Summer 2017

Assignment 13 due on Wednesday, July 26, 2017

Name:

Exercise 1 (10 points). Let $V = \mathbb{C}^M$. Determine the multiplicities of the irreducible GL(V)-representations in $\operatorname{Sym}^2 \operatorname{Sym}^3 V$.

Exercise 2 (10 points). Let $V = \mathbb{C}^M$. Let $n, d \in \mathbb{N}$. Let λ be a partition of nd. Prove that if $\ell(\lambda) > d$, then the irreducible $\mathsf{GL}(V)$ -representation of type λ does not occur in $\operatorname{Sym}^d \operatorname{Sym}^n V$.

Exercise 3 (10 points). Prove that $a_{4,4,4}(4,3) = 1$.

Exercise 4 (10 points). Let $n, d \in \mathbb{N}$. Let $\lambda = (k, 2^i, 1^j)$ be a partition of nd such that $j \ge i+3$. Prove that $a_{\lambda}(d, n) = 0$.

For example, for k = 13, i = 2, j = 5 we have

