Derandomizing PIT: A Survey of Results and Techniques

Bhargav Thankey Indian Institute of Science, Bengaluru

Outline

- The PIT problem
- PIT and circuit lower bounds
- PIT for constant depth circuits
- PIT for constant read circuits
- PIT for orbits of circuit classes

• The Problem: Given a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$, check if f is <u>identically zero</u>.

• The Problem: Given a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$, check if f is <u>identically zero</u>.

The coefficients of all monomials are 0. Denoted $f \equiv 0$.

Not the same as $f(a_1, ..., a_n) = 0$ $\forall a_1, ..., a_n \in \mathbb{F}$. Eg. $x^2 - x$ over \mathbb{F}_2 .

• **The Problem:** Given a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$, check if f is <u>identically zero</u>. List of coefficients: Problem trivial

• The Problem: Given a polynomial $f \in \mathbb{F}[x_1, \dots, x_n]$, check if f is <u>identically zero</u>.

Efficient randomised algorithm

• Schwartz-Zippel Lemma [DL78, Zip79, Sch80]: Let $f \in \mathbb{F}[x_1, ..., x_n]$ be a non-zero, degree d polynomial. Then, for any $S \subseteq \mathbb{F}$ and $a_1, ..., a_n \in_R S$,

$$\Pr[f(a_1, ..., a_n) \neq 0] \ge 1 - \frac{d}{|S|}.$$

- Gives a poly(n, d) randomised algorithm for PIT: Pick a_1, \dots, a_n uniformly at random from a large enough subset of \mathbb{F} and check whether $f(a_1, \dots, a_n)$ is 0.
- Goal: Obtain an efficient, deterministic algorithm for PIT.

DL78: DeMillo-Lipton, Information Processing Letters, 78. Zip79: Zippel, EUROSAM, 79. Sch80: Schwartz, JACM, 80.

Efficient randomised algorithm

• Schwartz-Zippel Lemma [DL78, Zip79, Sch80]: Let $f \in \mathbb{F}[x_1, ..., x_n]$ be a non-zero, degree d polynomial. Then, for any $S \subseteq \mathbb{F}$ and $a_1, ..., a_n \in_R S$,

$$\Pr[f(a_1, ..., a_n) \neq 0] \ge 1 - \frac{d}{|S|}.$$

- Gives a poly(n, d) randomised algorithm for PIT: Pick a_1, \dots, a_n uniformly at random from a large enough subset of \mathbb{F} and check whether $f(a_1, \dots, a_n)$ is 0.
- Goal: Obtain an efficient, deterministic algorithm for PIT.

Running time = poly(n, d, s).

Connections to other problems

- **Primality testing:** The AKS primality test was obtained by derandomizing an instance of PIT over a ring.
- **Perfect matchings:** The best known randomised parallel algorithm for finding perfect matchings in graphs uses PIT [MVV87]. Derandomizing PIT will give a deterministic parallel algorithm to find perfect matchings in graphs.
- **Polynomial factoring:** A deterministic algorithm for PIT would yield a deterministic algorithm for polynomial factorisation [KSS15].

MVV87: Mulmuley-Vazirani-Vazirani, STOC, 87. KSS15: Kopparty-Saraf-Shpilka, CCC, 14.

- **Theorem** [KI03]: If there is a sub-exponential time algorithm for PIT, then either:
 - 1. There is a function in NEXP that can not be computed by polynomial sized Boolean circuits or
 - 2. the permanent polynomial can not be computed by polynomial sized arithmetic circuits.

- **Theorem** [KI03]: If there is a sub-exponential time algorithm for PIT, then either:
 - 1. There is a function in NEXP that can not be computed by polynomial sized Boolean circuits or
 - 2. the permanent polynomial can not be computed by polynomial sized arithmetic circuits.

$$Perm\begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{bmatrix} \coloneqq \sum_{\sigma \in S_n} \prod_{i \in [n]} x_{i,\sigma(i)}$$

- **Theorem** [KI03]: If there is a sub-exponential time algorithm for PIT, then either:
 - 1. There is a function in NEXP that can not be computed by polynomial sized Boolean circuits or
 - 2. the permanent polynomial can not be computed by polynomial sized arithmetic circuits.
- The result applies to both the white box and the black box setting.

• Theorem [HS80, Agr05]: Let $T : \mathbb{N} \to \mathbb{N}$ be an increasing function. Suppose there is an algorithm which runs in time T(s) and solves the black box version of PIT for size s circuits. Then there exists an n variate polynomial whose coefficients can be computed in time $2^{O(n)}$ that requires arithmetic circuits of size at least $T^{-1}(2^{O(n)})$.

- Theorem [HS80, Agr05]: Let $T : \mathbb{N} \to \mathbb{N}$ be an increasing function. Suppose there is an algorithm which runs in time T(s) and solves the black box version of PIT for size s circuits. Then there exists an n variate polynomial whose coefficients can be computed in time $2^{O(n)}$ that requires arithmetic circuits of size at least $T^{-1}(2^{O(n)})$.
- <u>Polynomial time</u> black box PIT \Rightarrow <u>exponential</u> arithmetic circuit lower bound.
- <u>Quasi-polynomial time</u> black box PIT \Rightarrow arithmetic circuit lower bound of the form $2^{n^{\epsilon}}$.

