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Chapter 1

Determinantal complexity

The question whether VPws = VNP can be rephrased as the question whether det is p-projection of
per. Related questions have been studied. One of them is the so-called determinantal complexity.

1.0.1 Definition. The determinantal complexity dc(f) of a polynomial f ∈ F[X1, . . . , Xn] is the
smallest s such that there are affine linear forms αi,j ∈ F[X1, . . . , Xn], 1 ≤ i, j ≤ s, such that we
can write f = dets(αi,j).

1.0.2 Lemma. (fn) ∈ VPws iff dc(fn) is p-bounded.

Proof. If (fn) ∈ VPws, then it is a p-projection of det. Therefore, its determinantal complexity
is p-bounded. For the other direction, note that the determinant has weakly skew circuits of
polynomial size. We can compute the affine linear forms by weakly skew circuits of polynomial
size. Therefore, (fn) has weakly polynomial circuits of polynomial size.

1.1 Mignon-Ressayre bound
In this section, we prove the best lower bound for the determinantal complexity, due to Mignon
and Ressayre [MR04].

1.1.1 Observation. ∂
∂Xi,j

pern(X) is the permanent of the (n− 1)× (n− 1) matrix obtained from
X by deleting the ith row and the jth column. The same is true for the determinant.

For a matrix A ∈ Fn×n, let Hper(A) denote the n2×n2-matrix with the entry in row (i, j) and
column (k, `) being equal to

∂2

∂Xi,j∂Xk,`
pern(A).

That is, we take the permanent polynomial, differentiate it twice and then we plug in the values
from the matrix C. In the same way, we define Hf and Hf (A) for any polynomial f .

For the proof, we need to construct a matrix A such that per(A) = 0 but Hper(A) has full rank
n2. Let A be the matrix

A =


1− n 1 . . . 1

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ,

that is, a1,1 = 1− n and all other entries are 1.

1.1.2 Lemma. per(A) = 0.
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Proof. Like for the determinant, we can do a Laplace expansion of the permanent. It is even easier,
since there are no signs to keep track off. (If you prefer to think in terms of cycle covers, a Laplace
expansion along the ith row just groups the cycle covers depending on which node is visisted right
after node i.)

So we do a Laplace expansion along the first row. Since all other rows are filled only with 1’s,
all the submatrices that we get are the same. We get it once multiplied by 1− n and n− 1 times
multiplied by 1. So the sum is 0.

1.1.3 Lemma. Hper(A) has rank n2.

Proof. When i = k or j = `, then

∂2

∂Xi,j∂Xk,`
pern(X) = 0.

This is due to the fact that every monomial contains only one variable from each row or column.
(This property is called set-multilinear).

If i 6= k and j 6= `, then
∂2

∂Xi,j∂Xk,`
pern(X)

is the permanent of the submatrix obtained by deleting rows i and k and columns j and ` from
X. If 1 ∈ {i, j, k, `}, then

∂2

∂Xi,j∂Xk,`
pern(A) = (n− 2)!,

since the matrix that we obtain from A after deleting the rows and columns is the all-ones-matrix
of size (n− 2)× (n− 2), the permanent of which is (n− 2)!. If 1 /∈ {i, j, k, `}, then

∂2

∂Xi,j∂Xk,`
pern(A) = −2(n− 3)!,

since the matrix that we obtain from A in this case has n− 1 in position (1, 1) and 1’s elsewhere.
Using Laplace expansion, one can easily see that the permanent of this matrix is −2(n − 3)!.
Therefore, we have that

Hper(A) = (n− 3)!



0 B B . . . B
B 0 C . . . C

B C 0
. . .

...
...

...
. . . . . . C

B C . . . C 0


where

B =


0 n− 2 . . . n− 2

n− 2 0
. . .

...
...

. . . . . .
...

n− 2 . . . n− 2 0


and

C =



0 n− 2 n− 2 . . . n− 2
n− 2 0 −2 . . . −2

n− 2 −2 0
. . .

...
...

...
. . . . . . −2

n− 2 −2 . . . −2 0

 .
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The matrix B has full rank: If we subtract the (n− 1)th row from the nth, then the (n− 2)th row
from the (n− 1)th and so on until we subtract the first row from the second, we get the matrix

(n− 2)


0 1 1 . . . 1
1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . . . . .

...
0 0 . . . 1 −1

 .

