Introduction to geometric complexity theory

Summer 2017

Assignment 11 due on Wednesday, July 12, 2017

Name:

Exercise 1 (5+5 points). Prove the following:

- 1. $\Lambda^2 V = \langle v \otimes w w \otimes v \mid v, w \in V \rangle.$
- 2. For all $t \in V^{\otimes 2}$, (1,2)t = -t.

Exercise 2 (5 + 5 points).

Prove that there are no nontrivial linear subspaces of S^2V and $\Lambda^2 V$, respectively, that are invariant under the $\mathsf{GL}(V)$ -action.

Exercise 3 (5 + 10 points). Let V be an n-dimensional vector space. Define the projection operators $p_{\frac{1}{2}}$ by

$$v_1 \otimes v_2 \otimes v_3 \rightarrow \frac{1}{2}(v_1 \otimes v_2 \otimes v_3 - v_2 \otimes v_1 \otimes v_3)$$

and p_{13} by

$$v_1 \otimes v_2 \otimes v_3 \to \frac{1}{2} (v_1 \otimes v_2 \otimes v_3 + v_3 \otimes v_2 \otimes v_1)$$

Let $U := p_{13}(p_{\frac{1}{2}}(V))$. In the same way, let $U' = p_{12}(p_{\frac{1}{3}}(V))$.

- 1. Prove that U and U' are GL(V)-invariant.
- 2. Prove that $V^{\otimes 3} = S^3 V \oplus U \oplus U' \oplus \Lambda^3 V$.