- **Theorem** [KI03]: If there is an *n* variate, multilinear polynomial that requires arithmetic circuits of size $2^{\Omega(n)}$ (resp. $n^{\omega(1)}$), then there is a $2^{\text{polylog}(n)}$ (resp. sub-exponential) time black box PIT algorithm for poly(n) sized arithmetic circuits computing *n* variate polynomials of poly(n) degree.
- Thus, derandomizing PIT and proving arithmetic circuit lower bounds are <u>two</u> sides of the same coin.

PIT for special circuit classes

- Since proving arithmetic circuit lower bounds seems to be difficult, we can expect derandomizing PIT to be a challenging problem.
- So the focus has been on derandomizing PIT for special classes of circuits.
- Some restrictions that have been imposed are:
 - Restricting the depth of the circuit,
 - Restricting the number of times the circuit can read a variable,
 - Restricting the fan-in of the gates in the circuit,
 - Combinations of the above three, etc.

PIT for Constant Depth Circuits

Constant depth circuits

 Alternating layers/levels of + and × gates with unbounded fan-in.

Constant depth circuits

- Alternating layers/levels of + and × gates with unbounded fan-in.
- Every layer of + gates is denoted by Σ. Every layer of × gates is denoted by Π.
- Every depth Δ cirucit can be denoted by a string of length Δ consisting of alternating Σs and Πs.

Constant depth circuits

A $\Sigma \Pi \Sigma$ circuit

- Alternating layers/levels of + and × gates with unbounded fan-in.
- Every layer of + gates is denoted by Σ. Every layer of × gates is denoted by Π.
- Every depth Δ cirucit can be denoted by a string of length Δ consisting of alternating Σs and Πs.

- A $\Sigma\Pi$ circuit (aka a sparse polynomial) computes an \mathbb{F} -linear combination of monomials and is thus a universal model of computation.
- White box PIT: Trivial.
- Black box PIT [KS01]: There is a poly(n, d, s) time black box PIT algorithm for the class of n variate, degree d, s sparse polynomials over fields of size poly(n, d, s).

- Let $f = \sum_{i \in [s]} c_i \cdot x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_i \mapsto x^{t^{i-1} \mod q}, \forall i \in [n]$, where q is a prime number $> s^2 nd$. Thus the monomial $x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ maps to $x^{d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}(t^{n-2} \mod q) + \cdots + d_{i,1}}$.
- Let $p_i(t) = d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}(t^{n-2} \mod q) + \dots + d_{i,1}$. We find an $\alpha \in \mathbb{N}$ s.t. $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha) \mod q$. Then $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha)$.

- Let $f = \sum_{i \in [s]} c_i \cdot x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_i \mapsto x^{t^{i-1} \mod q}, \forall i \in [n]$, where q is a prime number $> s^2 nd$. Thus the monomial $x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ maps to $x^{d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}}(t^{n-2} \mod q) + \cdots + d_{i,1}$.
- Let $p_i(t) = d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}(t^{n-2} \mod q) + \dots + d_{i,1}$. We find an $\alpha \in \mathbb{N}$ s.t. $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha) \mod q$. Then $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha)$.

Any α which is not a root of $\prod_{i \neq j} \left(p_i(t) - p_j(t) \right) \mod q \text{ over}$ $\mathbb{F}_q \text{ will work. As } q > s^2 n \text{ such an } \alpha$ exists.

- Let $f = \sum_{i \in [s]} c_i \cdot x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_i \mapsto x^{t^{i-1} \mod q}, \forall i \in [n]$, where q is a prime number $> s^2 nd$. Thus the monomial $x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ maps to $x^{d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}}(t^{n-2} \mod q) + \cdots + d_{i,1}$.
- Let $p_i(t) = d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}(t^{n-2} \mod q) + \dots + d_{i,1}$. We find an $\alpha \in \mathbb{N}$ s.t. $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha) \mod q$. Then $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha)$.
- Now $f(x, x^{\alpha \mod q}, ..., x^{\alpha^{n-1} \mod q})$ is a non-zero, univariate polynomial of degree $\leq dq$. Thus, by trying out $\leq dq + 1$ many values for x, we find a $\beta \in \mathbb{F}$ s.t. $f(\beta, \beta^{\alpha \mod q}, ..., \beta^{\alpha^{n-1} \mod q}) \neq 0$.

