Assignment 1
due on Wednesday, May 3, 2017

Name: \square

Exercise 1 (10 points).
Use the discriminant polynomial to show that the Waring rank of $X^{2}+X Y+Y^{2}$ is at least 2 .

Exercise 2 (10 points).
We have seen polynomials whose Waring rank exceeds their border Waring rank. In contrast to this observation prove that the set of Waring rank 1 polynomials is \mathbb{C}-closed.

Exercise 3 (10 points).
Consider the action of $\mathbb{C}^{N \times N}$ on $\mathbb{C}\left[X_{1}, \ldots, X_{N}\right]_{d}$ defined in the lecture. Compute the following polynomial in the standard monomial basis:

$$
\left(\begin{array}{lll}
2 & 3 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(X_{1} X_{2}^{2}+X_{3}\right)
$$

Exercise 4 (10 points).
Let GL_{n} denote the group of invertible complex $n \times n$ matrices. Let $G=\mathrm{GL}_{n} \times \mathrm{GL}_{n}$ and let $V=\mathbb{C}^{n \times n}$. Define an action of G on V by

$$
\left(g_{1}, g_{2}\right) v:=g_{1} \cdot v \cdot g_{2}^{t}
$$

where "." is the product of matrices. Let $v \in V$ have rank exactly k. Prove that

$$
G v=\{w \in V \mid \operatorname{rk}(w)=k\} .
$$

