Assignment 12
due on Wednesday, July 11, 2018

Name: \square

Exercise 1 (10 points).
Prove that there exists no decomposition of the form

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right)\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)
$$

where the stars are complex constants.
On the other hand, prove that $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ can be approximated arbitrarily closely by such decompositions.

Exercise 2 (10 points).
Let U_{n} denote the group of $n \times n$ upper triangular matrices with 1 s on the main diagonal. For $1 \leq i<j \leq n, \alpha \in \mathbb{C}$, let $x_{i j}(\alpha) \in U_{n}$ denote the identity matrix with an entry α in row i and column j. Prove that U_{n} is generated as a group by the set $\left\{x_{i j}(\alpha) \mid 1 \leq i<j \leq n, \alpha \in \mathbb{C}\right\}$.

Exercise 3 (10 points).
Let V be a polynomial GL_{n}-representation. For $i<j$ let $x_{i j}(\alpha)$ be defined as in Exercise 2 . The raising operator $E_{i j}: V \rightarrow V$ is a map defined via

$$
E_{i j}(v)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\left(x_{i j}(\varepsilon) v\right)-v\right)
$$

Prove that $E_{i j}$ is well-defined, i.e., that the limit exists. Furthermore, prove that $E_{i j}: V \rightarrow V$ is a linear map.

Exercise 4 (10 points).
Let V be a polynomial GL_{n}-representation and let $v \in V$ be of weight λ for $\lambda \in \mathbb{N}^{n}$. Prove that $E_{i j}(v)=\sum_{\mu \triangleright \lambda} v_{\mu}$, where each v_{μ} is either zero or a weight vector of weight μ.

