A first introduction to geometric complexity theory

Summer 2018

Assignment 6 due on Wednesday, May 23, 2018

Name:

Exercise 1 (10 points).

Given an arithmetic circuit of size s that computes a polynomial h in variables x_1, \ldots, x_n . Prove that for each $i \in \{1, \ldots, n\}$ there exists an arithmetic circuit of size $\leq 4s$ that computes the partial derivative $\frac{\partial h}{\partial x_i}$.

Exercise 2 (10 points).

Given an arithmetic circuit of size s that computes a polynomial h of degree d. Prove that for each $i \in \{0, \ldots, d\}$ there exists an arithmetic circuit of size $O(d^2s)$ that computes the homogeneous degree i part of h.

Exercise 3 (10 points).

Let $(h_n) \in \text{VP}$ and let p(n) be minimal such that that $h_n \in \mathbb{C}[x_1, \ldots, x_{p(n)}]$. For each n let $g_n \in \text{End}_{p(n)}$. Prove that $(g_n h_n) \in \text{VP}$.

Exercise 4 (10 points). Define the polynomials $\operatorname{gensum}_{i,0} = \operatorname{genprod}_{i,0} = x_i$. For d > 0 define

$$\begin{split} \operatorname{gensum}_{i,d} &= \quad \operatorname{genprod}_{i,d-1} + \operatorname{genprod}_{i+2^{d-1},d-1}, \\ \operatorname{genprod}_{i,d} &= \quad \operatorname{gensum}_{i,d-1} \cdot \operatorname{gensum}_{i+2^{d-1},d-1}. \end{split}$$

(1) Prove that gensum_{*i,d*} is a polynomial in the variables $x_i, x_{i+1}, \ldots, x_{i+2^d-1}$.

Define $\operatorname{gen}_n = \operatorname{gensum}_{1, \lceil \log n \rceil}$, where $\lceil \log n \rceil$ is the binary logarithm rounded up.

(2) Prove that (gen_n) is VP_e-complete.