Assignment 6
due on Wednesday, May 23, 2018

Name: \square

Exercise 1 (10 points).
Given an arithmetic circuit of size s that computes a polynomial h in variables x_{1}, \ldots, x_{n}. Prove that for each $i \in\{1, \ldots, n\}$ there exists an arithmetic circuit of size $\leq 4 s$ that computes the partial derivative $\frac{\partial h}{\partial x_{i}}$.

Exercise 2 (10 points).
Given an arithmetic circuit of size s that computes a polynomial h of degree d. Prove that for each $i \in\{0, \ldots, d\}$ there exists an arithmetic circuit of size $O\left(d^{2} s\right)$ that computes the homogeneous degree i part of h.

Exercise 3 (10 points).
Let $\left(h_{n}\right) \in \mathrm{VP}$ and let $p(n)$ be minimal such that that $h_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{p(n)}\right]$. For each n let $g_{n} \in \operatorname{End}_{p(n)}$. Prove that $\left(g_{n} h_{n}\right) \in \mathrm{VP}$.

Exercise 4 (10 points).
Define the polynomials gensum $i_{i, 0}=\operatorname{genprod}_{i, 0}=x_{i}$. For $d>0$ define

$$
\begin{aligned}
\operatorname{gensum}_{i, d} & =\operatorname{genprod}_{i, d-1}+\operatorname{genprod}_{i+2^{d-1}, d-1} \\
\operatorname{genprod}_{i, d} & =\operatorname{gensum}_{i, d-1} \cdot \operatorname{gensum}_{i+2^{d-1}, d-1}
\end{aligned}
$$

(1) Prove that gensum $i_{i, d}$ is a polynomial in the variables $x_{i}, x_{i+1}, \ldots, x_{i+2^{d}-1}$.

Define $\operatorname{gen}_{n}=\operatorname{gensum}_{1,\lceil\log n\rceil}$, where $\lceil\log n\rceil$ is the binary logarithm rounded up.
(2) Prove that $\left(\right.$ gen $\left._{n}\right)$ is VP_{e}-complete.