- Let $f = \sum_{i \in [s]} c_i \cdot x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ be a non-zero, degree d, s sparse polynomial.
- Map $x_i \mapsto x^{t^{i-1} \mod q}, \forall i \in [n]$, where q is a prime number $> s^2 nd$. Thus the monomial $x_1^{d_{i,1}} \cdots x_n^{d_{i,n}}$ maps to $x^{d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}(t^{n-2} \mod q) + \cdots + d_{i,1}}$.
- Let $p_i(t) = d_{i,n}(t^{n-1} \mod q) + d_{i,n-1}(t^{n-2} \mod q) + \dots + d_{i,1}$. We find an $\alpha \in \mathbb{N}$ s.t. $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha) \mod q$. Then $\forall i \neq j, p_i(\alpha) \neq p_j(\alpha)$.
- Now $f(x, x^{\alpha \mod q}, ..., x^{\alpha^{n-1} \mod q})$ is a non-zero, univariate polynomial of degree $\leq dq$. Thus, by trying out $\leq dq + 1$ many values for x, we find a $\beta \in \mathbb{F}$ s.t. $f(\beta, \beta^{\alpha \mod q}, ..., \beta^{\alpha^{n-1} \mod q}) \neq 0$.

Such a β will exist as $|\mathbb{F}| = poly(n, d, s)$.

- Running time of the algorithm: The algorithm finds q, tries at most $s^2n + 1$ many values of α and for each value of α , tries at most dq + 1 many values of β .
- A prime $s^2nd < q \leq 2s^2nd$ exists and can be found in poly(n, d, s) time. Time required to try various values of α and β is $\leq (s^2n + 1)(dq + 1) = poly(n, d, s)$. Total time = poly(n, d, s).

- Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly(n) polynomial computed by a poly(n) size circuit, then it can also be computed by a $\Sigma\Pi\Sigma$ circuit of size $n^{O(\sqrt{n})}$.
- <u>Polynomial time</u> PIT for $\Sigma\Pi\Sigma$ circuits \Rightarrow <u>sub-exponential</u> PIT for poly(n) size circuits computing poly(n) degree polynomials. PIT for $\Sigma\Pi\Sigma$ circuits is as challenging as PIT for general circuits.
- Researchers have studied restricted classes of $\Sigma \Pi \Sigma$ circuits.

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SICOMP, 83. AV08: Agrawal-Vinay, FOCS, 08. Koi12: Koiran, Theor. Comput. Sci., 12. GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13. Tav13: Tavenas, MFCS 13.

- A $\Sigma^k \Pi^d \Sigma$ circuit is a $\Sigma \Pi \Sigma$ circuit where the fan-in of the top + gate is at most k and the fan-in of all product gates in the second level is at most d. Think of k as a constant.
- Both white box and black box PIT for $\Sigma^k \Pi^d \Sigma$ circuits have been studied extensively.

PIT for $\Sigma^k \Pi^d \Sigma$ circuits

Paper	Version	Result
DS05	White box	$\operatorname{poly}(n, d^{O(k^2 \log^{k-2} d)})$
KS06	White box	$poly(n, d^{O(k)})$
KS08	Black box	$\operatorname{poly}(n, d^{O(k^2 \log^{k-2} d)})$
SS09	Black box	$\operatorname{poly}(n, d^{O(k^3 \log d)})$
KS09	Black box	$\operatorname{poly}(n, d^{O(k^k)})$ over $\mathbb R$
SS10	Black box	$\operatorname{poly}(n, d^{O(k^2)})$ over $\mathbb R$
		$\operatorname{poly}(n, d^{O(k^2 \log d)})$ over any \mathbb{F}
SS11	Black box	$poly(n, d^{O(k)})$

DS05: Dvir-Shpilka, STOC, 05. KS06: Kayal-Saxena, CCC, 06. KS08: Karnin-Shpilka, CCC, 08. SS09: Saxena-Seshadhri, CCC, 09. KS09: Kayal-Saraf, FOCS, 09. SS10: Saxena-Seshadhri, FOCS, 10. SS11: Saxena-Seshadhri, STOC, 11.

An approach for $\Sigma^k \Pi^d \Sigma$ black box PIT

• Let $f = T_1 + \dots + T_k$, $T_i = \ell_{i,1} \dots \ell_{i,d_i}$, where $\ell_{i,j}$ are linear polynomials, be a $\Sigma^k \Pi^d \Sigma$ circuit computing an n variate polynomial.

An approach for $\Sigma^k \Pi^d \Sigma$ black box PIT

- Let $f = T_1 + \dots + T_k$, $T_i = \ell_{i,1} \dots \ell_{i,d}$, where $\ell_{i,j}$ are linear forms, be a $\Sigma^k \Pi^d \Sigma$ circuit computing an n variate polynomial.
- A lot of black box PIT algorithms for $\Sigma^k \Pi^d \Sigma$ circuits use the <u>rank bound</u> idea.
- rank(f) := dim span{ $\ell_{1,1}, \dots, \ell_{k,d}$ }.

rank and $\Sigma^k \Pi^d \Sigma$ PIT

- Suppose rank(f) = r. Let $\{\ell_{i_1,j_1}, \dots, \ell_{i_r,j_r}\}$ be a basis of span $\{\ell_{1,1}, \dots, \ell_{k,d}\}$.
- **Rank extractors:** Let *V* be an unknown but fixed space of linear functions from \mathbb{F}^n to \mathbb{F} of dimension at most *r*. [GR05] showed that a linear transformation $T: \mathbb{F}^r \to \mathbb{F}^n$ s.t. dim $V \circ T = \dim V$ can be constructed in poly(n, r) time provided that $|\mathbb{F}| = poly(n, r)$.

