A first introduction to geometric complexity theory

Summer 2018

Assignment 11 due on Wednesday, August 4, 2018

Name:

Exercise 1 (20 points).

Simultaneously diagonalize the following three matrices:

(5	-30	-8)		(-21)	88	24		(-42	70	20	
-18	182	48	,	156	-569	-156	,	300	-527	-150	.
69	-690	-182/		(-594)	2178	597 /		(-1140)	1995	568 /	

Exercise 2 (10 points).

Let $\mathbb{A} = \mathbb{C}[x, y]_2$ and let $V = \mathbb{C}[\mathbb{A}]_2$ be the polynomial GL_2 -representation from the lecture. For $\alpha_1, \alpha_2 \in \mathbb{C}^{\times}$, determine the element $\varrho(\operatorname{diag}(\alpha_1, \alpha_2)) \in \mathsf{GL}(V)$.

Exercise 3 (10 points).

Let $\mathbb{A} = \mathbb{C}[x, y]_2$. Determine a weight decomposition of the 6-dimensional T_2 -representation $\mathbb{C}[\mathbb{A}]_2$.

Exercise 4 (10 points).

Consider the group homomorphism $\varphi : T_2 \to T_2$ given by $\varphi(t_1, t_2) = (t_1^2, t_2)$. For $\mathbb{A} = \mathbb{C}[x, y]_2$ let $V = \mathbb{C}[\mathbb{A}]_2$ with the action $\varrho : \mathsf{GL}_2 \to \mathsf{GL}(V)$ from the lecture. Consider the action ϱ' of T_2 on $\mathbb{C}[\mathbb{A}]_2$ given by $\varrho'(t) = \varrho(\varphi(t))$ for $t \in T_2$. Determine a weight decomposition of this 6-dimensional T_2 -representation.

Exercise 5 (10 points).

Prove that there are exactly k pairwise non-isomorphic irreducible representations of the cyclic group $\mathbb{Z}/k\mathbb{Z}$.

Exercise 6 (20 points).

Prove that every irreducible representation of the product group $(\mathbb{Z}/k\mathbb{Z}) \times (\mathbb{Z}/\ell\mathbb{Z})$ is 1-dimensional.