A first introduction to geometric complexity theory

 ${\rm Summer}~2018$

Assignment 1 due on Wednesday, April 18, 2018

Name:

Exercise 1 (10 points).

For every fixed field \mathbb{F} , show that every nonzero univariate polynomial in $\mathbb{F}[x]$ of degree n can have at most n zeros.

Exercise 2 (10 points).

Fix the field $\mathbb{F} = \mathbb{F}_2$. For a multivariate polynomial *h*, the *arithmetic complexity* L(h) is the size (number of addition and multiplication gates) of the smallest arithmetic circuit computing *h*.

Show that there exists $m \in \mathbb{N}$ and two multivariate polynomials h and h', both on m variables x_1, \ldots, x_m , such that

- $\deg(h) = \deg(h')$, and
- $h(x_1,\ldots,x_m) = h'(x_1,\ldots,x_m)$ for all $x_1,\ldots,x_m \in \mathbb{F}$, and
- L(h) < L(h').