Summer 2017

Assignment 12 due on Wednesday, July 19, 2017

Name:

Exercise 1 (10 points).

Let $\lambda = (2, 2)$ and let $[\lambda]$ denote the corresponding Specht module. The cyclic group \mathbb{Z}_4 naturally embeds into \mathfrak{S}_4 and thus $[\lambda]$ becomes a \mathbb{Z}_4 -representation. Determine the dimension of the space of \mathbb{Z}_4 -invariants in $[\lambda]$.

Exercise 2 (10 points).

We look at the vanishing ideal of orbit closures. Assume that there exists a function $f \in I(\overline{\mathsf{GL}}_{n^2} \det_n)_d$ such that f is a weight vector of a weight λ . If n divides d, then moreover we assume that λ is not the rectangle $(n^2 \times \frac{d}{n})$. Prove that there exists a function $f' \in I(\overline{\mathsf{GL}}_{n^2} \det_n)_d$ such that f and f' are linearly independent.

Exercise 3 (10 points).

Let V denote the irreducible GL_3 -representation of type (3, 1, 0). We embed $\mathsf{GL}_2 \hookrightarrow \mathsf{GL}_3$ via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

In this way, V is a GL_2 -representation. Determine the multiplicities of the decomposition of V into irreducibles.

Exercise 4 (10 points).

Let $G = \mathsf{GL}_2$. Let V denote the irreducible G-representation of type (3, 1) and let W denote the irreducible G-representation of type (2, 0). Then $V \otimes W$ is a G-representation via

 $g(v \otimes w) := (gv) \otimes (gw)$ for all $g \in G, v \in V, w \in W$

and linear continuation. Embedding $G \hookrightarrow G \times G$, $g \mapsto (g,g)$, we can interpret $V \otimes W$ as a G-representation.

What dimension does $V \otimes W$ have? Determine the multiplicities in the decomposition of $V \otimes W$ into irreducible *G*-representations.