Assignment 2
due on Wednesday, April 25, 2018

Name: \square

Exercise 1 (10 points).
Use the discriminant polynomial to show that the Waring rank of $X^{2}+X Y+Y^{2}$ is at least 2 .

Exercise 2 (10 points).
We have seen polynomials whose Waring rank exceeds their border Waring rank. In contrast to this observation, prove that there is no polynomial h that satisfies $\mathrm{WR}(h)>1=\underline{\mathrm{WR}}(h)$.

Exercise 3 (20 points).
Consider the 3 -dimensional vector space $\mathbb{A}=\mathbb{C}[X, Y]_{2}$ with basis $\left\{x^{2}, x y, y^{2}\right\}$, so every polynomial in \mathbb{A} has a unique expression as $a x^{2}+b x y+c y^{2}$. Consider homogeneous degree 2 polynomials in a, b, c to obtain the 6 -dimensional vector space $\mathbb{C}[\mathbb{A}]_{2}$. For example, the discriminant $b^{2}-4 a c$ is an element of $\mathbb{C}[\mathbb{A}]_{2}$. Prove that the discriminant is the only polynomial (up to scale) in $\mathbb{C}[\mathbb{A}]_{2}$ that vanishes on polynomials of Waring rank 1.

