Assignment 11
due on Wednesday, August 4, 2018

Name:

Exercise 1 (20 points).
Simultaneously diagonalize the following three matrices:

$$
\left(\begin{array}{ccc}
5 & -30 & -8 \\
-18 & 182 & 48 \\
69 & -690 & -182
\end{array}\right), \quad\left(\begin{array}{ccc}
-21 & 88 & 24 \\
156 & -569 & -156 \\
-594 & 2178 & 597
\end{array}\right), \quad\left(\begin{array}{ccc}
-42 & 70 & 20 \\
300 & -527 & -150 \\
-1140 & 1995 & 568
\end{array}\right)
$$

Exercise 2 (10 points).
Let $\mathbb{A}=\mathbb{C}[x, y]_{2}$ and let $V=\mathbb{C}[\mathbb{A}]_{2}$ be the polynomial GL_{2}-representation from the lecture. For $\alpha_{1}, \alpha_{2} \in \mathbb{C}^{\times}$, determine the element $\varrho\left(\operatorname{diag}\left(\alpha_{1}, \alpha_{2}\right)\right) \in \mathrm{GL}(V)$.

Exercise 3 (10 points).
Let $\mathbb{A}=\mathbb{C}[x, y]_{2}$. Determine a weight decomposition of the 6 -dimensional T_{2}-representation $\mathbb{C}[\mathbb{A}]_{2}$.

Exercise 4 (10 points).
Consider the group homomorphism $\varphi: T_{2} \rightarrow T_{2}$ given by $\varphi\left(t_{1}, t_{2}\right)=\left(t_{1}^{2}, t_{2}\right)$. For $\mathbb{A}=\mathbb{C}[x, y]_{2}$ let $V=\mathbb{C}[\mathbb{A}]_{2}$ with the action $\varrho: \mathrm{GL}_{2} \rightarrow \mathrm{GL}(V)$ from the lecture. Consider the action ϱ^{\prime} of T_{2} on $\mathbb{C}[\mathbb{A}]_{2}$ given by $\varrho^{\prime}(t)=\varrho(\varphi(t))$ for $t \in T_{2}$. Determine a weight decomposition of this 6-dimensional T_{2}-representation.

Exercise 5 (10 points).
Prove that there are exactly k pairwise non-isomorphic irreducible representations of the cyclic group $\mathbb{Z} / k \mathbb{Z}$.

Exercise 6 (20 points).
Prove that every irreducible representation of the product $\operatorname{group}(\mathbb{Z} / k \mathbb{Z}) \times(\mathbb{Z} / \ell \mathbb{Z})$ is 1 dimensional.

