Assignment 9
due on Wednesday, June 28, 2017

Name: \square

Exercise 1 (15 points).
Let $V:=\mathbb{C}^{2}$ and $W:=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$. The group $G:=\mathrm{GL}_{2}$ acts on V via matrix-vector multiplication. Then G also acts on W via

$$
g\left(v_{1} \otimes v_{2} \otimes v_{3}\right):=\left(g v_{1}\right) \otimes\left(g v_{2}\right) \otimes\left(g v_{3}\right) .
$$

Determine the multiplicities $\operatorname{mult}_{\lambda}(W)$.

Exercise 2 (15 points).
We have seen in the lecture that for the cyclic group \mathbb{Z}_{3} there are exactly three isomorphism types of irreducible representations. Let $V=\mathbb{C}^{n}$. Let \mathbb{Z}_{3} be generated by π. The group \mathbb{Z}_{3} acts on the vector space $V \otimes V \otimes V$ via

$$
(\pi)(u \otimes v \otimes w)=(v \otimes w \otimes u)
$$

and linear continuation. Determine the three multiplicities of \mathbb{Z}_{3}-irreducibles in $V \otimes V \otimes V$.

Exercise 3 (10 points).
Prove that the border Waring rank of $X_{1} X_{2}$ exceeds 1 by using multiplicities in the coordinate rings of orbit closures as follows. Let $G:=\mathrm{GL}_{2}$. Find a partition λ such that

$$
\operatorname{mult}_{\lambda} \mathbb{C}\left[\overline{G\left(X_{1} X_{2}\right)}\right]>\operatorname{mult}_{\lambda} \mathbb{C}\left[\overline{G\left(X_{1}^{2}\right)}\right]
$$