From the structure of the rows 2 to n it follows that every nontrivial vector in the kernel of the
matrix has to be a nonzero multiple of the all-ones-vector. The scalar product of this vector with
the first row is however nonzero. Therefore, B has full rank. Doing the same transformation with
C, but stopping one rwo earlier, we get the matrix

0 n− 2 n− 2 . . . n− 2
n− 2 0 −2 . . . −2

0 −2 2 . . . 0
...

...
. . . . . .

...
0 0 . . . −2 2

 .

From the structure of the third to nth row, we ge that the entries at positions 2 to n of every
nontrivial vector in the kernel have to be the same. From the first row, it follows that these entries
have to be 0. And finally, the second row tells us that also the first entry has to be zero then.
Therefore, C is also invertible.

We have
CB−1 0 . . . 0

0 I . . . 0
...

...
. . .

...
0 0 . . . I

Hper(A)


B−1C 0 . . . 0

0 I . . . 0
...

...
. . .

...
0 0 . . . I

 = (n− 3)!



0 C C C . . . C
C 0 C . . . C

C C 0
. . .

...
...

...
. . . . . . C

C C . . . C 0



= (n− 3)!


0 1 . . . 1

1 0
. . .

...
...

. . . . . . 1
1 . . . 1 0

⊗ C.
Since the Kronecker product of two full rank matrices has itself full rank, Hper(A) has full rank.

1.1.4 Lemma. Let Y ∈ Fs×s. If dets(Y ) = 0, then rkHdets
(Y ) ≤ 2s.

Proof. Let S and T be invertible matrices such that

SY T =
(

0 0
0 It

)
for some t < s. Multiplying Y by(

1/detS 0
0 Is−1

)
S and T

(
1/detT 0

0 Is−1

)
from the left and the right, respectively, does not change its determinant. As(

1/detS 0
0 Is−1

)
SY T

(
1/detT 0

0 Is−1

)
=
(

0 0
0 It

)
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(recall that t < s), we can assume w.l.o.g. that Y = (yi,j) is of this form.
Let us first consider the case when t = s− 1. An entry of Hdet(yi,j) is of the form

∂2

∂Xe,f∂Xk,`
dets(yi,j).

This entry can only be nonzero, if differentiating removes the first row and the first column and
the hth row and hth column for any other h. This means that

1. (e, f) = (1, 1) and (k, `) = (h, h),

2. (e, f) = (1, h) and (k, `) = (h, 1),

3. (e, f) = (h, 1) and (k, `) = (1, h),

4. (e, f) = (h, h) and (k, `) = (1, 1).
In the first case, we get one row with s− 1 ones in it. In the fourth case, we get one column with
s− 1 ones in it. In the second case, we get s− 1 different rows, each having a single one and zeros
elsewhere. The third case is similar. Altogether, we get that the rank is at most 2 + 2(s− 1) = 2s.
(In fact, equality holds.) When t = s − 2, then we have to delete the first and second row and
column, respectively, to get an nonzero entry. Therefore, the rank of the matrix can be at most
four, which is less than 2s.

When t < s− 2, then every entry of Hdet(Y ) will be zero.

1.1.5 Theorem. dc(pern) ≥ n2/2
Proof. Let s be the determinantal complexity of pern. We know that there are affine linear forms
αi,j(X), 1 ≤ i, j ≤ s such that

pern(X) = dets(αi,j(X)).
Let A = (ai,j) be the matrix from Lemma 1.1.3. Write αi,j(X) = λi,j(X −A) + yi,j , where λi,j is
a homogeneous linear form and yi,j is a constant, i.e., we perform a translation on the coordinates.
Thus,

pern(X) = dets(λi,j(X −A) + yi,j). (1.1.6)
Since pern(A) = 0, we have dets(yi,j) = 0, so Y := (yi,j) is not of full rank. Define Hdet in the
same way as Hper. Now we differentiate both sides of (1.1.6). We get

Hper(X) = LHdet(αi,j(X −A) + yi,j)LT

for some matrix L with entries from F by the chain rule (see below). Therefore,

Hper(A) = LHdet(Y )LT

and
rkHper(A) ≤ rkHdet(Y ).

By Lemma 1.1.3, we know that rank Hper(A) = n2. Therefore, we are done when we show that
rk(Hdet(Y )) ≤ 2s. But this follows from Lemma 1.1.4, since det(Y ) = 0.

