natural sub-class to study is Σ𝑘ΠΣΠ𝛿  circuits.



PIT for Σ𝑘ΠΣΠ𝛿  circuits?

• One natural approach is to generalise the notion of rank, rank extractors, and
Sylvester-Gallai type theorems used for Σ𝑘Π𝑑Σ circuits to appropriate notions for 
Σ𝑘ΠΣΠ𝛿  circuits. This was done in [BMS11, Gup14].

• [BMS11] replaces rank by transcendence degree.

BMS11: Beecken-Mittmann-Saxena, ICALP, 11.
Gup14: Gupta, ECCC, 14.



A detour: algebraic independence

• 𝑓1, … , 𝑓𝑚 ∈ 𝔽[𝑥1, … , 𝑥𝑛] are said to be algebraically independent if there does not 
exist any non-zero 𝑃 ∈ 𝔽[𝑦1, … , 𝑦𝑚] s.t. 𝑃 𝑓1, … , 𝑓𝑚 ≡ 0.

• 𝔽[𝑥1, … , 𝑥𝑛] forms a matroid under algebraic independence.

• Transcendence degree: For any 𝑆 ⊆ 𝔽[𝑥1, … , 𝑥𝑛], the transcendence degree of 𝑆, 
denoted by tr − deg(𝑆), is the size of the maximum cardinality set of algebraically 
independent polynomials in 𝑆. It can be shown that tr − deg 𝑆 ≤ 𝑛. 



PIT for Σ𝑘ΠΣΠ𝛿  circuits?

• One natural approach is to generalise the notion of rank, rank extractors, and
Sylvester-Gallai type theorems used for Σ𝑘Π𝑑Σ circuits to appropriate notions for 
Σ𝑘ΠΣΠ𝛿  circuits. This was done in [BMS11, Gup14].

• [BMS11] replaces rank by transcendence degree. Let 𝑓 = σ𝑖∈[𝑘] ς𝑗∈[𝑠] 𝑓𝑖,𝑗 be a 

Σ𝑘ΠΣΠ𝛿  circuit. Then,

rank 𝑓 ≔ tr − deg 𝑓𝑖,𝑗 𝑖,𝑗
.



PIT for Σ𝑘ΠΣΠ𝛿  circuits?

• [BMS11] replaces rank extractors by faithful homomorphisms. 

BMS11: Beecken-Mittmann-Saxena, ICALP, 11.



PIT for Σ𝑘ΠΣΠ𝛿  circuits?

• [BMS11] replaces rank extractors by faithful homomorphisms. 

𝜙: 𝔽 𝑥1, … , 𝑥𝑛 → 𝔽[𝑦1, … , 𝑦𝑚] s.t.
∀𝑝, 𝑞 ∈ 𝔽 𝑥1, … , 𝑥𝑛 ,

𝜙 𝑝 + 𝑞 = 𝜙 𝑝 + 𝜙 𝑞  and
𝜙 𝑝𝑞 = 𝜙 𝑝 𝜙(𝑞).



PIT for Σ𝑘ΠΣΠ𝛿  circuits?

• [BMS11] replaces rank extractors by faithful homomorphisms. 

𝜙: 𝔽 𝑥1, … , 𝑥𝑛 → 𝔽 𝑦1, … , 𝑦𝑚  is said to be faithful 
to {𝑓1, … , 𝑓𝑠} if 

tr − deg 𝑓1, … , 𝑓𝑠 = tr − deg 𝜙(𝑓1), … , 𝜙(𝑓𝑠) .



PIT for Σ𝑘ΠΣΠ𝛿  circuits?

• [BMS11] replaces rank extractors by faithful homomorphisms. 

• Theorem [BMS11]: If the rank of every 𝑛 variate simple and minimal size 𝑠 
Σ𝑘ΠΣΠ𝛿  circuit computing the 0 polynomial is at most 𝑟, then there is a black box 
PIT algorithm for size-𝑠 Σ𝑘ΠΣΠ𝛿circuits that runs in time poly 𝑛, 𝑟, 𝛿, 𝑠 𝛿2𝑘𝑟.



PIT for Σ𝑘ΠΣΠ𝛿  circuits?

