Assignment 5
due on Wednesday, May 31, 2017
\square
Name:

Exercise 1 (10 points).
Let C be a circuit and p be the polynomial computed by C. Prove (for instance by structural induction) that

$$
p=\sum_{T \in \operatorname{pt}(C)} w(T) .
$$

Exercise $2(5+5+10$ points).
Let $\left(f_{n}\right),\left(g_{n}\right) \in \mathrm{VNP}$. Let q be minimal such that $f_{n} \in \mathbb{F}\left[X_{1}, \ldots, X_{q(n)}\right]$. Let $\left(m_{n}\right)$ be a sequence of monomials such that $\operatorname{deg} m_{n}$ is polynomially bounded. Prove the following closure properties of VNP.

1. VNP is closed under addition and multiplication, that is, $\left(f_{n}+g_{n}\right),\left(f_{n} g_{n}\right) \in \mathrm{VNP}$.
2. VNP is closed under substitutions, that is $\left(f_{n}\left(g_{1}(X), \ldots, g_{q(n)}(X)\right)\right) \in$ VNP.
3. VNP is closed under taking coefficients: Consider f_{n} as a polynomial in the variables that appear in m_{n}. The coefficients are polynomials in the remaining variables. Let h_{n} be the coefficient of m_{n} in f_{n}. Prove that $\left(h_{n}\right) \in$ VNP.

Exercise 3 (5+5 points).

1. Let

$$
s_{n}=\prod_{i=1}^{n} \sum_{j=1}^{n} X_{i, j} Y_{j}
$$

considered as a polynomial in the variables Y_{j} and the coefficients are polynomials in the variables $X_{i, j}$. Prove that the coefficient of $Y_{1} Y_{2} \ldots Y_{n}$ is per X.
2. Prove that VP is not closed under taking coefficients, unless $\mathrm{VP}=\mathrm{VNP}$.

Exercise 4 (10 bonus points).
Use the previous exercise to prove that the permanent has formulas of size $2^{n} \cdot \operatorname{poly}(n)$. (Note that the standard definition gives a formula of size $n!\cdot(n-1)-1$.) Convert s_{n} into an univariate polynomial in only one variable Y instead of Y_{1}, \ldots, Y_{n} and recover the appropriate coefficient via fast interpolation or using fast polynomial multiplication.