1.1.7 Observation. Let f be a polynomial in Y1, . . . , Ym variables and `1, . . . , `m be affine linear
forms in X1, . . . , Xn. Then by the chain rule

∂2

∂Xi∂Xj
f(`1, . . . , `n) =

m∑
s=1

m∑
t=1

∂2

∂Ys∂Yt
f(`1, . . . , `n) ∂

∂Xi
`s

∂

∂Xj
`t

Note that ∂
∂Xi

`s and ∂
∂Xj

`t are just constants. Let L = ( ∂
∂Xi

`s)1≤s≤m,1≤i≤n. Then(
∂2

∂Xi∂Xj
f(`1, . . . , `n)

)
= L

(
∂2

∂Ys∂Yt
f(`1, . . . , `n)

)
LT
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1.2 Grenet’s construction
The best upper bound of the determinantal complexity is due to Grenet [Gre12]. It is (of course)
exponential. Grenet’s construction even writes the permanent as a projection of the determinant.
It can be easily described in combinatorial terms (see [BES] for an alterative explanation). We
construct a digraph G as follows: The nodes are all subsets of {1, . . . , n}. We identify ∅ and
{1, . . . , n} with each other, so there are 2n − 1 nodes in total. Let S and T be two nodes of G.
There will be an edge from S to T with weight Xi,j if |S| = i − 1, j /∈ S, and T = S ∪ {j}. The
node ∅ will have outgoing edges with weight X1,j to the node {j}, 1 ≤ j ≤ n and incoming edges
with weights Xn,j from the node {1, . . . , n} \ {j}. Furthermore, every node except ∅ gets a self
loop of weight 1.

How does a cycle cover of G look like? Edges go only from nodes S to nodes T of larger
cardinality. Therefore, the graph is “almost” acyclic, we only get cycles since we identified ∅ with
{1, . . . , n}. Every cycle has to go through ∅. So there can be only one cycle which is not a self
loop and since ∅ has no self loop, we have to use one such cycle and cover all other nodes with
self loops. Therefore every cycle cover of G has the same number of cycles and therefore the same
sign.

1.2.1 Observation. Cycle covers of G stand in one-to-one correspondance with permutations in
Sn.

This is due to the fact that every cycle simulates the process of adding the numbers 1, . . . , n
in some particular order to the empty set until we get {1, . . . , n}. Let π be this order. Then the
weight of this cycle is X1,π(i) · · ·Xn,π(n). It follows that

per(G) = per(X)

Since all cycle covers of G have the same sign, per(G) = ±det(G). Thus we haven proven the
following theorem.

1.2.2 Theorem. D(pern) ≤ 2n − 1.



Chapter 2

Extension to border complexity

The results of this chapter were first proven by [LMR10]. We follow the proof by Grochow [Gro15].

2.0.1 Lemma. There is a set of polynomial equations Se,d in the coefficients of two polynomials
f ∈ Syme V ∗ and g ∈ Symd V ∗ such that

[∀P ∈ Se,d : P (cf , cg) = 0] ⇐⇒ f |g,

where cf and cg are the coefficient vectors of f and g.

Proof. Consider the map Multf : Symd−e V ∗ → Symd V ∗ given by h 7→ f ·h. Let Mf be the matrix
of Multf , say in the monomial basis. The entries of Mf are either 0s or coefficients of f . Mf has
dimensions

(
n+d
n

)
×
(
n+d−e
n

)
. We have g ∈ im Multf iff cg ∈ col-spanMf iff rkMf = rk(Mf |cg).

Here (Mf |cg) denotes the matrix Mf extended by the coeffcient vector cg of g.
(Mf |cg) has full rank R :=

(
n+d−e
n

)
. We have rk(Mf |cg) = R iff all (R + 1) × (R + 1)-minors

of (Mf |cg) vanish. These minors are polynomials in the coefficients of f and g and form the set
Se,d.

Recall that we define dc(f) as the minimum s such that there are affine linear forms ai,j in
the variables of f , 1 ≤ i, j ≤ s such that f = det(ai,j). Instead of looking at affine forms, we will
now only consider homogeneous linear forms and padded polynomials. Let T be some variable
that does not appear in f . It is easy to see that dc(f) = s iff there are homogeneous linear forms
(`i,j), 1 ≤ i, j ≤ s, such that T s−deg(f)f = det(`i,j), we simply need to replace the constant term
αi,j of ai,j by αi,jT . Therefore, we will now look at perm,n = Xm−n

m,m pern(X|n) and compare it to
detm(X). Here X is an m×m-matrix with indeterminate entries and X|n denotes the upper left
n× n-submatrix. We say that dc(f) ≤ s if f is contained in the closure of all h with dc(h) ≤ s.

Recall that for a polynomial f(X), Hf (X) = ( ∂2

∂Xi∂Xj
f(X)) denotes the Hessian matrix of f .