• To bound the rank of simple, minimal Σ𝑘ΠΣΠ𝛿  circuit computing the 0 
polynomial, [Gup14] proposed a Sylvester-Gallai type conjecture for Σ𝑘ΠΣΠ𝛿  
circuits. 

• [Shp19, PS20, PS21] proved Gupta’s conjecture for Σ3ΠΣΠ2  circuits thereby 
obtaining a black box, poly(𝑛, 𝑑) PIT algorithm for Σ3ΠΣΠ2 circuits.

Gup14: Gupta, ECCC, 14.
Shp19: Shpilka, FOCS, 19.
PS20: Peleg-Shpilka, CCC, 20.
PS21: Peleg-Shpilka, STOC, 21.



PIT for depth 4 circuits
Model Paper Version Result

Σ𝑘Π𝛿Σ ∧ Sax08 White box poly(𝑛, 𝑘, 𝑠𝑂 𝛿 ) 

Multilinear 
Σ𝑘ΠΣΠ

SV11, 
ASSS12

Black box poly(𝑛𝑂(𝑘2)) 

Σ2ΠΣΠ𝛿 BMS11 Black box poly 𝑛, 𝛿, 𝑠 𝛿2

Σ ∧ ΣΠ𝛿 For15 Black box 𝑠𝑂(𝛿 log 𝑠)

Σ3ΠΣΠ2 PS21 Black box poly(𝑛, 𝑑)

Σ𝑘ΠΣ ∧ DDS20 White box 𝑠𝑂(𝑘 7𝑘)

Σ𝑘ΠΣ ∧ DDS20 Black box 𝑠𝑂(𝑘 log log 𝑠)

Σ𝑘ΠΣΠ𝛿 DDS20 Black box 𝑠𝑂(𝛿2𝑘 log 𝑠)

Σ𝑘ΠΣ ∧ DDS21 Black box 𝑠𝑂(𝑘 7𝑘 log log 𝑠)

Σ𝑘ΠΣΠ𝛿 DDS21 Black box 𝑠𝑂(𝛿2𝑘 7𝑘 log 𝑠)

Sax08: Saxena, ICALP, 08.
SV11: Saraf-Volkovich, STOC, 11.
ASSS12: Agrawal-Saha-Sapthirishi-                     

Saxena, STOC, 12.
BMS11: Beecken-Mittmann-Saxena, 

ICALP, 11.
For15: Forbes, FOCS, 15.
PS21: Peleg-Shpilka, STOC, 21.
DDS20: Dutta-Dwivedi-Saxena, CCC, 

2021.
DDS21: Dutta-Dwivedi-Saxena, FOCS, 

2021.



PIT for low depth circuits

• In a breakthrough paper [LST21], Limaye, Srinivasan, and Tavenas proved super-
polynomial lower bounds for low depth circuits.

• [DSY08, CKS19] showed that super-polynomial lower bounds for low depth circuits 
imply sub-exponential PIT for such circuits.

• Thus, [LST21] yields a 𝑛 ⋅ 𝑠Δ+1 𝑛𝜖

, 𝜖 > 0 , time PIT for depth Δ =
𝑜(log log log 𝑛) circuits provided that 𝑠 = poly 𝑛 . 

LST21: Limaye-Srinivasan-Tavenas, FOCS 21.
DSY08: Dvir-Shpilka-Yehuayoff, STOC, 08.
CKS19: Chou-Kumar-Solomon, CCC, 18. 



PIT for Constant Read Circuits



Read once formulas

• Arithmetic Formulas: Arithmetic circuits whose underlying graph is a tree.



Read once formulas

• Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in  
at most one leaf.

𝑥1
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× ×
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××

+ ×
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𝑥2𝑥1 𝑥3 𝑥3 𝑥53

+

𝑥2 𝑥4

ROF: Not an 
ROF:

+



Read once formulas

• Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in  
at most one leaf.

• ROFs are a special class of multilinear circuits.

• [SV09] gave an 𝑛𝑂(log 𝑛) time black box PIT algorithm for ROFs. 

• This was improved to a poly 𝑛  time algorithm by [MV17].

SV09: Shpilka-Volkovich , APPROX-RANDOM, 09.
MV17: Minahan-Volkovich, CCC, 17.