• $V := \operatorname{span}\{\ell_{i_1,j_1}, \dots, \ell_{i_r,j_r}\}$. It is not to difficult to show that $f \equiv 0 \iff f \circ T \equiv 0$.

f • T is an r variate polynomial. If r is "small" we can find a non-root of f • T by brute force search.

GR05: Gabizon-Raz, FOCS, 05.

rank and $\Sigma^k \Pi^d \Sigma$ PIT

- We can not expect the rank of an arbitrary $\Sigma^k \Pi^d \Sigma$ circuit to be small.
- However, it turns out that a rank bound for <u>simple</u> and <u>minimal</u> $\Sigma^k \Pi^d \Sigma$ circuits <u>computing the 0 polynomial</u> suffices.
- We can not expect the rank of an arbitrary $\Sigma^k \Pi^d \Sigma$ circuit to be small.
- However, it turns out that a rank bound for simple and minimal $\Sigma^k \Pi^d \Sigma$ circuits computing the 0 polynomial suffices.

 $f = T_1 + \dots + T_k$ is simple if there is no linear form that divides all of T_1, \dots, T_k .

- We can not expect the rank of an arbitrary $\Sigma^k \Pi^d \Sigma$ circuit to be small.
- However, it turns out that a rank bound for <u>simple</u> and <u>minimal</u> $\Sigma^k \Pi^d \Sigma$ circuits <u>computing the 0 polynomial</u> suffices.

 $f = T_1 + \dots + T_k \text{ is minimal if } \forall S \subseteq [k], \sum_{i \in S} T_i \not\equiv 0.$

- We can not expect the rank of an arbitrary $\Sigma^k \Pi^d \Sigma$ circuit to be small.
- However, it turns out that a rank bound for <u>simple</u> and <u>minimal</u> $\Sigma^k \Pi^d \Sigma$ circuits <u>computing the 0 polynomial</u> suffices.
- **Theorem** [KS06]: Suppose that the rank of all *n* variate simple and minimal $\Sigma^k \Pi^d \Sigma$ circuits computing the 0 polynomial is at most R(k,d). Then, there is an poly $(n, 2^k, d^{R(k,d)})$ time black box PIT algorithm for $\Sigma^k \Pi^d \Sigma$ circuits.
- The proof of the above theorem crucially uses the <u>rank extractors</u> from [GR05].

KS06: Karnin-Shpilka, CCC, 06. GR05: Gabizon-Raz, FOCS, 05.

- How can we show that the rank of every simple and minimal $\Sigma^k \Pi^d \Sigma$ circuit computing the 0 polynomial is "small"?
- One way is to use <u>Sylvester-Gallai</u> type theorems.

A detour: Sylvester-Gallai theorem

- Sylvester-Gallai Theorem: Let $S \subseteq \mathbb{R}^2$ be a finite set. If $\forall a, b \in S, \exists c \in S$, s.t. the line passing through a and b also contains c, then all points in S are collinear.
- Edelstein-Kelly Theorem: Let $R, G, B \subseteq \mathbb{R}^2$ be disjoint, finite sets of the same size. If for every pair of points a, b from two distinct sets, there exists c in the third set, s.t. the line passing through a and b also contains c, then all points in $R \cup G \cup B$ are collinear.

- How can we show that the rank of every simple and minimal $\Sigma^k \Pi^d \Sigma$ circuit computing the 0 polynomial is "small"?
- Let $f = T_1 + T_2 + T_3$ be a simple and minimal $\Sigma^k \Pi^d \Sigma$ circuit computing the 0 polynomial. Let $T_i = \ell_{i,1} \cdots \ell_{i,d}$ and $S_i = \{\ell_{i,1}, \dots, \ell_{i,d}\}$. Since f is simple, the S_i are disjoint. Now, $0 \equiv f \mod \ell_{1,1} = (T_2 + T_3) \mod \ell_{1,1} \Longrightarrow \forall \ell_{2,j}, \exists \ell_{3,j'}$ s.t. $\ell_{3,j'} = \ell_{2,j} \mod \ell_{1,1}$. I.e. $\ell_{3,j'} \in \text{span}\{\ell_{2,j}, \ell_{1,1}\}$. Thus, S_1, S_2, S_3 have a structure like the one found in the hypothesis of the Edelstein-Kelly Theorem. Perhaps this can be used to bound the rank.
- Sylvester-Gallai type theorems were used to bound rank in [KS09, SS10].

KS09: Kayal-Saraf, FOCS, 09. SS10: Saxena-Seshadhri, FOCS, 10.

 $\Sigma^{k}\Pi^{d}\Sigma$ black box PIT

- Summary:
 - 1. <u>Rank bound</u> on simple, minimal $\Sigma^k \Pi^d \Sigma$ circuits computing the 0 polynomial + <u>Rank extractors</u> imply black box PIT for $\Sigma^k \Pi^d \Sigma$ circuits.
 - 2. <u>Sylvester-Gallai</u> type theorems can be used to prove that the rank of simple, minimal $\Sigma^k \Pi^d \Sigma$ circuits computing the 0 polynomial is "small".

