Assignment 9
due on Wednesday, June 13, 2018

Name: \square

On this homework sheet we prove that the Hamiltonian cycle polynomial is VNP-complete under p-projections. We mimic the VNP-completeness proof for the permanent polynomial.

Let \mathfrak{S}_{n} denote the symmetric group on n symbols. A Hamiltonian cycle $\pi \in \mathfrak{S}_{n}$ is a permutation such that the list $\left(1, \pi(1), \pi(\pi(1)), \ldots, \pi^{n-1}(1)\right)$ does not have a repeating value. Let $C_{n} \subseteq \mathfrak{S}_{n}$ denote the subset of Hamiltonian cycles.

The Hamiltonian cycle polynomial is defined as

$$
\operatorname{HC}_{n}\left(x_{1,1}, x_{1,2}, \ldots, x_{n, n}\right)=\sum_{\pi \in C_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}
$$

Exercise 1 (10 points).
Given a layered directed acyclic labeled graph G with source s and $\operatorname{sink} t$. The value $v(G)$ of G is defined as the sum of the values of all s - t-paths, where the value of an s - t-path is defined as the product of the labels of all its edges. Prove that there is graph G^{\prime} such that $\mathrm{HC}\left(G^{\prime}\right)=v(G)$ and that the number of vertices of G^{\prime} is polynomially bounded in the number of vertices of G. (Here we identified the directed graph G^{\prime} with its adjacency matrix.)

Hint: Recall that we have seen analogous constructions for the determinant and for the permanent. Here, instead of introducing self-loops, you should connect the vertices within each layer cyclically.

Exercise 2 (5 points).
The following technique is called vertex splitting.
Prove that from a directed acyclic labeled graph G you can create a directed acyclic labeled graph G^{\prime} with one more vertex such that $\mathrm{HC}(G)=\mathrm{HC}\left(G^{\prime}\right)$ and in G^{\prime} there is a vertex that has outdegree 1 and another vertex that has indegree 1.

Exercise 3 (7 points).
A Hamiltonian s-t-path is a path from s to t in a digraph that uses each vertex exactly once.
Prove that there exists a directed acyclic "Rosette graph" $R(i)$ with source s and $\operatorname{sink} t$ and a set X of so-called connector edges such that

- $|X|=i$,
- there are exactly two Hamiltonian s - t-paths that take no connector edges, and
- for every subset $\emptyset \neq S \subseteq X$ there is a unique Hamiltonian s - t-path that uses exactly the connector edges in X.

The number of vertices shall be polynomially bounded in i.
Hint: The following picture for $i=5$ should help, where the connector edges are dashed edges.

Exercise 4 (8 points).
Given a directed acyclic graph G and a vertex s with outdegree 1 and a vertex t with indegree 1 with an edge (s, t) in G. Moreover, given vertices $u, v, u^{\prime}, v^{\prime}$ with edges (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in G. Prove that one can replace these three edges with a constant size subgraph H (the "equality gadget") and obtain a new graph G^{\prime} such that

- there is a bijection between $\left\{\right.$ Hamiltonian paths in $\left.G^{\prime}\right\}$ and \{Hamiltonian paths in G that either use both (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ or use neither (u, v) nor $\left.\left(u^{\prime}, v^{\prime}\right)\right\}$.

Hint: The following picture should help.

Exercise 5 (10 points).
Use the previous exercises to show the VNP-hardness of HC_{n} under p-projections.
Hint: Add Rosette graphs and connect the connector edges with their counterparts in G using the equality gadget as in the proof of the VNP-hardness of the permanent. For each new subgraph that you add, split some vertex once using Exercise 2.