Constant read formulas

• Read 𝒌 Formulas: Arithmetic formulas where each variable appears in at most 𝑘 
leaves.

• [SV09] gave an 𝑛𝑂(𝑘+ log 𝑛) time black box PIT algorithm for sum of 𝑘 ≤
𝑛

3
 ROFs.

SV09: Shpilka-Volkovich , APPROX-RANDOM, 09.



Constant read formulas

• Read 𝒌 Formulas: Arithmetic formulas where each variable appears in at most 𝑘 
leaves.

• [AvMV11] gave a  poly(𝑠, 𝑛𝑘𝑂 𝑘
)  time white box and 𝑛𝑘𝑂 𝑘 +𝑂(𝑘 log 𝑛) time black 

box PIT algorithm for multilinear read 𝑘 formulas.

AvMV11: Anderson-van Melkebeek-Volkovich, CCC, 11.



Constant read formulas

• Read 𝒌 Formulas: Arithmetic formulas where each variable appears in at most 𝑘 
leaves.

• [ASSS12] gave an  𝑠𝑘𝑂(Δ 2Δ)
  time black box PIT algorithm for occur 𝑘 formulas of 

depth Δ using the algebraic independence technique from [BMS11]. 

ASSS12: Agrawal-Saha-Sapthirishi-Saxena, STOC, 12.
BMS11: Beecken-Mittmann-Saxena, ICALP, 11.



Constant read formulas

• Read 𝒌 Formulas: Arithmetic formulas where each variable appears in at most 𝑘 
leaves.

• [ASSS12] gave an  𝑠𝑘𝑂(Δ 2Δ)
  time black box PIT algorithm for occur 𝑘 formulas of 

depth Δ using the algebraic independence technique from [BMS11]. 

A generalisation of read 𝑘 
formulas. Capture other 
interesting models like 

multilinear Σ𝑘ΠΣΠ circuits.



Read-once oblivious algebraic branching programs

• ROABP: 𝑓 ∈ 𝔽[𝑥1, … , 𝑥𝑛] is said to be computed by a width-𝑤 ROABP in order 𝜋 ∈ 𝑆𝑛 
if

𝑓 = 1, … ,  1 𝑀1 𝑥𝜋(1)

𝑤×𝑤

 ⋯ ⋯ 𝑀𝑛 𝑥𝜋(𝑛)

𝑤×𝑤

1
⋮
1

.

• The classes of Σ ∧ Σ and Σ ∧ Σ ∧ circuits are contained in ROABPs.

• [OSV15] obtained a sub-exponential time black box PIT for multilinear depth 3 and 
depth 4 formulas by reducing to black box PIT for ROABPs.

OSV15: Oliveira-Shpilka-Volk, CCC, 15.



Read-once oblivious algebraic branching programs

• A poly(𝑛, 𝑑, 𝑤) white box PIT for ROABPs follows from [RS04].

• [FS13] gave a poly 𝑛, 𝑑, 𝑤 𝑂(log 𝑤) time black box PIT for ROABPs with known 
variable order.

• [FSS14] gave a poly 𝑛, 𝑑 𝑂(log 𝑤) time black box PIT for multilinear and commutative 
ROABPs.

RS05: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.



Read-once oblivious algebraic branching programs

• A poly(𝑛, 𝑑, 𝑤) white box PIT for ROABPs follows from [RS04].

• [FS13] gave a poly 𝑛, 𝑑, 𝑤 𝑂(log 𝑤) time black box PIT for ROABPs with known 
variable order.

• [FSS14] gave a poly 𝑛, 𝑑 𝑂(log 𝑤) time black box PIT for multilinear and commutative 
ROABPs.

𝑓 is computed by a width 𝑤 commutative 
ROABP if it is computed by a width 𝑤 ROABP 

in every variable order. 

RS05: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.



Read-once oblivious algebraic branching programs

• A poly(𝑛, 𝑑, 𝑤) white box PIT for ROABPs follows from [RS04].

• [FS13] gave a poly 𝑛, 𝑑, 𝑤 𝑂(log 𝑤) time black box PIT for ROABPs with known 
variable order.

