Assignment 3
due on Wednesday, May 2, 2018

Name: \square

Exercise 1 (10 points).
Consider the action of $\mathbb{C}^{N \times N}$ on $\mathbb{C}\left[X_{1}, \ldots, X_{N}\right]_{d}$ defined in the lecture. Compute the following polynomial in the standard monomial basis:

$$
\left(\begin{array}{lll}
2 & 3 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(X_{1} X_{2}^{2}+X_{3}\right)
$$

Exercise 2 (15 points).
Prove that the Waring rank of a polynomial is always finite by proving that

$$
X_{1} X_{2} \cdots X_{d}=\frac{1}{d!2^{d-1}} \sum_{\alpha \in\{-1,1\}^{d-1}}\left(\prod_{i=1}^{d-1} \alpha_{i}\right)\left(\alpha_{1} X_{1}+\alpha_{2} X_{2}+\cdots+\alpha_{d-1} X_{d-1}+X_{d}\right)^{d}
$$

Exercise 3 (15 points).
Let GL_{n} denote the group of invertible complex $n \times n$ matrices. Let $G=\mathrm{GL}_{n} \times \mathrm{GL}_{n}$ and let $V=\mathbb{C}^{n \times n}$. Define an action of G on V by

$$
\left(g_{1}, g_{2}\right) v:=g_{1} \cdot v \cdot g_{2}^{t}
$$

where "." is the product of matrices. Let $v \in V$ have matrix $\operatorname{rank} \operatorname{rk}(v)=k$. Prove that

$$
G v=\{w \in V \mid \operatorname{rk}(w)=k\}
$$