$Σ \land Σ$ circuits

- $\Sigma \wedge \Sigma$ circuits are a natural sub-class of $\Sigma \Pi \Sigma$ circuits.
- A $\Sigma \wedge \Sigma$ circuit looks like $\sum_{i \in [k]} \ell_i^d$. I.e. all the inputs of a \times gate in the second level are the same.
- [Sax08, FS13] showed that $\Sigma \wedge \Sigma$ circuits are a sub-class of Read-once Oblivious Algebraic Branching Programs (ROABPs).
- This observation yields <u>polynomial time white box</u> and <u>quasi-polynomial time</u> <u>black box</u> PIT algorithms for this model.

Sax08: Saxena, ICALP, 08. FS13: Forbes-Shpilka, FOCS, 13.

Depth 4 circuits

• Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly(n) polynomial computed by a poly(n) size circuit, then it can also be computed by a $\Sigma\Pi\Sigma\Pi$ circuit of size $n^{O(\sqrt{n})}$.

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83. AV08: Agrawal-Vinay, FOCS, 08. Koi12: Koiran, Theor. Comput. Sci., 12. GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13. Tav13: Tavenas, MFCS 13.

Depth 4 circuits

• Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly(n) polynomial computed by a poly(n) size circuit, then it can also be computed by a $\Sigma\Pi\Sigma\Pi$ circuit of size $n^{O(\sqrt{n})}$.

In fact, by circuits where \times gates have fan-in $O(\sqrt{n})$.

VSBR83: Valiant-Skyum-Berkowitz-Rackoff, SIAM J. Comput., 83. AV08: Agrawal-Vinay, FOCS, 08. Koi12: Koiran, Theor. Comput. Sci., 12. GKKS13: Gupta-Kamath-Kayal-Saptharishi, FOCS, 13. Tav13: Tavenas, MFCS 13.

Depth 4 circuits

- Theorem [VSBR83, AV08, Koi12, GKKS13, Tav13]: If f is an n variate, degree poly(n) polynomial computed by a poly(n) size circuit, then it can also be computed by a $\Sigma\Pi\Sigma\Pi$ circuit of size $n^{O(\sqrt{n})}$.
- <u>Polynomial time</u> PIT for $\Sigma\Pi\Sigma\Pi$ circuits \implies <u>sub-exponential</u> PIT for poly(n) size circuits computing poly(n) degree polynomials.
- A natural sub-class to study is $\Sigma^k \Pi \Sigma \Pi^{\delta}$ circuits.

- One natural approach is to generalise the notion of <u>rank, rank extractors, and</u> <u>Sylvester-Gallai</u> type theorems used for $\Sigma^k \Pi^d \Sigma$ circuits to appropriate notions for $\Sigma^k \Pi \Sigma \Pi^\delta$ circuits. This was done in [BMS11, Gup14].
- [BMS11] replaces rank by <u>transcendence degree</u>.

A detour: algebraic independence

- $f_1, ..., f_m \in \mathbb{F}[x_1, ..., x_n]$ are said to be algebraically independent if there does not exist any non-zero $P \in \mathbb{F}[y_1, ..., y_m]$ s.t. $P(f_1, ..., f_m) \equiv 0$.
- $\mathbb{F}[x_1, \dots, x_n]$ forms a matroid under algebraic independence.
- **Transcendence degree:** For any $S \subseteq \mathbb{F}[x_1, ..., x_n]$, the transcendence degree of S, denoted by $\operatorname{tr} \operatorname{deg}(S)$, is the size of the maximum cardinality set of algebraically independent polynomials in S. It can be shown that $\operatorname{tr} \operatorname{deg}(S) \leq n$.

- One natural approach is to generalise the notion of <u>rank, rank extractors, and</u> <u>Sylvester-Gallai</u> type theorems used for $\Sigma^k \Pi^d \Sigma$ circuits to appropriate notions for $\Sigma^k \Pi \Sigma \Pi^\delta$ circuits. This was done in [BMS11, Gup14].
- [BMS11] replaces rank by <u>transcendence degree</u>. Let $f = \sum_{i \in [k]} \prod_{j \in [s]} f_{i,j}$ be a $\Sigma^k \Pi \Sigma \Pi^\delta$ circuit. Then,

$$\operatorname{rank}(f) \coloneqq \operatorname{tr} - \operatorname{deg}\left\{f_{i,j}\right\}_{i,j}.$$

• [BMS11] replaces rank extractors by <u>faithful homomorphisms</u>.

• [BMS11] replaces rank extractors by faithful homomorphisms.

 $\phi: \mathbb{F}[x_1, \dots, x_n] \to \mathbb{F}[y_1, \dots, y_m] \text{ s.t.}$ $\forall p, q \in \mathbb{F}[x_1, \dots, x_n],$ $\phi(p+q) = \phi(p) + \phi(q) \text{ and}$ $\phi(pq) = \phi(p)\phi(q).$

• [BMS11] replaces rank extractors by <u>faithful homomorphisms</u>.