• [FSS14] gave a poly 𝑛, 𝑑 𝑂(log 𝑤) time black box PIT for multilinear and commutative 
ROABPs.

• [AGKS15] gave a poly 𝑛, 𝑑, 𝑤 𝑂(log 𝑛) time black box PIT for ROABPs with unknown 
variable order.

• [GKST15] gave a poly 𝑛, 𝑑, 𝑤 𝑂(log 𝑛) time black box PIT and poly(𝑛, 𝑑, 𝑤) time white 
box PIT for sum of constantly many ROABPs.

RS05: Raz-Shpilka, CCC, 04.
FS13: Forbes-Shpilka, FOCS, 13.
FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.
AGKS15: Agrawal-Gurjar-Korwar-Saxena, SICOMP, 15.
GKST15:  Agrawal-Gurjar-Saxena-Thierauf, CCC, 15.



PIT for Orbits of Circuit Classes



Orbits

• Orbit of a polynomial: For 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , the orbit of 𝑓, denoted by orb(𝑓) is 
the set 𝑓 𝐴𝐱 + 𝐛 ∶ 𝐴 ∈ GL 𝑛, 𝔽  and 𝐛 ∈ 𝔽𝑛 .



Orbits

• Orbit of a polynomial: For 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , the orbit of 𝑓, denoted by orb(𝑓) is 
the set 𝑓 𝐴𝐱 + 𝐛 ∶ 𝐴 ∈ GL 𝑛, 𝔽  and 𝐛 ∈ 𝔽𝑛 .

𝑥1

⋮
⋮

𝑥𝑛



Orbits

• Orbit of a polynomial: For 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , the orbit of 𝑓, denoted by orb(𝑓) is 
the set 𝑓 𝐴𝐱 + 𝐛 ∶ 𝐴 ∈ GL 𝑛, 𝔽  and 𝐛 ∈ 𝔽𝑛 .
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Orbits

• Orbit of a polynomial: For 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , the orbit of 𝑓, denoted by orb(𝑓) is 
the set 𝑓 𝐴𝐱 + 𝐛 ∶ 𝐴 ∈ GL 𝑛, 𝔽  and 𝐛 ∈ 𝔽𝑛 .

• Orbit of a circuit class: For a circuit class 𝒞, the orbit of 𝒞, denoted by orb(𝒞) is 
the union of orb(𝑓) for all 𝑓 ∈ 𝒞.



Orbits

• Orbit of a polynomial: For 𝑓 ∈ 𝔽 𝑥1, … , 𝑥𝑛 , the orbit of 𝑓, denoted by orb(𝑓) is 
the set 𝑓 𝐴𝐱 + 𝐛 ∶ 𝐴 ∈ GL 𝑛, 𝔽  and 𝐛 ∈ 𝔽𝑛 .

• Orbit of a circuit class: For a circuit class 𝒞, the orbit of 𝒞, denoted by orb(𝒞) is 
the union of orb(𝑓) for all 𝑓 ∈ 𝒞.

• Recently [MS21, ST21, BG21] studied black-box PIT for orbits of various circuit 
classes.

MS21: Medini-Shpilka, CCC, 21.
ST21: Saha-Thankey, APPROX-RANDOM, 21.
BG21: Bhargava-Ghosh, APPROX-RANDOM, 21.



The Power of Orbit Closures

• orb 𝒞  is the set of all polynomials that are “well approximated” by polynomials 
in orb 𝒞 . 

• Ex. 1. orb ΣΠ  contains depth 3 circuits.



The Power of Orbit Closures

• orb 𝒞  is the set of all polynomials that are “well approximated” by polynomials 
in orb 𝒞 . 

• Ex. 2. orb ROF  contains arithmetic formulas.
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• orb 𝒞  is the set of all polynomials that are “well approximated” by polynomials 
in orb 𝒞 . 

• Ex. 3. Iterated Matrix Multiplication IMM𝑤,𝑑.



The Power of Orbit Closures

• orb 𝒞  is the set of all polynomials that are “well approximated” by polynomials 
in orb 𝒞 . 

