A first introduction to geometric complexity theory

Summer 2018

Assignment 5 due on Wednesday, May 16, 2018

Name:

Exercise 1 (10 points).

Given a polynomial map $\varphi : \mathbb{C}^a \to \mathbb{C}^b$. Prove that the preimage $\varphi^{-1}(V) \subseteq \mathbb{C}^a$ of a Zariski-closed set $V \subseteq \mathbb{C}^b$ is Zariski-closed.

Exercise 2 (10 points). Find a, b and a polynomial map $\varphi : \mathbb{C}^a \to \mathbb{C}^b$ such that there exists a \mathbb{C} -closed set $W \subseteq \mathbb{C}^a$ for which $\varphi(W) \subseteq \mathbb{C}^b$ is not \mathbb{C} -closed.

Exercise 3 (10 points). Find a, b and a polynomial map $\varphi : \mathbb{C}^a \to \mathbb{C}^b$ such that there exists a Zariski-closed set $W \subseteq \mathbb{C}^a$ for which $\varphi(W) \subseteq \mathbb{C}^b$ is not Zariski-closed.

Exercise 4 (10 points).

Consider the set $S \subseteq \operatorname{End}_n$ of symmetric matrices. Consider the action of End_n on $\operatorname{Sym}^d \mathbb{C}^n$ from the lecture. Prove that for every $p \in \operatorname{Sym}^d \mathbb{C}^n$ the Zariski-closure of Sp coincides with the \mathbb{C} -closure of Sp.