 $\phi \colon \mathbb{F}[x_1, \dots, x_n] \to \mathbb{F}[y_1, \dots, y_m] \text{ is said to be faithful}$ to $\{f_1, \dots, f_s\}$ if

 $\operatorname{tr} - \operatorname{deg}\{f_1, \dots, f_s\} = \operatorname{tr} - \operatorname{deg}\{\phi(f_1), \dots, \phi(f_s)\}.$

- [BMS11] replaces rank extractors by <u>faithful homomorphisms</u>.
- **Theorem** [BMS11]: If the rank of every *n* variate simple and minimal size *s* $\Sigma^k \Pi \Sigma \Pi^{\delta}$ circuit computing the 0 polynomial is at most *r*, then there is a black box PIT algorithm for size-*s* $\Sigma^k \Pi \Sigma \Pi^{\delta}$ circuits that runs in time poly $(n, r, \delta, s)^{\delta^2 kr}$.

- To bound the rank of simple, minimal $\Sigma^k \Pi \Sigma \Pi^{\delta}$ circuit computing the 0 polynomial, [Gup14] proposed a Sylvester-Gallai type conjecture for $\Sigma^k \Pi \Sigma \Pi^{\delta}$ circuits.
- [Shp19, PS20, PS21] proved Gupta's conjecture for $\Sigma^3 \Pi \Sigma \Pi^2$ circuits thereby obtaining a black box, poly(*n*, *d*) PIT algorithm for $\Sigma^3 \Pi \Sigma \Pi^2$ circuits.

Gup14: Gupta, ECCC, 14. Shp19: Shpilka, FOCS, 19. PS20: Peleg-Shpilka, CCC, 20. PS21: Peleg-Shpilka, STOC, 21.

PIT for depth 4 circuits

Model	Paper	Version	Result
$\Sigma^k\Pi^\delta\Sigma\wedge$	Sax08	White box	poly($n, k, s^{O(\delta)}$)
Multilinear $\Sigma^k \Pi \Sigma \Pi$	SV11, ASSS12	Black box	$\operatorname{poly}(n^{O(k^2)})$
$\Sigma^2\Pi\Sigma\Pi^\delta$	BMS11	Black box	poly $(n, \delta, s)^{\delta^2}$
$Σ \land Σ \Pi^{\delta}$	For15	Black box	$S^{O(\delta \log s)}$
$\Sigma^3\Pi\Sigma\Pi^2$	PS21	Black box	poly(n, d)
$\Sigma^k \Pi \Sigma \wedge$	DDS20	White box	$S^{O(k 7^k)}$
$\Sigma^k\Pi\Sigma\wedge$	DDS20	Black box	$S^{O(k \log \log s)}$
$\Sigma^k\Pi\Sigma\Pi^\delta$	DDS20	Black box	$S^{O(\delta^2 k \log s)}$
$\overline{\Sigma^k\Pi\Sigma\wedge}$	DDS21	Black box	$S^{O(k \ 7^k \log \log s)}$
$\overline{\Sigma^k\Pi\Sigma\Pi^\delta}$	DDS21	Black box	$s^{O(\delta^2 k \ 7^k \log s)}$

Sax08: Saxena, ICALP, 08.
SV11: Saraf-Volkovich, STOC, 11.
ASSS12: Agrawal-Saha-Sapthirishi-Saxena, STOC, 12.
BMS11: Beecken-Mittmann-Saxena, ICALP, 11.
For15: Forbes, FOCS, 15.
PS21: Peleg-Shpilka, STOC, 21.
DDS20: Dutta-Dwivedi-Saxena, CCC, 2021.
DDS21: Dutta-Dwivedi-Saxena, FOCS, 2021.

PIT for low depth circuits

- In a breakthrough paper [LST21], Limaye, Srinivasan, and Tavenas proved superpolynomial lower bounds for low depth circuits.
- [DSY08, CKS19] showed that super-polynomial lower bounds for low depth circuits imply sub-exponential PIT for such circuits.
- Thus, [LST21] yields a $(n \cdot s^{\Delta+1})^{n^{\epsilon}}$, $\epsilon > 0$, time PIT for depth $\Delta = o(\log \log \log n)$ circuits provided that s = poly(n).

LST21: Limaye-Srinivasan-Tavenas, FOCS 21. DSY08: Dvir-Shpilka-Yehuayoff, STOC, 08. CKS19: Chou-Kumar-Solomon, CCC, 18.

PIT for Constant Read Circuits

Read once formulas

• Arithmetic Formulas: Arithmetic circuits whose underlying graph is a tree.

Read once formulas

• Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in at most one leaf.

Read once formulas

- Read Once Formulas (ROFs): Arithmetic formulas where each variable appears in at most one leaf.
- ROFs are a special class of multilinear circuits.
- [SV09] gave an $n^{O(\log n)}$ time black box PIT algorithm for ROFs.
- This was improved to a poly(n) time algorithm by [MV17].

