Assignment 11
due on Wednesday, July 12, 2017

Name: \square

Exercise 1 ($5+5$ points).
Prove the following:

1. $\Lambda^{2} V=\langle v \otimes w-w \otimes v \mid v, w \in V\rangle$.
2. For all $t \in V^{\otimes 2},(1,2) t=-t$.

Exercise $2(5+5$ points).
Prove that there are no nontrivial linear subspaces of $S^{2} V$ and $\Lambda^{2} V$, respectively, that are invariant under the $\mathrm{GL}(V)$-action.

Exercise 3 ($5+10$ points).
Let V be an n-dimensional vector space. Define the projection operators p_{2} by

$$
v_{1} \otimes v_{2} \otimes v_{3} \rightarrow \frac{1}{2}\left(v_{1} \otimes v_{2} \otimes v_{3}-v_{2} \otimes v_{1} \otimes v_{3}\right)
$$

and p_{13} by

$$
v_{1} \otimes v_{2} \otimes v_{3} \rightarrow \frac{1}{2}\left(v_{1} \otimes v_{2} \otimes v_{3}+v_{3} \otimes v_{2} \otimes v_{1}\right)
$$

Let $U:=p_{13}\left(p_{2}^{1}(V)\right)$. In the same way, let $U^{\prime}=p_{12}\left(p_{\frac{1}{3}}(V)\right)$.

1. Prove that U and U^{\prime} are $\mathrm{GL}(V)$-invariant.
2. Prove that $V^{\otimes 3}=S^{3} V \oplus U \oplus U^{\prime} \oplus \Lambda^{3} V$.