• Ex. 3. Iterated Matrix Multiplication IMM𝑤,𝑑.

the (1, 1)-th entry of

𝑥1,1,1 ⋯ 𝑥1,1,𝑤

⋮ ⋱ ⋮
𝑥1,𝑤,1 ⋯ 𝑥1,𝑤,𝑤

 ⋯ ⋯

𝑥𝑑,1,1 ⋯ 𝑥𝑑,1,𝑤

⋮ ⋱ ⋮
𝑥𝑑,𝑤,1 ⋯ 𝑥𝑑,𝑤,𝑤

.



The Power of Orbit Closures

• orb 𝒞  is the set of all polynomials that are “well approximated” by polynomials 
in orb 𝒞 . 

• Ex. 3. Iterated Matrix Multiplication IMM𝑤,𝑑.

• Every polynomial computed by a size 𝑠 formula is in orb IMM3,𝑝𝑜𝑙𝑦 𝑠 .

• Every polynomial computed by a size 𝑠 Algebraic Branching Program (ABP) is in

orb IMM𝑠,𝑠 .



The Power of Orbit Closures

• PIT for orbit closures of simple models ⟹ PIT for general models like formulas, 
ABPs, and circuits.

• As a first step, it is natural to try to do PIT for orbits.



PIT for Orbits

• [KS19] gave polynomial time black box PIT for orb(σ𝑖∈[𝑛] 𝑥𝑖
𝑑).

• [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. 
Orbit closure of the continuant contains all polynomial sized formulas.

KS19: Koiran-Skomra, CoRR, 19.
MS21: Medini-Shpilka, CCC, 21.



PIT for Orbits

• [KS19] gave polynomial time black box PIT for orb(σ𝑖∈[𝑛] 𝑥𝑖
𝑑).

• [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. 
Orbit closure of the continuant contains all polynomial sized formulas.

Trace of 
𝑥1 1
1 0

…
𝑥𝑛 1
1 0

.

KS19: Koiran-Skomra, CoRR, 19.
MS21: Medini-Shpilka, CCC, 21.



PIT for Orbits

• [KS19] gave polynomial time black box PIT for orb(σ𝑖∈[𝑛] 𝑥𝑖
𝑑).

• [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. 
Orbit closure of the continuant contains all polynomial sized formulas.

• [MS21] gave quasi-polynomial time black box PIT for orb(ΣΠ).

• [MS21, ST21] gave quasi-polynomial time black box PIT for orb(ROF).

• [ST21, BG21] gave quasi-polynomial time black box PIT for orbits of commutative 
ROABPs and constant width ROABPs computing polynomials with  individual 
degree 𝑂(log 𝑛).

KS19: Koiran-Skomra, CoRR, 19.
MS21: Medini-Shpilka, CCC, 21.
ST21: Saha-Thankey, APPROX-RANDOM, 21.
BG21: Bhargava-Ghosh, APPROX-RANDOM, 21.



Some open problems

• Polynomial time PIT for Σ𝑘ΠΣΠ𝛿  circuits by proving the Sylvester-Gallai type 
conjecture proposed by [Gup14].

• Polynomial time black box PIT for ROABPs.

• Black box PIT for orb IMM𝑤,𝑑  and orbits of ROABPs.

Gup14: Gupta, ECCC, 14.



Thank You!