2.0.2 Lemma. detsX divides all (2s+ 1)× (2s+ 1)-minors of Hdets(X).

Proof. Since dets is irreducible, it is sufficient to show that for all Y ∈ Fs×s, if detsY = 0, then
also all (2s+ 1)× (2s+ 1)-minors of Hdets

(Y ) vanish. This is the same as showing that for all Y ,
rk(Y ) ≤ s− 1 implies rk(Hdets

(Y )) ≤ 2s. However, this has been shown in Lemma 1.1.4.

Let f(X) be a polynomial in variables X1,1, . . . , Xs,s with coefficient vector cf . Es denotes the
set of all equations in the entries of cf that express the fact that f divides all (2s+ 1)× (2s+ 1)-
minors of Hf . (The set Es is the union over all minors of the equations of Lemma 2.0.1.)

2.0.3 Lemma. Let f(X) = detsL(X), where L(X) = (`i,j(X)) is a matrix with homogeneous
linear forms in X as entries. Then cf fulfills Es.
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Proof. By chain rule (see the previous chapter), we have

Hf (X) = BHdets
(L(X))BT

where B = ( ∂
∂Xi,j

`s,t) is the Jacobian matrix. B contains only constants, since the `s,t are linear
forms. Any submatrix S of Hf (S) is for the form

B1Hdets(L(X))B2

where B1 consists of some rows of B and B2 of columns of BT . Now assume that S is a square
matrix. By the Binet-Cauchy formula (see below), we have

detS =
∑
I

det(BI1) · det[Hdets
(L(X)) ·B2]I

=
∑
I

det(BI1) ·
∑
J

[I × J-minor of Hdets
(L(X))] · detB2,J

=
∑
I,J

det(BI1)[I × J-minor of Hdets
(L(X))] · detB2,J ,

where I and J are sets of indices as given by the Binet-Cauchy formula. Since the coefficient
vectors cdets fulfill Es by Lemma 2.0.2, f = det(L(X)) also divides all (2s+ 1)× (2s+ 1)-minors
of Hdets

(L(X)). By the considerations above, every (2s + 1) × (2s + 1)-minors of Hf is a linear
combination of such minors of Hdets

(L(X)). This f divides all (2s + 1) × (2s + 1)-minors of Hf .
Therefore cf fulfills Es.

2.0.4 Lemma (Binet–Cauchy formula, without proof). Let M be an n×m and N be an m× n-
matrix, m ≥ n. Then

det(MN) =
∑

I⊆{1,...,m}
|I|=n

det(M INI),

where M I is the n×n-submatrix with columns chosen according to I and NI is the n×n-submatrix
with columns chosen according to I.

2.0.5 Lemma. pers,n(X) does not divide all (2s+ 1)× (2s+ 1)-minors of Hpers,n
(X) for s < n2

2 .

Proof. Recall that
pers,n(X) = Xs−n

s,s pern(X|n).

Let i, j, i′, j′ ≤ n. Then

∂2

∂Xi,j∂Xi′,j′
pers,n(X) = Xs−n

s,s

∂2

∂Xi,j∂Xi′,j′
pern(X|n).

Therefore, the r × r-minors of Hpers,n
with rows and column indices ≤ n are of the form

Xr(s−n)
s,s ·

[
corresponding minor M(X|n) of Hpern

(X|n)
]
.

per(X|n) and M(X|n) are independent of Xs,s. Therefore Xs−n
s,s pern(X|n) divides Xr(s−n)

s,s M(X|n)
iff pern(X|n) divides M(X|n). Since pern(X|n) is irreducible, it is enough to find a matrix A ∈
Fn×n with pern(A) = 0 but M(A) 6= 0 in order to prove that pern(X|n) 6 |M(X|n).

Mignon and Ressayre (see the previous chapter) construct a matrix A with pern(A) = 0 but
Hpern(A) has full rank. Therefore, pern does not divide an n2 × n2-minor of Hpern

and therefore,
pers,n does not divide an n2 × n2-minor of Hpers,n

. If s = n2/2− 1, then 2s+ 1 = n2 − 1 and the
claim follows.
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2.0.6 Theorem. dc(pern) ≥ n2/2.

Proof. Assume that dc(pern) = s < n2/2. Then there is a sequence of polynomials pε with
dc(pε) ≤ s and pε → pers,n By Lemma 2.0.3, the coefficient vectors of pε fulfill the system Es. But
then cpers,n

also fulfills Es. This contradicts Lemma 2.0.5.
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