Assignment 1
due on Tuesday, October 24, 2017

Exercise 1 (10 points).
Let K_{n} denote the continuant, which is the $(1,1)$-entry of the product

$$
\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right)
$$

What is the coefficient of the monomial $x_{i_{1}} x_{i_{2}} \cdots x_{i_{\ell}}$ in K_{n} ?

Exercise 2 (10 points).
Prove that $K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=K_{n}\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$.

Exercise 3 (10 points).
Prove that

$$
K_{n}=\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & 1 & 0 & \cdots & 0 \\
-1 & x_{2} & 1 & \ddots & \vdots \\
0 & -1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \ldots & 0 & -1 & x_{n}
\end{array}\right)
$$

Exercise 4 (10 points).
For a homogeneous degree m polynomial h we define $L(h)$ to be the smallest n such that $x_{1}^{n-m} h \in \overline{\mathrm{GL}_{n} K_{n}}$ (as usual, the variables in h are ordered consecutively). In the lecture we showed that a sequence $\left(h_{m}\right)$ is in $\overline{\mathrm{VP}}_{\mathrm{e}}$ iff its sequence $L\left(h_{m}\right)$ is polynomially bounded. Prove that this is still true if we replace K_{n} by any of the two polynomials

$$
K_{n}^{\prime}=\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & 1 & 0 & \cdots & 0 \\
1 & x_{2} & 1 & \ddots & \vdots \\
0 & 1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \ldots & 0 & 1 & x_{n}
\end{array}\right)
$$

or

$$
K_{n}^{\prime \prime}=\operatorname{tr}\left(\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right)\right)
$$