SV09: Shpilka-Volkovich , APPROX-RANDOM, 09. MV17: Minahan-Volkovich, CCC, 17.

• Read *k* Formulas: Arithmetic formulas where each variable appears in at most *k* leaves.

• [SV09] gave an $n^{O(k+\log n)}$ time black box PIT algorithm for sum of $k \leq \frac{n}{3}$ ROFs.

- Read *k* Formulas: Arithmetic formulas where each variable appears in at most *k* leaves.
- [AvMV11] gave a $poly(s, n^{k^{O(k)}})$ time white box and $n^{k^{O(k)}+O(k \log n)}$ time black box PIT algorithm for multilinear read k formulas.

- Read k Formulas: Arithmetic formulas where each variable appears in at most k leaves.
- [ASSS12] gave an $s^{k^{O(\Delta 2^{\Delta})}}$ time black box PIT algorithm for occur k formulas of depth Δ using the algebraic independence technique from [BMS11].

ASSS12: Agrawal-Saha-Sapthirishi-Saxena, STOC, 12. BMS11: Beecken-Mittmann-Saxena, ICALP, 11.

- Read k Formulas: Arithmetic formulas where each variable appears in at most k leaves.
- [ASSS12] gave an $s^{k^{O(\Delta 2^{\Delta})}}$ time black box PIT algorithm for occur k formulas of depth Δ using the algebraic independence technique from [BMIS11].

A generalisation of read kformulas. Capture other interesting models like multilinear $\Sigma^k \Pi \Sigma \Pi$ circuits.

• **ROABP:** $f \in \mathbb{F}[x_1, ..., x_n]$ is said to be computed by a width-*w* ROABP in order $\pi \in S_n$ if

$$f = [1, \dots, 1] \begin{bmatrix} M_1(x_{\pi(1)}) \end{bmatrix}_{w \times w} \cdots \cdots \begin{bmatrix} M_n(x_{\pi(n)}) \end{bmatrix}_{w \times w} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}.$$

- The classes of $\Sigma \wedge \Sigma$ and $\Sigma \wedge \Sigma \wedge$ circuits are contained in ROABPs.
- [OSV15] obtained a sub-exponential time black box PIT for multilinear depth 3 and depth 4 formulas by reducing to black box PIT for ROABPs.

OSV15: Oliveira-Shpilka-Volk, CCC, 15.

- A poly(n, d, w) white box PIT for ROABPs follows from [RS04].
- [FS13] gave a $poly(n, d, w)^{O(\log w)}$ time black box PIT for ROABPs with known variable order.
- [FSS14] gave a $poly(n, d)^{O(\log w)}$ time black box PIT for multilinear and commutative ROABPs.

RS05: Raz-Shpilka, CCC, 04. FS13: Forbes-Shpilka, FOCS, 13. FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.

- A poly(n, d, w) white box PIT for ROABPs follows from [RS04].
- [FS13] gave a $poly(n, d, w)^{O(\log w)}$ time black box PIT for ROABPs with known variable order.
- [FSS14] gave a $poly(n, d)^{O(\log w)}$ time black box PIT for multilinear and commutative ROABPs.

f is computed by a width *w* commutative ROABP if it is computed by a width *w* ROABP in every variable order.

RS05: Raz-Shpilka, CCC, 04. FS13: Forbes-Shpilka, FOCS, 13. FSS14: Forbes-Saptharishi-Shpilka, STOC, 14.

- A poly(n, d, w) white box PIT for ROABPs follows from [RS04].
- [FS13] gave a $poly(n, d, w)^{O(\log w)}$ time black box PIT for ROABPs with known variable order.
- [FSS14] gave a $poly(n, d)^{O(\log w)}$ time black box PIT for multilinear and commutative ROABPs.
- [AGKS15] gave a $poly(n, d, w)^{O(\log n)}$ time black box PIT for ROABPs with unknown variable order.
- [GKST15] gave a poly(n, d, w)^{O(log n)} time black box PIT and poly(n, d, w) time white box PIT for sum of constantly many ROABPs.

RS05: Raz-Shpilka, CCC, 04. FS13: Forbes-Shpilka, FOCS, 13. FSS14: Forbes-Saptharishi-Shpilka, STOC, 14. AGKS15: Agrawal-Gurjar-Korwar-Saxena, SICOMP, 15. GKST15: Agrawal-Gurjar-Saxena-Thierauf, CCC, 15.

PIT for Orbits of Circuit Classes

• Orbit of a polynomial: For $f \in \mathbb{F}[x_1, ..., x_n]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\{f(A\mathbf{x} + \mathbf{b}) : A \in \operatorname{GL}(n, \mathbb{F}) \text{ and } \mathbf{b} \in \mathbb{F}^n\}$.

• **Orbit of a polynomial:** For $f \in \mathbb{F}[x_1, ..., x_n]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\{f(A\mathbf{x} + \mathbf{b}) : A \in \operatorname{GL}(n, \mathbb{F}) \text{ and } \mathbf{b} \in \mathbb{F}^n\}$.

