Assignment 3 due on Wednesday, May 17, 2017

Name:

Exercise 1 (10 points).

Let $S_{n,i,j}$, $P_{n,i,j}$, and C_n , $n, i, j \in \mathbb{N}$, be indeterminates. Let

$$gen_1 = C_1$$

$$gen_n = \sum_{i,j=1}^{n-1} S_{n,i,j} (gen_i + gen_j)$$

$$+ \sum_{i,j=1}^{n-1} P_{n,i,j} gen_i \cdot gen_j$$

$$+ C_n$$

Prove that (gen_n) is VP-complete.

Exercise 2 (10 points).

Let $(f_n) \in VP$ and let p(n) be minimal such that $f_n \in \mathbb{F}[X_1, \ldots, X_{p(n)}]$. Let $g_n \in End_{p(n)}$. Prove that $(g_n f_n) \in VP$.

Exercise 3 (10 points).

The characteristic polynomial of a matrix A is defined as $c_A(X) = \det(A - X \cdot I)$ where I is the identity matrix. Let $c_A(X) = s_{A,0}X^n + s_{A,1}X^{n-1} + \cdots + s_{A,n}$.

1. Show that

$$s_{A,0} = (-1)^n$$

$$s_{A,k} = \frac{1}{k} \sum_{\kappa=1}^k (-1)^{\kappa-1} s_{A,k-\kappa} \operatorname{tr}(A^{\kappa}), \qquad 1 \le k \le n.$$

- 2. Show that $s_{A,n} = \det A$.
- 3. Show that there is a family of weakly skew circuits of polynomial size computing (\det_n) .

Summer 2017