Assignment 7
due on Wednesday, May 30, 2018

Name:
\square

Exercise 1 (20 points).
Given a directed acyclic graph G on n vertices with two distinct vertices s and t such that each path from s to t has the same length. Assign a formal label ℓ_{e} to each edge e in G. Construct a graph G^{\prime} on $n-1$ vertices from G by identifying s and t.
Let A be the $(n-1) \times(n-1)$ adjacency matrix of G^{\prime}, i.e., $A_{i, j}=\ell_{(i, j)}$. Here we assume that the row and the column corresponding to s are the first row and the first column. Let I denote the $(n-1) \times(n-1)$ identity matrix and let E denote the $(n-1) \times(n-1)$ matrix that has a single 1 in the top left cell and zeroes everywhere else.

Prove that

$$
\sum_{s-t \text {-path } p \text { in } G}\left(\prod_{\text {edge } e \in p} \ell_{e}\right)=\sum_{\text {cycle } c \text { through } s \text { in } G^{\prime}}\left(\prod_{\text {edge } e \in c} \ell_{e}\right)= \pm \operatorname{det}(A+I-E),
$$

for either $\pm=1$ or $\pm=-1$.

Exercise 2 (20 points).
Prove that det_{n} is VP_{e}-hard.
Hint: Use the previous exercise.

