Assignment 3
due on Wednesday, May 17, 2017

Name: \square

Exercise 1 (10 points).
Let $S_{n, i, j}, P_{n, i, j}$, and $C_{n}, n, i, j \in \mathbb{N}$, be indeterminates. Let

$$
\begin{aligned}
\operatorname{gen}_{1}= & C_{1} \\
\operatorname{gen}_{n}= & \sum_{i, j=1}^{n-1} S_{n, i, j}\left(\operatorname{gen}_{i}+\operatorname{gen}_{j}\right) \\
& +\sum_{i, j=1}^{n-1} P_{n, i, j} \operatorname{gen}_{i} \cdot \operatorname{gen}_{j} \\
& +C_{n}
\end{aligned}
$$

Prove that $\left(\operatorname{gen}_{n}\right)$ is VP-complete.

Exercise 2 (10 points).
Let $\left(f_{n}\right) \in$ VP and let $p(n)$ be minimal such that that $f_{n} \in \mathbb{F}\left[X_{1}, \ldots, X_{p(n)}\right]$. Let $g_{n} \in \operatorname{End}_{p(n)}$. Prove that $\left(g_{n} f_{n}\right) \in \mathrm{VP}$.

Exercise 3 (10 points).
The characteristic polynomial of a matrix A is defined as $c_{A}(X)=\operatorname{det}(A-X \cdot I)$ where I is the identity matrix. Let $c_{A}(X)=s_{A, 0} X^{n}+s_{A, 1} X^{n-1}+\cdots+s_{A, n}$.

1. Show that

$$
\begin{aligned}
& s_{A, 0}=(-1)^{n} \\
& s_{A, k}=\frac{1}{k} \sum_{\kappa=1}^{k}(-1)^{\kappa-1} s_{A, k-\kappa} \operatorname{tr}\left(A^{\kappa}\right), \quad 1 \leq k \leq n .
\end{aligned}
$$

2. Show that $s_{A, n}=\operatorname{det} A$.
3. Show that there is a family of weakly skew circuits of polynomial size computing $\left(\operatorname{det}_{n}\right)$.