 $\begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$
Orbits

• Orbit of a polynomial: For $f \in \mathbb{F}[x_1, ..., x_n]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\{f(A\mathbf{x} + \mathbf{b}) : A \in \operatorname{GL}(n, \mathbb{F}) \text{ and } \mathbf{b} \in \mathbb{F}^n\}$.

- **Orbit of a polynomial:** For $f \in \mathbb{F}[x_1, ..., x_n]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\{f(A\mathbf{x} + \mathbf{b}) : A \in \operatorname{GL}(n, \mathbb{F}) \text{ and } \mathbf{b} \in \mathbb{F}^n\}$.
- Orbit of a circuit class: For a circuit class C, the orbit of C, denoted by orb(C) is the union of orb(f) for all $f \in C$.

- **Orbit of a polynomial:** For $f \in \mathbb{F}[x_1, ..., x_n]$, the orbit of f, denoted by $\operatorname{orb}(f)$ is the set $\{f(A\mathbf{x} + \mathbf{b}) : A \in \operatorname{GL}(n, \mathbb{F}) \text{ and } \mathbf{b} \in \mathbb{F}^n\}$.
- Orbit of a circuit class: For a circuit class C, the orbit of C, denoted by orb(C) is the union of orb(f) for all $f \in C$.
- Recently [MS21, ST21, BG21] studied black-box PIT for orbits of various circuit classes.

MS21: Medini-Shpilka, CCC, 21. ST21: Saha-Thankey, APPROX-RANDOM, 21. BG21: Bhargava-Ghosh, APPROX-RANDOM, 21.

- orb(C) is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 1. orb($\Sigma\Pi$) contains depth 3 circuits.

- orb(C) is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 2. orb(ROF) contains arithmetic formulas.

- orb(C) is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 3. Iterated Matrix Multiplication $IMM_{w,d}$.

- orb(C) is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 3. Iterated Matrix Multiplication $IMM_{w,d}$.

the (1, 1)-th entry of

$$\begin{bmatrix} x_{1,1,1} & \cdots & x_{1,1,w} \\ \vdots & \ddots & \vdots \\ x_{1,w,1} & \cdots & x_{1,w,w} \end{bmatrix} \cdots \begin{bmatrix} x_{d,1,1} & \cdots & x_{d,1,w} \\ \vdots & \ddots & \vdots \\ x_{d,w,1} & \cdots & x_{d,w,w} \end{bmatrix}$$

- orb(C) is the set of all polynomials that are "well approximated" by polynomials in orb(C).
- Ex. 3. Iterated Matrix Multiplication $IMM_{w,d}$.
- Every polynomial computed by a size s formula is in $orb(IMM_{3,poly(s)})$.
- Every polynomial computed by a size *s* <u>Algebraic Branching Program (ABP)</u> is in $orb(IMM_{s,s})$.

- PIT for orbit closures of simple models ⇒ PIT for general models like formulas, ABPs, and circuits.
- As a first step, it is natural to try to do PIT for orbits.

PIT for Orbits

- [KS19] gave polynomial time black box PIT for $\operatorname{orb}(\sum_{i \in [n]} x_i^d)$.
- [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. Orbit closure of the continuant contains all polynomial sized formulas.

PIT for Orbits

- [KS19] gave polynomial time black box PIT for $\operatorname{orb}(\sum_{i \in [n]} x_i^d)$.
- [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. Orbit closure of the continuant contains all polynomial sized formulas.

Trace of $\begin{bmatrix} x_1 & 1 \\ 1 & 0 \end{bmatrix} \dots \begin{bmatrix} x_n & 1 \\ 1 & 0 \end{bmatrix}.$

KS19: Koiran-Skomra, CoRR, 19. MS21: Medini-Shpilka, CCC, 21.

PIT for Orbits

- [KS19] gave polynomial time black box PIT for $\operatorname{orb}(\sum_{i \in [n]} x_i^d)$.
- [MS21] gave polynomial time black box PIT for orbit of the continuant polynomial. Orbit closure of the continuant contains all polynomial sized formulas.
- [MS21] gave quasi-polynomial time black box PIT for $orb(\Sigma\Pi)$.
- [MS21, ST21] gave quasi-polynomial time black box PIT for orb(ROF).
- [ST21, BG21] gave quasi-polynomial time black box PIT for orbits of commutative ROABPs and constant width ROABPs computing polynomials with individual degree $O(\log n)$.

KS19: Koiran-Skomra, CoRR, 19. MS21: Medini-Shpilka, CCC, 21. ST21: Saha-Thankey, APPROX-RANDOM, 21. BG21: Bhargava-Ghosh, APPROX-RANDOM, 21.

Some open problems

- Polynomial time PIT for $\Sigma^k \Pi \Sigma \Pi^\delta$ circuits by proving the Sylvester-Gallai type conjecture proposed by [Gup14].
- Polynomial time black box PIT for ROABPs.
- Black box PIT for $orb(IMM_{w,d})$ and orbits of ROABPs.

Thank You!