	Slide 1: Derandomizing PIT: A Survey of Results and Techniques
	Slide 2: Outline
	Slide 3: Polynomial Identity Testing (PIT)
	Slide 4: Polynomial Identity Testing (PIT)
	Slide 5: Polynomial Identity Testing (PIT)
	Slide 6: Polynomial Identity Testing (PIT)
	Slide 7: Polynomial Identity Testing (PIT)
	Slide 8: Polynomial Identity Testing (PIT)
	Slide 9: Polynomial Identity Testing (PIT)
	Slide 10: Efficient randomised algorithm
	Slide 11: Efficient randomised algorithm
	Slide 12: Connections to other problems
	Slide 13: PIT and circuit lower bounds
	Slide 14: PIT and circuit lower bounds
	Slide 15: PIT and circuit lower bounds
	Slide 16: PIT and circuit lower bounds
	Slide 17: PIT and circuit lower bounds
	Slide 18: PIT and circuit lower bounds
	Slide 19: PIT for special circuit classes
	Slide 20: PIT for Constant Depth Circuits
	Slide 21: Constant depth circuits
	Slide 22: Constant depth circuits
	Slide 23: Constant depth circuits
	Slide 24: cap sigma cap pi  circuits 
	Slide 25: cap sigma cap pi  circuits – black box PIT 
	Slide 26: cap sigma cap pi  circuits – black box PIT 
	Slide 27: cap sigma cap pi  circuits – black box PIT 
	Slide 28: cap sigma cap pi  circuits – black box PIT 
	Slide 29: cap sigma cap pi  circuits – black box PIT 
	Slide 30: cap sigma cap pi cap sigma  circuits
	Slide 31: cap sigma to the k , cap pi to the d , cap sigma  circuits
	Slide 32: PIT for cap sigma to the k , cap pi to the d , cap sigma  circuits
	Slide 33: An approach for cap sigma to the k , cap pi to the d , cap sigma black box PIT
	Slide 34: An approach for cap sigma to the k , cap pi to the d , cap sigma black box PIT
	Slide 35: rank and cap sigma to the k , cap pi to the d , cap sigma PIT
	Slide 36: rank and cap sigma to the k , cap pi to the d , cap sigma PIT
	Slide 37: rank and cap sigma to the k , cap pi to the d , cap sigma PIT
	Slide 38: rank and cap sigma to the k , cap pi to the d , cap sigma PIT
	Slide 39: rank and cap sigma to the k , cap pi to the d , cap sigma PIT
	Slide 40: rank and cap sigma to the k , cap pi to the d , cap sigma PIT
	Slide 41: A detour: Sylvester-Gallai theorem
	Slide 42: rank and cap sigma to the k , cap pi to the d , cap sigma PIT
	Slide 43: cap sigma to the k , cap pi to the d , cap sigma black box PIT
	Slide 44: cap sigma logical andd cap sigma circuits
	Slide 45: Depth 4 circuits
	Slide 46: Depth 4 circuits
	Slide 47: Depth 4 circuits
	Slide 48: PIT for cap sigma to the k , cap pi cap sigma cap pi to the delta  circuits?
	Slide 49: A detour: algebraic independence
	Slide 50: PIT for cap sigma to the k , cap pi cap sigma cap pi to the delta  circuits?
	Slide 51: PIT for cap sigma to the k , cap pi cap sigma cap pi to the delta  circuits?
	Slide 52: PIT for cap sigma to the k , cap pi cap sigma cap pi to the delta  circuits?
	Slide 53: PIT for cap sigma to the k , cap pi cap sigma cap pi to the delta  circuits?
	Slide 54: PIT for cap sigma to the k , cap pi cap sigma cap pi to the delta  circuits?
	Slide 55: PIT for cap sigma to the k , cap pi cap sigma cap pi to the delta  circuits?
	Slide 56: PIT for depth 4 circuits
	Slide 57: PIT for low depth circuits
	Slide 58: PIT for Constant Read Circuits
	Slide 59: Read once formulas
	Slide 60: Read once formulas
	Slide 61: Read once formulas
	Slide 62: Constant read formulas
	Slide 63: Constant read formulas
	Slide 64: Constant read formulas
	Slide 65: Constant read formulas
	Slide 66: Read-once oblivious algebraic branching programs
	Slide 67: Read-once oblivious algebraic branching programs
	Slide 68: Read-once oblivious algebraic branching programs
	Slide 69: Read-once oblivious algebraic branching programs
	Slide 70: PIT for Orbits of Circuit Classes
	Slide 71: Orbits
	Slide 72: Orbits
	Slide 73: Orbits
	Slide 74: Orbits
	Slide 75: Orbits
	Slide 76: The Power of Orbit Closures
	Slide 77: The Power of Orbit Closures
	Slide 78: The Power of Orbit Closures
	Slide 79: The Power of Orbit Closures
	Slide 80: The Power of Orbit Closures
	Slide 81: The Power of Orbit Closures
	Slide 82: PIT for Orbits
	Slide 83: PIT for Orbits
	Slide 84: PIT for Orbits
	Slide 85: Some open problems
	Slide 86: Thank You!

