Assignment 10
due on Wednesday, July 5, 2017

Name: \square

Exercise 1 (10 points).
Let $\mathbb{A}:=\mathbb{C}^{2 \times 2}$ denote the vector space of 2×2 matrices. Let $Y \subseteq \mathbb{A}$ denote the subset of rank 1 matrices. For $y \in \mathbb{A}$ let $c_{1}(y) \in \mathbb{C}^{2}$ denote the first column of y and let $c_{2}(y) \in \mathbb{C}^{2}$ denote the second column of y. If $y \in Y$, then $c_{1}(y)=\alpha_{y} c_{2}(y)$ for some $\alpha_{y} \in \mathbb{C}$ or $c_{2}(y)=0$.
Let $X \subseteq Y$ denote the subset for which $c_{2}(y) \neq 0$. We define the function $f: X \rightarrow \mathbb{C}$ via $f(y)=\alpha_{y}$ for every $y \in X$.

Show that $X \subseteq \mathbb{A}$ is locally closed and that f is a regular function on X.

Exercise 2 (10 points).
Let \mathfrak{S}_{3} denote the symmetric group on 3 symbols. Determine the number of isomorphism types of irreducible \mathfrak{S}_{3}-representations.

Hint: You can use the algebraic Peter-Weyl theorem.

Exercise 3 (20 points).
The 1-dimensional vector space \mathbb{C} with the following action is an irreducible representation of the symmetric group \mathfrak{S}_{k} :

$$
\pi v=\operatorname{sgn}(\pi) \cdot v
$$

for all $v \in \mathbb{C}, \pi \in \mathfrak{S}_{k}$. We call this the alternating representation and its isomorphism type is called the alternating type.

Let $V:=\mathbb{C}^{n}$. The group $\mathfrak{S}_{k} \times \mathrm{GL}_{n}$ acts on the tensor power $V^{\otimes k}$ via

$$
(\pi, g)\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\left(g v_{\pi^{-1}(1)}\right) \otimes \cdots \otimes\left(g v_{\pi^{-1}(k)}\right)
$$

and linear continuation.
The alternating space $\bigwedge^{k} V \subseteq V^{\otimes k}$ is defined as the \mathfrak{S}_{k}-isotypic component of alternating type.
Show that $\bigwedge^{k} V$ is a GL_{n}-subrepresentation of $V^{\otimes k}$ and determine the multiplicities of irreducible GL_{n}-representations in $\bigwedge^{k} V$.

